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Abstract

Human endogenous retroviruses (HERVs) encode active retroviral proteins, which may be

involved in the progression of cancer and other diseases. Matrix protein (MA), in group-

specific antigen genes (gag) of retroviruses, is associated with the virus envelope glycopro-

teins in most mammalian retroviruses and may be involved in virus particle assembly, trans-

port and budding. However, the amount of annotated MAs in ERVs is still at a low level so

far. No computational method to predict the exact start and end coordinates of MAs in gags

has been proposed yet. In this paper, a computational method to identify MAs in ERVs is

proposed. A divide and conquer technique was designed and applied to the conventional

prediction model to acquire better results when dealing with gene sequences with various

lengths. Initiation sites and termination sites were predicted separately and then combined

according to their intervals. Three different algorithms were applied and compared:

weighted support vector machine (WSVM), weighted extreme learning machine (WELM)

and random forest (RF). G −mean (geometric mean of sensitivity and specificity) values of

initiation sites and termination sites under 5-fold cross validation generated by random for-

est models are 0.9869 and 0.9755 respectively, highest among the algorithms applied. Our

prediction models combine RF & WSVM algorithms to achieve the best prediction results.

98.4% of all the collected ERV sequences with complete MAs (125 in total) could be pre-

dicted exactly correct by the models. 94,671 HERV sequences from 118 families were

scanned by the model, 104 new putative MAs were predicted in human chromosomes. Dis-

tributions of the putative MAs and optimizations of model parameters were also analyzed.

The usage of our predicting method was also expanded to other retroviruses and satisfying

results were acquired.

Introduction

Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections.

HERVs and their related genetic elements make up 504 distinct families and compose ~8% of

human genome [1]. Typical full-length HERVs are about 7-11kb in size and consist mainly of

the coding regions for gag, pro, pol, and env genes, flanked on both 5’- and 3’- ends by long ter-

minal repeats (LTR). Most HERVs in human genome have incomplete structures [2], which
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contain multiple stop codons, insertions, deletions and frame shift mutations [3,4]. HERVs

encode active retroviral proteins, which may exert important physiological functions in the

body, but may also be involved in the progression of cancer and numerous human autoim-

mune, neurological and infectious diseases. In addition, HERVs regulate expression of the

neighboring host genes and modify the genomic regulatory landscape [5].

The shortage of organs for transplantation is a major barrier to the treatment of organ fail-

ure. While porcine organs are considered promising, their use has been checked by concerns

about transmission of porcine endogenous retroviruses (PERVs) to humans. The risk of infec-

tions of human recipients after xenotransplantations is now mainly represented by PERVs as

these particles are part of the porcine genome. It was found that PERV infection of the HEK-

293 cell line alters expression of HERV sequences [6]. However, this risk isn’t impossible to

overcome, considering that the possibility that PERVs can be inactivated for clinical applica-

tion to porcine-to-human xenotransplantation has been demonstrated in a recent research [7].

The close relationship between HERVs and PERVs reminds us of the importance of bioinfor-

matics research to be carried out combining different mammal ERVs.

Group-specific antigen (gag) is the genetic material that codes for the core structural pro-

teins of a retrovirus. Gag is one of the three "main" genes found in all retroviruses (along with

env and pol). Gags have close relationship to many serious diseases such as AIDS and cancer.

A previous research revealed that human endogenous retrovirus K gag coassembles with HIV-

1 gag and reduces the release efficiency and infectivity of HIV-1 [8]. It was found 2 years ago

in another research that prostate cancer progression correlates with increased humoral

immune response to a human endogenous retrovirus gag protein [9]. However, the amount of

gag in HERVs found by experimental methods is still at a low level. The lack of annotated gags

in HERVs is a barrier that has to be removed for the convenience of subsequent structure anal-

ysis and function study on gags in HERVs. A computational method to predict gags from

HERVs has been brought up [10], but no computational method to predict exact start and end

coordinates of interior genes of gags which encode functional proteins has been proposed yet.

RetroTector is a platform independent program package which could detect candidate long

terminal repeats (LTR) in retroviruses as well as chains of conserved retroviral motifs (includ-

ing motifs of MAs) fulfilling distances constraints [11]. However, RetroTector is based on

sequence alignment, thus only motifs instead of the exact start and end coordinates of MAs

could be predicted. And these conserved retroviral motifs are eventually combined and used

as basis of the detection of retroviruses.

Gag contains around 1500 nucleotides, and encodes three separate proteins which form the

building blocks of the viral core. The three proteins are:

1. Matrix protein, MA

2. Capsid protein, CA

3. Nucleocapsid protein, NC

Matrix protein (MA) is associated with the virus envelope glycoproteins in most mamma-

lian retroviruses and may be involved in virus particle assembly, transport and budding. Mem-

brane binding in HIV-1 replication process is mediated by the MA, a 132-residue polypeptide

containing an N-terminal myristyl group that can adopt sequestered and exposed conforma-

tions[12]. Single amino acid changes in the HIV-1 matrix protein block virus particle produc-

tion[13]. The length of a MA found in endogenous retroviruses varies from 88aa to 127aa

according to records in National Center for Biotechnology Information (NCBI). Computa-

tional method to predict interior genes of gags which encodes functional proteins would
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benefit subsequent structure analysis and function study on gags, but we have to overcome the

difficulty of the shortage of annotated gag sequences in HERVs first.

Considering the importance of the relationship between gags in HERVs and ERVs from

other mammals, such as PERVs, gags from different mammal ERVs could be combined to

build up models for their interior gene prediction (i.e. MA).

In this paper, a computational model to identify MAs in ERVs was proposed. All ten

parameters of divide physicochemical property scores (DPPS) [14] along with position weight

matrix (PWM) were utilized to generate the feature space for MA prediction. An unconven-

tional “divide and conquer” (D&C) technique was applied to acquire high prediction accuracy

when dealing with sequences that are poorly conserved in their lengths (unlike the traditional

D&C technique in computer science, D&C technique applied here is not intended to reduce

the computational complexity of the algorithm, but to make conventional gene prediction

algorithms designed for fix-length gene prediction also capable of predicting sequences with

various lengths). Initiation sites and termination sites were predicted separately and then com-

bined according to their intervals. Massive DNA sequences related with coding regions from

118 HERV families were scanned with the prediction model, which has high prediction accu-

racy under 5-fold cross validation test.

Materials and methods

Datasets

All available amino acid sequences of ERVs from various organisms were collected from NCBI

at http://www.ncbi.nlm.nih.gov [15–68]. Among them, all 129 sequences of ERVs with MAs

annotated in their gags were used to build up the prediction model (please refer to S1 File for

details). One hundred and twenty five of them are with both initiation sites and termination

sites and the other four are with initiation sites only.

“Divide and conquer”

In computer science, divide and conquer is an algorithm design paradigm based on multi-

branched recursion. A divide and conquer algorithm works by recursively breaking down a

problem into two or more sub-problems of the same or related type, until these become simple

enough to be solved directly. The solutions to the sub-problems are then combined to give a

solution to the original problem.

Traditional gene prediction methods would lose their accuracy or even feasibility when

dealing with gene sequences with large length variations (because the dimension of the feature

space couldn’t be constant), even though they could bring out ideal prediction results when

dealing with fixed length gene sequences.

The idea of D&C inspired us to solve such problem. Unlike conventional D&C, the recur-

sion level in our problem is only 2 because our main purpose is dividing the original problem

into two simpler sub-problems instead of reducing the time complexity of it. Our prediction

method focuses more on the boundaries of the genes instead of the interior areas, because the

former has more to do with gene prediction. We broke down the problem into two simpler

sub-problems (fixed length gene prediction) and then combined the solutions of them to gen-

erate prediction results of the original gene prediction problem. The two sub-problems are ini-

tiation site and termination site prediction, which could be done well with traditional gene

prediction method because we could consider them as fixed length gene prediction problems.

We just need to predict the fixed length flanking residues of the initiation site and termination

site to deduce the precise locations of them. Then we just need to find a reasonable combina-

tion of the predicted initiation sites and termination sites to generate gene prediction results
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with high accuracy. We predicted the initiation site and termination site separately, and then

regarded the sequence between them as a candidate MA sequence only when it has an appro-

priate length. The advantage of this divide and conquer technique is that feasibility and high

accuracy could be obtained at the same time.

Sample preparation

Training samples are prepared from the amino acid sequences with MA annotations. Positive

training samples for initiation sites consisted of s-aa-long subsequences starting from the initi-

ation sites. The best prediction result was obtained when s was set to be 15 (please refer to Dis-

cussion part for more details). Likewise, positive training samples for termination sites

consisted of 15-aa-long subsequences ending at the termination sites. Negative training sam-

ples consisted of 15-aa-long subsequences from regions either without MAs or overlapping

with MAs but not sharing the same initiation or termination sites with them. To overcome the

difficulty of the lack of positive training samples, we generated negative training samples with

a size 5 times as large as the positive sample size and took the imbalanced data problem into

our consideration in the modelling process. Thus the training sets for initiation site prediction

model and termination site prediction model were built separately.

Feature selection

Combining position characteristics of sequences and physicochemical properties, a hybrid fea-

ture space construction approach was proposed.

Position weight matrix (PWM) [69] was applied to extract the position characteristic of

sequences. A PWM has one row for each symbol of the alphabet: 20 rows for 20 kinds of

amino acids in this case. It also has one column for each position of the 15-aa-long pattern. So

a 20×15 matrix was built to represent the different frequencies of 20 kinds of amino acid

appearing on various positions of the 15-aa-long motifs in this case. To construct a PWM, a

basic position frequency matrix (PFM) is created by counting the occurrences of each nucleo-

tide at each position at first. From the PFM, a position probability matrix (PPM) can be created

by dividing that former nucleotide count at each position by the number of sequences, thereby

normalising the values. Formally, given a set X of N aligned sequences of length l, the elements

of the PPM MPPM are calculated:

MPPM
k;j ¼

1

N

XN

i¼1

IðXi;j ¼ kÞ ð1Þ

Where i 2(1,. . .,N), j 2(1,. . .,l), k is the set of symbols in the alphabet and I(a = k) is an indica-

tor function where I(a = k) is 1 if a = k and 0 otherwise.

Most often the elements in PWMs are calculated as log likelihoods. That is, the elements of

the PWM are transformed using a background model b so that:

MPWM
k;j ¼ logðMPPM

k;j =bkÞ ð2Þ

The above equation describes how an element in the PWM MPWM is calculated. The

simplest background model assumes that each letter appears equally frequently in the

dataset. That is, the value of bk = 1 / |k| for all symbols in the alphabet (|k| = 20 for amino acids,

so bk = 0.05).

After generating the PWM matrix with positive sequences (please refer to S5 File for details

of PWM matrix of MA initiation sites and S6 File for details of PWM matrix of MA termina-

tion sites), a mapping method is used to extract the position characteristic of any 15-aa-long
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sequence V. Assign each amino acid of V with its corresponding value in the matrix according

to its position. Then a 15-dimension-vector VPos to represent the position characteristic of the

original 15-aa-long sequence could be generated.

VPos
j ¼ MPWM

k;j ð3Þ

Where j 2 (1,. . .,l), k = Vj, l = 15.

All ten parameters of the divided physicochemical property scores (DPPS) [14] were

selected to extract the physicochemical properties of sequences. The parameters consist of 4

electronic properties, 2 steric properties, 2 hydrophobic properties and 2 hydrogen bond prop-

erties. Similarly, when dealing with a 15-aa-long sequence, the sequence was mapped into a

10×15 matrix to represent its physicochemical properties.

Combining the above two kinds of information, (1+10)×15 = 165 features in total were

extracted from each 15-aa-long sequence for prediction. To get a persuasive performance com-

parison of different prediction models, we ran the following binary classifiers on the same

165-dimensional feature space.

Binary classifiers

Three binary classifiers based on different principles were applied to predict the initiation sites

and termination sites of the MA sequences:

WSVM classifier. The support vector machine (SVM) is a supervised machine learning

algorithm based on the statistical learning theory [70]. The basic thought of SVM is to map the

original data into a high dimensional feature space through a nonlinear mapping function and

then construct a hyper plane as a discriminative surface between the positive and negative data

[71]. Weighted SVM (WSVM) is able to deal with data with imbalanced class distribution

while maintaining a good performance. In this paper, WSVM was employed to solve both the

initiation site prediction and the termination site prediction, which is available at http://www.

csie.ntu.edu.tw/~cjlin/libsvm/.

WELM classifier. Extreme learning machine (ELM) is a kind of artificial neural network

and works for the “generalized” single-hidden-layer feed forward networks (SLFNs), the hid-

den layer (or called feature mapping) in ELM need not to be tuned. Compared with tradi-

tional computational intelligence techniques, ELM provides better generalization

performance at a much faster learning speed. It has milder optimization constraints and with

least human intervention [72]. Weighted ELM (WELM) also works well with data with

imbalanced class distribution, and it is available at http://www.ntu.edu.sg/home/egbhuang/.

In the paper, WELM was also used to solve the classification problem of unbalanced training

samples of MA.

RF classifier. Random forest (RF) is an ensemble learning method for classification,

regression and other tasks, that operate by constructing a multitude of decision trees at train-

ing time and outputting the class that is the mode) of the classes (classification) or mean pre-

diction (regression) of the individual trees[73]. Random forest correct for decision trees’ habit

of overfitting to their training set. Random forest algorithm is also employed to solve the MA

prediction problem, and it is available at https://cran.r-project.org/web/packages/

randomForest/.

Boundary combination

When the putative MA initiation sites and termination sites were predicted, a proper combina-

tion method should be proposed to get the prediction of the entire MA sequences. As we may

acquire more than one putative initiation sites and more than one putative termination sites
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(making up even more putative boundary pairs) in one unannotated gag sequence, a method

that could abandon the redundant false putative results and leave only one putative boundary

pair as the final prediction results is required. Such requirement could be accomplished

through the following 2 steps:

1. Choose the putative initiation sites and termination sites predicted by the RF models (please

refer to S7 File for details of RF model for MA initiation sites and S8 File for details of RF

model for MA termination sites) that possess distances within the range of the lengths of

MA sequences (88 to 127 aa) as candidate boundary pairs.

2. Leave the candidate boundary pair that is predicted to be possible boundary pairs by

WSVM models (please refer to S9 File for details of WSVM model for MA initiation sites

and S10 File for details of WSVM model for MA termination sites) as well and also has the

highest production value of its initiation site decision value and termination site decision

value generated from the WSVM models as the final MA prediction result of the unanno-

tated gag sequence. (A decision value is an important basis for the prediction result gener-

ated by a WSVM model. It is generated according to the degree of similarity between the

predicted sample and training samples. It ranges from 0 to 1. The larger the decision value,

the more likely the prediction result is positive, vise versa.)

Advantage of this technique:

1. Provides a way to rule out redundant MA boundary predictions and leave the most proba-

ble boundary pair as the final prediction result.

2. The final results have the advantages of both the RF models and WSVM models. They pos-

sess high sensitivity value provided by the RF models and high specificity value brought by

the WSVM models (please refer to Results part for more details). By using the prediction

results of RF models as candidate boundary pairs, we could reduce the omission rate of pos-

itive boundary pair. And by applying the WSVM model, false positive boundary pairs were

ruled out as much as we could.

Performance assessment

N-fold cross-validation and Jack-knife test are usually used to illuminate the performance of a

prediction model. Since 5-fold and 10-fold cross-validation were found to work better than

Jack- knife test [74], 5-fold and 10-fold cross-validation were employed to assess the perfor-

mance of the models in this paper.

True positive (TP) and false negative (FN) are the number of positive samples that are pre-

dicted to be positive and negative respectively. Analogously, true negative (TN) and false posi-

tive (FP) are used to denote the number of negative samples that are predicted to be negative

and positive respectively.

Sensitivity Sn (also called the true positive rate) measures the proportion of positive samples

that are correctly identified as such. Specificity Sp (also called the true negative rate) measures

the proportion of negative samples that are correctly identified as such.

Overall accuracy ACC denotes the proportion of the testing samples correctly predicted.

Usually ACC is used to measure the effectiveness of a classifier. Unfortunately, in presence of

imbalanced data, this metric may fail to provide adequate information about the performance

of the classifier. For instance, when given a binary classification problem consisting of 1 per-

cent positive sample and 99 percent negative class, any dumb classifier would easily achieve 99

percent accuracy by classifying all the samples as negative.
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Matthew’s correlation coefficient MCC is also used in machine learning as a measure of the

quality of binary classifications and it’s generally regarded as a balanced measure which can be

used even if the classes are of very different sizes.

G − mean is an evaluation metric adopted in this paper to give more insight into the accu-

racy obtained within each class. As the geometric mean of the prediction accuracy of the posi-

tive samples and the prediction accuracy of the negative samples, G − mean could provide

reasonable evaluation for the performance of the prediction model when dealing with imbal-

anced data. As with the 1:99 example, G − mean could be as low as 0 when the classifier is

dump and could only classify all the samples as negative.

In this paper, G − mean under 5-fold cross-validation was selected as the major perfor-

mance evaluation measure of the models to provide basis for parameter selection of models.

Sn, Sp, ACC and MCC were also calculated as a supplemental reference.

Sn ¼
TP

TPþ FN

Sp ¼
TN

TN þ FP
ACC ¼ ðTP þ TNÞ=ðTP þ TN þ FN þ FPÞ

MCC ¼
ðTP� TN � FP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

G � mean ¼
ffiffiffiffiffiffiffiffi
SnSp

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TPþ FN
�

TN
TN þ FP

r

ð4Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Putative MA detection

Once the RF models with high accuracy for initiation and termination site prediction were

trained, putative MA sequences could be obtained by applying sliding window technique.

When an unannotated sequence was analyzed, a 15-aa-long sliding window was used to

“observe” the sequence. As with the initiation site prediction, the prediction result of the

15-aa-long subsequence in the window could be acquired when the subsequence was put into

the RF model which was previously trained to distinguish MA initiation sites. Then we can

obtain the putative MA initiation site after sliding the window on the entire sequence. Simi-

larly, we can obtain the putative MA terminal site on the same sequence as well. With the rea-

sonable combination narrated in the ‘Boundary combination’ part, we could then finally

decide whether the sequence between the putative MA initiation site and terminal site is a

putative MA sequence or not.

Results

Performance of the method

Accuracy of the prediction of MA boundaries. The performance of the prediction mod-

els was tested by 5-fold cross-validation and shown in Table 1. From Table 1, we can find that

RF models have the best prediction results. They have the highest Sn, ACC, MCC and G −
mean values for MA prediction of both initiation sites and termination sites (G − mean values

of initiation sites and termination sites are 0.9869 and 0.9755 respectively), while WSVM mod-

els have the highest Sp values.

Accuracy of the prediction of MA. All of the 125 ERV sequences collected with complete

MAs were used to test the prediction performance of our prediction model (please refer to S2
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File for more details). 123 of them were predicted completely correct. This means that 98.4%

of the sequences could be predicted completely correct. The other 2 were predicted with only

2aa position deviations in their terminal sites. It is worth mentioning that all the initiation sites

were predicted completely correct.

Putative MA detection results

The proposed model was used to search for new putative MAs of 118 HERV families from

sequences without MA annotations. A total of 94,671 DNA sequences (please refer to S3 File

for details) corresponding to coding regions of HERVs from RepeatMasker have been

scanned. 104 new putative MAs (please refer to S4 File for details) were predicted in coding

region sequences. The exact locations of these new putative MAs of HERVs in the human

chromosomes have been described with CIRCOS [75] software and shown in Fig 1.

The angles of the dark red lines represent the exact positions of new putative MAs of

HERVs in the human chromosomes. The length of the line is proportional to the product of

the decision values of the initiation site and termination site of the corresponding MA.

Discussion

Conservative property of MA boundaries

Motifs of sequences adjacent to origins and terminals of MAs in ERVs were generated based

on WebLogo version 2.8.2 (http://weblogo.berkeley.edu/logo.cgi) and shown in Fig 2. From

the figure, we can defer that sequences on both ends of MAs in ERVs are fairly conservative.

This explains why satisfying results could be obtained from models created to predict the ori-

gins and terminals of MAs in ERVs separately.

Distribution of the putative MAs

The number of MAs in HERVs of the 24 human chromosomes and the number of MAs per bp

in HERVs of the 24 human chromosomes were shown in Fig 3.

Optimization of model parameters

Model parameters were optimized according to the prediction performance they eventually

bring about. A parameter was settled when it could bring about the best prediction perfor-

mance. To rule out random factors as much as possible, the whole prediction process was

rerun for 10 times and the average of the model performance measurement values was calcu-

lated whenever a parameter value changes during the parameter optimization process. To

Table 1. Prediction performance of models applying different algorithms.

MA boundary type Algorithm Sn Sp ACC MCC G-mean

MA initiation sites WSVM 0.9023 1 0.9837 0.9406 0.9497

WELM 0.9605 0.9992 0.9928 0.9738 0.9795

RF 0.9767 0.9974 0.9939 0.9783 0.9869

MA termination sites WSVM 0.9152 1 0.9859 0.9484 0.9561

WELM 0.9456 0.9922 0.9844 0.9439 0.9683

RF 0.9536 0.9982 0.9908 0.9667 0.9755

https://doi.org/10.1371/journal.pone.0176909.t001
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choose the best values of parameters in the models, we adopted the method of cross validation

based on grid search, avoiding the arbitrary and capricious behaviour.

The window length was selected according to its prediction performance. It was found that

15 is the best window length when the performance of the initiation site prediction model and

the termination site prediction model are comprehensively considered.

The optimization details of model parameters in WSVM, WELM, RF models were shown

in Table 2.

Fig 1. Exact locations of 104 new putative MAs of HERVs in the human chromosomes.

https://doi.org/10.1371/journal.pone.0176909.g001
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Predicting effectiveness on other retroviruses

Retroviruses from different genuses might have different gag structures [76]. To test the pre-

dicting effectiveness on other retroviruses, all available gag sequences with MA annotated in

Retroviridae, including Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus,

Epsilonretrovirus, Lentivirus and Spumavirus were collected from NCBI and used as source of

training and testing sets to examine the effectiveness of our method. (No MAs were found

annotated in Epsilonretrovirus and Spumavirus. Please refer to S11 File for more details about

annotated MAs in Retroviridaes.)

Prediction models based on similar strategy were built for MAs in retroviruses from various

genuses. Their effectiveness was also tested (Prediction source code is available at SourceForge,

with the download URL: https://sourceforge.net/projects/ma-detection/files/MA%

20prediction.zip/download). The dataset summary, model parameters and prediction results

were shown in Tables 3 & 4.

From Tables 3 & 4, we can find that our prediction models could bring out favourable pre-

diction results on sequences from various genuses of Retroviridae. Thus our predicting

Fig 2. Motifs of residues adjacent to boundaries of MAs in ERV sequences. It shows motifs of surrounding residues of ERVs’ (A) MA

initiation sites, (B) MA Termination sites.

https://doi.org/10.1371/journal.pone.0176909.g002

Fig 3. Distribution of MAs. (A) The number of MAs in HERVs of the 24 human chromosomes. (B)The number of MAs per bp in HERVs of

the 24 human chromosomes.

https://doi.org/10.1371/journal.pone.0176909.g003
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strategy (focusing on predicting MA start and end coordinates by combining RF and WSVM)

is extensible to various genuses of Retroviridae.

Gammaretroviruses, such as murine leukemia viruses (MLVs), encode, in addition to the

canonical gag, pol, and env proteins that will form progeny virus particles, a protein called

“glycogag” (glycosylated Gag) [77]. All available glycosylated Gag sequences with MA anno-

tated were downloaded from NCBI and scanned by our prediction model for Gammaretro-

virus. All of their annotated boundaries were predicted totally correct. (Please refer to S12 File

for more details about MA prediction in glycosylated Gags). It seems that the prediction of

MAs in glycogag is not a special issue distinguished from normal Gags. This consist with the

Table 2. Optimization details of parameters in WSVM, WELM, RF models.

MA boundary type Algorithm Model parameters Step size in search Value of optimized parameters

MA initiation sites WSVM c 0.0001 0.1895

g 0.0001 0.0625

WELM Number of hidden neurons 50 2000

C 50 9300

RF Number of trees 5 160

mtry 5 80

MA termination sites WSVM c 0.0001 0.5743

g 0.0001 0.1895

WELM Number of hidden neurons 50 1600

C 50 5100

RF Number of trees 5 140

mtry 5 50

https://doi.org/10.1371/journal.pone.0176909.t002

Table 3. Prediction performance of models applied to MA boundaries from different retrovirus genuses.

MA Boundary Type Organism Number of sequences Algorithm Sn Sp Acc MCC G-mean

MA Initiation Sites Alpharetrovirus 141 WSVM 0.9931 1 0.9988 0.9958 0.9965

RF 0.9931 1 0.9988 0.9958 0.9965

Betaretrovirus 95 WSVM 0.9895 1 0.9928 0.9936 0.9947

RF 0.9979 0.9994 0.9991 0.9969 0.9986

Gammaretrovirus 482 WSVM 0.9726 0.998 0.9938 0.9775 0.9852

RF 0.9807 0.9965 0.9938 0.9779 0.9885

Deltaretrovirus 234 WSVM 0.9812 1 0.9969 0.9887 0.9905

RF 0.9872 1 0.9979 0.9923 0.9936

Lentivirus 17272 WSVM 0.9619 0.9987 0.9926 0.9732 0.9801

RF 0.9746 0.9982 0.9942 0.9792 0.9863

MA Initiation Sites Alpharetrovirus 140 WSVM 0.9857 1 0.9976 0.9914 0.9928

RF 0.9907 1 0.9985 0.9944 0.9953

Betaretrovirus 98 WSVM 0.99 1 0.9983 0.9939 0.9949

RF 1 1 1 1 1

Gammaretrovirus 347 WSVM 0.9447 0.9959 0.9873 0.954 0.9699

RF 0.9516 0.9978 0.9901 0.9639 0.9743

Deltaretrovirus 181 WSVM 0.9892 0.9945 0.9936 0.9773 0.9918

RF 0.9891 0.9989 0.9972 0.9901 0.9939

Lentivirus 18234 WSVM 0.9074 0.9998 0.9844 0.9433 0.9523

RF 0.9625 0.9983 0.9923 0.9723 0.9802

https://doi.org/10.1371/journal.pone.0176909.t003
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previous research that glycogag protein is identical in primary sequence to Gag except that it

contains 88 additional residues at its N terminus [78].

Limits of the model

MA prediction based on identifying boundaries of MAs has the advantage of high efficiency

and accuracy. However, some ERVs may not have a typical MA, like HERVL. Our prediction

focuses on prediction of MAs with typical structures, thus it is not suitable for predicting non-

canonical MAs.
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Table 4. Prediction performance on sequences with intact MAs from different retrovirus genuses.

Organism Intact Seq

Amount

Init Acc

Amount

Init Acc

Rate

Term Acc

Amount

Term Acc

Rate

Boundaries Acc

Amount

Boundaries Acc

Rate

Alpharetrovirus 139 139 1 138 0.9928 138 0.9928

Betaretrovirus 95 95 1 95 1 95 1

Gammaretrovirus 341 336 0.9853 336 0.9853 332 0.9736

Deltaretrovirus 179 178 0.9944 171 0.9553 170 0.9497

Lentivirus 16292 15057 0.9242 15190 0.9324 14196 0.8713

https://doi.org/10.1371/journal.pone.0176909.t004

A computational method for prediction of MAs in ERVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176909 May 4, 2017 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s010
https://doi.org/10.1371/journal.pone.0176909.t004
https://doi.org/10.1371/journal.pone.0176909


S11 File. Details of all collected Retroviridae sequences with MAs annotated.

(XLSX)

S12 File. Details about MA prediction in glycosylated Gags.

(XLSX)

Acknowledgments

We are grateful to our colleagues in the School of Electronic and Information Engineering,

Xi’an Jiaotong University for their help during the course of this work, in particular Dr. Shan-

xin Zhang and Dr. Ze Liu for critical reading and helpful discussions on the manuscript.

Author Contributions

Conceptualization: YCM RLL.

Data curation: YCM DXZ XMZ.

Formal analysis: YCM HQL.

Funding acquisition: RLL HQL.

Investigation: YCM RLL.

Methodology: YCM HQL.

Project administration: JQH.

Resources: DXZ XMZ.

Software: YCM JQH.

Supervision: RLL JQH.

Validation: YCM RLL.

Visualization: YCM RLL.

Writing – original draft: YCM RLL.

Writing – review & editing: RLL HQL.

References
1. Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus

Genes 26: 291–315. PMID: 12876457

2. Jern P, Coffin JM (2008) Effects of retroviruses on host genome function. Annu Rev Genet 42:

709–732. https://doi.org/10.1146/annurev.genet.42.110807.091501 PMID: 18694346

3. de Parseval N, Casella JF, Gressin L, Heidmann T (2001) Characterization of the three HERV-H provi-

ruses with an open envelope reading frame encompassing the immunosuppressive domain and evolu-

tionary history in primates. Virology 279: 558–569. https://doi.org/10.1006/viro.2000.0737 PMID:

11162811

4. Kim HS (2001) Sequence and phylogeny of HERV-W pol fragments. Aids Research and Human Retro-

viruses 17: 1665–1671. https://doi.org/10.1089/088922201753342086 PMID: 11779355

5. Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A (2015) Molecular functions

of human endogenous retroviruses in health and disease. Cellular and Molecular Life Sciences 72:

3653–3675. https://doi.org/10.1007/s00018-015-1947-6 PMID: 26082181

6. Machnik G, Klimacka-Nawrot E, Sypniewski D, Matczynska D, Galka S, Bednarek I, et al. (2014) Por-

cine Endogenous Retrovirus (PERV) Infection of HEK-293 Cell Line Alters Expression of Human

Endogenous Retrovirus (HERV-W) Sequences. Folia Biologica 60: 35–46. PMID: 24594055

A computational method for prediction of MAs in ERVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176909 May 4, 2017 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0176909.s012
http://www.ncbi.nlm.nih.gov/pubmed/12876457
https://doi.org/10.1146/annurev.genet.42.110807.091501
http://www.ncbi.nlm.nih.gov/pubmed/18694346
https://doi.org/10.1006/viro.2000.0737
http://www.ncbi.nlm.nih.gov/pubmed/11162811
https://doi.org/10.1089/088922201753342086
http://www.ncbi.nlm.nih.gov/pubmed/11779355
https://doi.org/10.1007/s00018-015-1947-6
http://www.ncbi.nlm.nih.gov/pubmed/26082181
http://www.ncbi.nlm.nih.gov/pubmed/24594055
https://doi.org/10.1371/journal.pone.0176909


7. Yang LH, Guell M, Niu D, George H, Lesha E, Grishin D, et al. (2015) Genome-wide inactivation of por-

cine endogenous retroviruses (PERVs). Science 350: 1101–1104. https://doi.org/10.1126/science.

aad1191 PMID: 26456528

8. Monde K, Contreras-Galindo R, Kaplan MH, Markovitz DM, Ono A (2012) Human Endogenous Retrovi-

rus K Gag Coassembles with HIV-1 Gag and Reduces the Release Efficiency and Infectivity of HIV-1.

Journal of Virology 86: 11194–11208. https://doi.org/10.1128/JVI.00301-12 PMID: 22855497

9. Reis BS, Jungbluth AA, Frosina D, Holz M, Ritter E, Nakayama E, et al. (2013) Prostate Cancer Pro-

gression Correlates with Increased Humoral Immune Response to a Human Endogenous Retrovirus

GAG Protein. Clinical Cancer Research 19: 6112–6125. https://doi.org/10.1158/1078-0432.CCR-12-

3580 PMID: 24081977

10. Villesen P, Aagaard L, Wiuf C, Pedersen FS (2004) Identification of endogenous retroviral reading

frames in the human genome. Retrovirology 1: 32. https://doi.org/10.1186/1742-4690-1-32 PMID:

15476554

11. Sperber GO, Airola T, Jern P, Blomberg J (2007) Automated recognition of retroviral sequences in

genomic data—RetroTector (c). Nucleic Acids Research 35: 4964–4976. https://doi.org/10.1093/nar/

gkm515 PMID: 17636050

12. Summers MF, Saad JS (2009) STRUCTURAL BASIS FOR TARGETING HIV-1 GAG PROTEINS TO

THE PLASMA MEMBRANE FOR VIRUS ASSEMBLY. Proceedings of the National Academy of

Science. pp. 11364–11369.

13. Freed EO, Orenstein JM, Buckler-White AJ, Martin MA (1994) Single amino acid changes in the human

immunodeficiency virus type 1 matrix protein block virus particle production. Journal of Virology 68:

5311–5320. PMID: 8035531

14. Tian F, Yang L, Lv F, Yang Q, Zhou P (2009) In silico quantitative prediction of peptides binding affinity

to human MHC molecule: an intuitive quantitative structure-activity relationship approach. Amino Acids

36: 535–554. https://doi.org/10.1007/s00726-008-0116-8 PMID: 18575802

15. Ono M, Yasunaga T, Miyata T, Ushikubo H (1986) Nucleotide sequence of human endogenous retrovi-

rus genome related to the mouse mammary tumor virus genome. J Virol 60: 589–598. PMID: 3021993

16. Boller K, Janssen O, Schuldes H, Tonjes RR, Kurth R (1997) Characterization of the antibody response

specific for the human endogenous retrovirus HTDV/HERV-K. J Virol 71: 4581–4588. PMID: 9151852

17. Tonjes RR, Boller K, Limbach C, Lugert R, Kurth R (1997) Characterization of human endogenous ret-

rovirus type K virus-like particles generated from recombinant baculoviruses. Virology 233: 280–291.

https://doi.org/10.1006/viro.1997.8614 PMID: 9217052

18. Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P, Fishman JA (1998) Identification of a full-

length cDNA for an endogenous retrovirus of miniature swine. J Virol 72: 4503–4507. PMID: 9557749

19. Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J (1999) Many human endogenous

retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 9: 861–868. PMID: 10469592

20. Tonjes RR, Czauderna F, Kurth R (1999) Genome-wide screening, cloning, chromosomal assignment,

and expression of full-length human endogenous retrovirus type K. J Virol 73: 9187–9195. PMID:

10516026

21. Mayer J, Sauter M, Racz A, Scherer D, Mueller-Lantzsch N, Meese E (1999) An almost-intact human

endogenous retrovirus K on human chromosome 7. Nat Genet 21: 257–258. https://doi.org/10.1038/

6766 PMID: 10080172

22. Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, et al. (1999) The DNA sequence of

human chromosome 22. Nature 402: 489–495. https://doi.org/10.1038/990031 PMID: 10591208

23. Voisset C, Bouton O, Bedin F, Duret L, Mandrand B, Mallet F, et al. (2000) Chromosomal distribution

and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retroviruses

16: 731–740. https://doi.org/10.1089/088922200308738 PMID: 10826480

24. Deng YM, Tuch BE, Rawlinson WD (2000) Transmission of porcine endogenous retroviruses in severe

combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation

70: 1010–1016. PMID: 11045635

25. Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J (2001) Insertional polymorphisms

of full-length endogenous retroviruses in humans. Curr Biol 11: 1531–1535. PMID: 11591322

26. Sugimoto J, Matsuura N, Kinjo Y, Takasu N, Oda T, Jinno Y (2001) Transcriptionally active HERV-K

genes: identification, isolation, and chromosomal mapping. Genomics 72: 137–144. https://doi.org/10.

1006/geno.2001.6473 PMID: 11401426

27. Krach U, Fischer N, Czauderna F, Tonjes RR (2001) Comparison of replication-competent molecular

clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J Virol

75: 5465–5472. https://doi.org/10.1128/JVI.75.12.5465-5472.2001 PMID: 11356953

A computational method for prediction of MAs in ERVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176909 May 4, 2017 14 / 17

https://doi.org/10.1126/science.aad1191
https://doi.org/10.1126/science.aad1191
http://www.ncbi.nlm.nih.gov/pubmed/26456528
https://doi.org/10.1128/JVI.00301-12
http://www.ncbi.nlm.nih.gov/pubmed/22855497
https://doi.org/10.1158/1078-0432.CCR-12-3580
https://doi.org/10.1158/1078-0432.CCR-12-3580
http://www.ncbi.nlm.nih.gov/pubmed/24081977
https://doi.org/10.1186/1742-4690-1-32
http://www.ncbi.nlm.nih.gov/pubmed/15476554
https://doi.org/10.1093/nar/gkm515
https://doi.org/10.1093/nar/gkm515
http://www.ncbi.nlm.nih.gov/pubmed/17636050
http://www.ncbi.nlm.nih.gov/pubmed/8035531
https://doi.org/10.1007/s00726-008-0116-8
http://www.ncbi.nlm.nih.gov/pubmed/18575802
http://www.ncbi.nlm.nih.gov/pubmed/3021993
http://www.ncbi.nlm.nih.gov/pubmed/9151852
https://doi.org/10.1006/viro.1997.8614
http://www.ncbi.nlm.nih.gov/pubmed/9217052
http://www.ncbi.nlm.nih.gov/pubmed/9557749
http://www.ncbi.nlm.nih.gov/pubmed/10469592
http://www.ncbi.nlm.nih.gov/pubmed/10516026
https://doi.org/10.1038/6766
https://doi.org/10.1038/6766
http://www.ncbi.nlm.nih.gov/pubmed/10080172
https://doi.org/10.1038/990031
http://www.ncbi.nlm.nih.gov/pubmed/10591208
https://doi.org/10.1089/088922200308738
http://www.ncbi.nlm.nih.gov/pubmed/10826480
http://www.ncbi.nlm.nih.gov/pubmed/11045635
http://www.ncbi.nlm.nih.gov/pubmed/11591322
https://doi.org/10.1006/geno.2001.6473
https://doi.org/10.1006/geno.2001.6473
http://www.ncbi.nlm.nih.gov/pubmed/11401426
https://doi.org/10.1128/JVI.75.12.5465-5472.2001
http://www.ncbi.nlm.nih.gov/pubmed/11356953
https://doi.org/10.1371/journal.pone.0176909


28. Bartosch B, Weiss RA, Takeuchi Y (2002) PCR-based cloning and immunocytological titration of infec-

tious porcine endogenous retrovirus subgroup A and B. J Gen Virol 83: 2231–2240. https://doi.org/10.

1099/0022-1317-83-9-2231 PMID: 12185278

29. Griffiths DJ, Voisset C, Venables PJ, Weiss RA (2002) Novel endogenous retrovirus in rabbits previ-

ously reported as human retrovirus 5. J Virol 76: 7094–7102. https://doi.org/10.1128/JVI.76.14.7094-

7102.2002 PMID: 12072509

30. Scobie L, Taylor S, Wood JC, Suling KM, Quinn G, Meikle S, et al. (2004) Absence of replication-

competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature

Swine. J Virol 78: 2502–2509. https://doi.org/10.1128/JVI.78.5.2502-2509.2004 PMID: 14963152

31. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y (2004) Evidence and conse-

quence of porcine endogenous retrovirus recombination. J Virol 78: 13880–13890. https://doi.org/10.

1128/JVI.78.24.13880-13890.2004 PMID: 15564496

32. Martin J, Han C, Gordon LA, Terry A, Prabhakar S, She X, et al. (2004) The sequence and analysis of

duplication-rich human chromosome 16. Nature 432: 988–994. https://doi.org/10.1038/nature03187

PMID: 15616553

33. Preuss T, Fischer N, Boller K, Tonjes RR (2006) Isolation and characterization of an infectious replica-

tion-competent molecular clone of ecotropic porcine endogenous retrovirus class C. J Virol 80:

10258–10261. https://doi.org/10.1128/JVI.01140-06 PMID: 17005704

34. Scherer SE, Muzny DM, Buhay CJ, Chen R, Cree A, Ding Y, et al. (2006) The finished DNA sequence

of human chromosome 12. Nature 440: 346–351. https://doi.org/10.1038/nature04569 PMID:

16541075

35. Hirschl S, Schanab O, Seppele H, Waltenberger A, Humer J, Wolff K, et al. (2007) Sequence variability

of retroviral particles derived from human melanoma cells melanoma-associated retrovirus. Virus Res

123: 211–215. https://doi.org/10.1016/j.virusres.2006.08.010 PMID: 17005285

36. Kim NY, Lee D, Lee J, Park EW, Jung WW, Yang JM, et al. (2009) Characterization of the replication-

competent porcine endogenous retrovirus class B molecular clone originated from Korean domestic

pig. Virus Genes 39: 210–216. https://doi.org/10.1007/s11262-009-0377-7 PMID: 19543822

37. Jung WY, Kim JE, Jung KC, Jin DI, Moran C, Park EW, et al. (2010) Comparison of PERV genomic

locations between Asian and European pigs. Anim Genet 41: 89–92. https://doi.org/10.1111/j.1365-

2052.2009.01953.x PMID: 19781037

38. Ma Y, Lv M, Xu S, Wu J, Tian K, Zhang J (2010) Identification of full-length proviral DNA of porcine

endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred. Comp Immunol Microbiol Infect

Dis 33: 323–331. https://doi.org/10.1016/j.cimid.2008.10.007 PMID: 19070900

39. Yu SL, Jung WY, Jung KC, Cho IC, Lim HT, Jin DI, et al. (2012) Characterization of porcine endogenous

retrovirus clones from the NIH miniature pig BAC library. J Biomed Biotechnol 2012: 482568. https://

doi.org/10.1155/2012/482568 PMID: 21912484

40. Xiang S, Ma Y, Yan Q, Lv M, Zhao X, Yin H, et al. (2013) Construction and characterization of an infec-

tious replication competent clone of porcine endogenous retrovirus from Chinese miniature pigs. Virol J

10: 228. https://doi.org/10.1186/1743-422X-10-228 PMID: 23837947

41. Escalera-Zamudio M, Mendoza ML, Heeger F, Loza-Rubio E, Rojas-Anaya E, Mendez-Ojeda ML, et al.

(2015) A novel endogenous betaretrovirus in the common vampire bat (Desmodus rotundus) suggests

multiple independent infection and cross-species transmission events. J Virol 89: 5180–5184. https://

doi.org/10.1128/JVI.03452-14 PMID: 25717107

42. Pothlichet J, Heidmann T, Mangeney M (2006) A recombinant endogenous retrovirus amplified in a

mouse neuroblastoma is involved in tumor growth in vivo. Int J Cancer 119: 815–822. https://doi.org/

10.1002/ijc.21935 PMID: 16550601

43. Bartman T, Murasko DM, Blank KJ (1995) A replication-competent, endogenous retrovirus from an

aged DBA/2 mouse contains the complete env from Emv-3 and a novel gag partially related to AKT-8. J

Virol 69: 3224–3228. PMID: 7707556

44. Niebert M, Rogel-Gaillard C, Chardon P, Tonjes RR (2002) Characterization of chromosomally

assigned replication-competent gamma porcine endogenous retroviruses derived from a large white pig

and expression in human cells. J Virol 76: 2714–2720. https://doi.org/10.1128/JVI.76.6.2714-2720.

2002 PMID: 11861838

45. Cingoz O, Paprotka T, Delviks-Frankenberry KA, Wildt S, Hu WS, Pathak VK, et al. (2012) Characteri-

zation, mapping, and distribution of the two XMRV parental proviruses. J Virol 86: 328–338. https://doi.

org/10.1128/JVI.06022-11 PMID: 22031947

46. Tang HB, Ouyang K, Ma L, Bai A, Qin S, Chen F, et al. (2015) Complete Genome Sequence of a Por-

cine Endogenous Retrovirus Isolated from a Bama Minipig in Guangxi, Southern China. Genome

Announc 3.

A computational method for prediction of MAs in ERVs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176909 May 4, 2017 15 / 17

https://doi.org/10.1099/0022-1317-83-9-2231
https://doi.org/10.1099/0022-1317-83-9-2231
http://www.ncbi.nlm.nih.gov/pubmed/12185278
https://doi.org/10.1128/JVI.76.14.7094-7102.2002
https://doi.org/10.1128/JVI.76.14.7094-7102.2002
http://www.ncbi.nlm.nih.gov/pubmed/12072509
https://doi.org/10.1128/JVI.78.5.2502-2509.2004
http://www.ncbi.nlm.nih.gov/pubmed/14963152
https://doi.org/10.1128/JVI.78.24.13880-13890.2004
https://doi.org/10.1128/JVI.78.24.13880-13890.2004
http://www.ncbi.nlm.nih.gov/pubmed/15564496
https://doi.org/10.1038/nature03187
http://www.ncbi.nlm.nih.gov/pubmed/15616553
https://doi.org/10.1128/JVI.01140-06
http://www.ncbi.nlm.nih.gov/pubmed/17005704
https://doi.org/10.1038/nature04569
http://www.ncbi.nlm.nih.gov/pubmed/16541075
https://doi.org/10.1016/j.virusres.2006.08.010
http://www.ncbi.nlm.nih.gov/pubmed/17005285
https://doi.org/10.1007/s11262-009-0377-7
http://www.ncbi.nlm.nih.gov/pubmed/19543822
https://doi.org/10.1111/j.1365-2052.2009.01953.x
https://doi.org/10.1111/j.1365-2052.2009.01953.x
http://www.ncbi.nlm.nih.gov/pubmed/19781037
https://doi.org/10.1016/j.cimid.2008.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19070900
https://doi.org/10.1155/2012/482568
https://doi.org/10.1155/2012/482568
http://www.ncbi.nlm.nih.gov/pubmed/21912484
https://doi.org/10.1186/1743-422X-10-228
http://www.ncbi.nlm.nih.gov/pubmed/23837947
https://doi.org/10.1128/JVI.03452-14
https://doi.org/10.1128/JVI.03452-14
http://www.ncbi.nlm.nih.gov/pubmed/25717107
https://doi.org/10.1002/ijc.21935
https://doi.org/10.1002/ijc.21935
http://www.ncbi.nlm.nih.gov/pubmed/16550601
http://www.ncbi.nlm.nih.gov/pubmed/7707556
https://doi.org/10.1128/JVI.76.6.2714-2720.2002
https://doi.org/10.1128/JVI.76.6.2714-2720.2002
http://www.ncbi.nlm.nih.gov/pubmed/11861838
https://doi.org/10.1128/JVI.06022-11
https://doi.org/10.1128/JVI.06022-11
http://www.ncbi.nlm.nih.gov/pubmed/22031947
https://doi.org/10.1371/journal.pone.0176909


47. van der Kuyl AC, Mang R, Dekker JT, Goudsmit J (1997) Complete nucleotide sequence of simian

endogenous type D retrovirus with intact genome organization: evidence for ancestry to simian retrovi-

rus and baboon endogenous virus. J Virol 71: 3666–3676. PMID: 9094640

48. Triviai I, Ziegler M, Bergholz U, Oler AJ, Stubig T, Prassolov V, et al. (2014) Endogenous retrovirus

induces leukemia in a xenograft mouse model for primary myelofibrosis. Proc Natl Acad Sci U S A 111:

8595–8600. https://doi.org/10.1073/pnas.1401215111 PMID: 24912157
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