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INTRODUCTION

In 2009, approximately 33.3 million individuals were living 
with human immunodeficiency virus (HIV) and approxi-
mately 1.8 million deaths (worldwide) were attributed to Ac-
quired Immune Deficiency Syndrome (AIDS) [1]. In 1998, 
highly active antiretroviral therapy (HAART) was intro-
duced. Since then, there has been a substantial decrease in 
HIV/AIDS-associated mortality [2]. HAART combines dif-
ferent drugs with varying mechanisms of action that target 
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specific stages of the HIV-virus life cycle [2]. HAART effec-
tively decreases viral load and has had a significant impact 
on the life expectancy of individuals living with HIV/AIDS. 
This change in clinical course was accompanied by an in-
creased frequency of non-AIDS defining malignancies (non-
ADMs), such as glioblastoma multiforme, hereinafter re-
ferred to as glioblastoma.

Glioblastoma is the most common malignant form of adult 
primary brain tumor and may arise in patients with HIV/
AIDS, increasing an already elevated mortality risk [3]. Neg-
ative prognostic factors for patients with glioblastoma include 
age over 60 years, male sex, and prior low-grade astrocytoma 
or a history of genetic disorders, such as neurofibromatosis 
[4]. Median survival time without treatment is approximately 
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3 months, and with maximal treatment, may be up to 15 mo-
nths [5]. Despite a multi-modal approach, combining sur-
gery, chemotherapy, and radiation, the prognosis remains 
grim [6]. The purpose of this study was to determine the 
clinical outcomes glioblastoma in HIV positive patients and 
to discuss the molecular pathogenetic mechanisms underly-
ing the development of glioblastoma in individuals living 
with HIV/AIDS.

MATERIALS AND METHODS

Between January and February 2010, a comprehensive 
PubMed search was performed by the first author (WC) using 
a strategic combination of search terms including “HIV glio-
ma” AND “glioblastoma,” and “AIDS glioma” AND “glioblas-
toma.” Case reports and series describing HIV-positive pa-
tients with glioblastoma (histologically-proven World Health 
Organization grade IV astrocytoma) and reporting on HAART 
treatment status, clinical follow-up, and overall survival (OS), 
were included for the purposes of quantitative synthesis. Pa-
tients without clinical follow-up data or OS were excluded. No 
age or language restrictions were enforced. Remaining articles 
were assessed for data extraction eligibility. References of in-
cluded articles were reviewed; studies and texts discussing the 
molecular pathogenetic mechanisms underlying tumorigene-
sis in the setting of HIV/AIDS and those examining the asso-
ciation between glioblastoma and HIV/AIDS are summarized 
in the Discussion.

Statistical analysis
Student’s t test was used to compare the average survival of 

HIV-positive glioblastoma patients not treated and treated 
with HAART. Log-rank test was performed to compare the 
survival curves of the two patient groups. Patients who did not 
receive treatment for their glioblastoma was excluded from 
survival analysis. All tests were two sided with a two-tailed p-
value less than or equal to 0.05 deemed statistically significant. 
Continuous variables are presented as means with corre-
sponding standard deviations, and ranges when applicable.

RESULTS

From our search, 13 studies (from 1987 to 2009), reporting 
on 21 cases of HIV-associated glioblastoma, were identified. 
Of the 21 cases, 4 cases (from three studies) were deficient in 
outcomes data and were excluded [7-9]. A total of 17 patients 
met our inclusion criteria. Of these patients, 14 (82.4%) were 
male and 3 (17.6%) were female, with a mean age of 39.5±9.2 
years (range, 19–60 years). Patients were HIV-positive for an 
average of 4.4 years (range, 0–11 years) prior to diagnosis of 
glioblastoma. At the time of glioblastoma diagnosis, average 
CD4 count was 358.9±193.4 cells/mm3 (range, 80–610 cells/
mm3). The cases reviewed are summarized in Table 1.

HAART and survival
Mean survival for all patients was 7.7±6.8 months (range, 

0–26 months). Mean survival was 16.67±8.1 months for pa-

Table 1. Reported cases of HIV-associated glioblastoma patients 

Author (year) Sex Age HIV (yr)* HAART GBM treatment Survival (mo)
Gasnault (1988) [12] M 19 - No Bx, RT 9
Moulignier (1994) [13] M 48 0 No Bx 6
Chamberlain (1994) [14] M 38 4 No Sx, RT, CTX 10+
Gervasoni (1995) [15] M - 2 No Bx 0.5
Neal (1996) [16] M 35 2 No Bx 2
Waubant (1998) [17] M 46 0 No None 3
Blumenthal (1999) [18] M 36 6 No Sx, RT, CTX 9
Blumenthal (1999) [18] M 60 11 No Bx, RT, CTX 15+
Blumenthal (1999) [18] F 38 0 No None 0
Blumenthal (1999) [18] M 44 4 No Sx, RT, CTX 9
Blumenthal (1999) [18] M 40 11 No Sx 12
Vannemreddy (1999) [19] M 29 3+ No Bx, RT 1
Wolff (2002) [10] M 31 - No Bx 2
Hall (2009) [11] M 33 3 Yes Sx, RT, CTX 12
Hall (2009) [11] F 50 10 Yes Sx 26+
Hall (2009) [11] M 43 - Yes Sx, RT, CTX 12
Hall (2009) [11] F 42 - No Bx 2
Gasnault (1988) [12] M 19 - No Bx, RT 9

*Number of years with HIV prior to diagnosis of glioblastoma. HIV, human immunodeficiency virus; HAART, highly active antiretroviral 
therapy; GBM, glioblastoma multiforme; Bx, biopsy; Sx, surgery; RT, radiation therapy; CTX, chemotherapy; -, not reported/not applicable.
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tients treated with HAART (n=3) and 5.75±4.8 months (p= 
0.006) for patients who did not receive HAART (n=14) (Fig. 
1). Patients had been treated with HAART for an average of 
4.5 years (range, 3–6 years). There was a trend towards in-
creased median survival with HAART treatment (12.0 vs 7.5 
months, p=0.10) (Fig.2). Age and CD4 count at initial diagno-
sis of glioblastoma were not correlated with survival and were 
not prognostic indicators based on our analysis. Tumor pro-
gression (as opposed to HIV-associated complications) dic-
tated patient survival and was the cause of death in all pa-
tients included.

Glioblastoma treatment
Of the 17 cases, two cases reported no glioblastoma treat-

ment and five cases reported biopsy as the only treatment. 
Subtotal resection was the initial treatment in 7 cases, with 5 of 
those resections followed by adjuvant radiotherapy and che-
motherapy. Eight patients received radiation therapy, and the 
mean total dose of those reported was 57.5 Gy (range, 55–60 
Gy). One patient received only 12 Gy (of the intended 60 Gy) 
before death from disease progression. Radiation therapy was 
well tolerated and no unanticipated toxicity was reported in 
any of the cases. Six patients received adjuvant chemotherapy. 
Three patients received and tolerated lomustine (CCNU) and 
retinoic acid chemotherapy. One patient received hydroxyurea 
and intratumoral trisaziridylthiophosphoric acid (Thio-Thepa) 
and adjuvant radiotherapy and chemotherapy [procarbazine, 
lomustine, and vincristine (PCV-3)]. However, the chemo-
therapy dose was reduced because of myelosuppression. Two 
cases received temozolomide and the treatment was well toler-
ated. A slight drop in lymphocyte count below normal was not-
ed in both cases, but eventually returned to baseline levels [11].

DISCUSSION

Neurological complications are frequent in HIV/AIDS pa-
tients. Roughly 40 to 60% of patients with AIDS will develop 
neurological sequelae at some stage of the disease [10,20]. 
Additionally, an autopsy review found that up to 80% of AIDS 
patients had evidence of neurological pathology [21,22]. Neu-
rotrophic opportunistic infections like toxoplasmosis and 
cryptococcal meningitis can develop in the immunocompro-
mised state. NeuroAIDS is a syndrome that manifests as de-
mentia, sensory neuropathy, myelopathy, seizures, and aseptic 
meningitis. NeuroAIDS arises from HIV-associated neuronal 
damage resulting from the secretion of viral proteins and in-
flammatory [host] responses to these proteins [23].

Advancements in HIV management have led to a reduction 
in the incidence of opportunistic infections and have improved 
survival. Unfortunately, this has led to an increased incidence 
of non-ADMs, such as glioblastoma. A retrospective cohort 
study of HIV patients, by Hajjar et al. [24], reported a 5.4-fold 
increase in frequency of non-ADMs in patients with HIV 
compared to the non-HIV population. Blumenthal et al. [18] 
studied 1,384 HIV patients and found 6 patients with gliomas 
(0.43%), which translates to a 45-fold increase in non-ADMs 
compared to the general population. Moulignier et al. [13] ret-
rospectively reviewed 70 HIV patients with intracerebral le-
sions undergoing stereotactic biopsy and reported a glioma 
frequency of 5.7%. Similarly, Tacconi et al. [25] reported a gli-
oma frequency of 6.2% in their AIDS patients. Given the in-
creased incidence of non-ADMs in HIV-positive patients, it is 
important to include glioblastoma in the differential diagnosis 
of intracranial lesions, especially in patients presenting with 
neurological symptoms.

The mean age for patients reviewed in our study is 39.5±9.5 

Fig. 2. Kaplan-Meier survival among HIV-positive patients with di-
agnosis of glioblastoma. HAART use (dotted line) demonstrated 
a trend towards increased median survival with HAART treatment 
(12.0 vs 7.5 months, p=0.10) HAART, highly active antiretroviral 
therapy; HIV, human immunodeficiency virus.
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Fig. 1. The effect of HAART on survival among HIV-positive pa-
tients with glioblastoma. Among patients receiving HAART, sur-
vival was 16.7±8.1 months (n=3) compared to 5.8±4.8 months 
(n=14) in patients who did not receive HAART (p=0.0063). 
HAART, highly active antiretroviral therapy; HIV, human immuno-
deficiency virus.
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years (range, 19–60 years). This is significantly younger than 
the mean age for diagnosis of non-HIV glioblastoma (61.3 
years), reported by Ohgaki et al. [26] in 2004. This age dis-
crepancy suggests a potential oncogenetic effect of HIV and/
or suppressed antitumor responses in the immunocompro-
mised state. Of the 17 cases reviewed, 4 patients had a pre-
sumptive diagnosis of toxoplasmosis, and were treated empiri-
cally with antitoxoplasmosis therapy [10-13]. Regimen failure 
was followed by stereotactic biopsy. Of note, one patient had 
a presumed diagnosis of lymphoma prior to being diagnosed 
with glioblastoma on pathology, which highlights the need 
for histological diagnosis in these patients as the treatment 
differs significantly between the two [15]. Most of the patients 
did not have end-stage HIV, and the CD4 counts in the cases 
reported were not substantially low. In our study, the average 
CD4 count at diagnosis of glioblastoma was 358.9±193.4 
cells/mm3 (n=9). In all cases reviewed, tumor progression 
(rather than AIDS-associated complications) dictated patient 
survival. Thus, early and accurate diagnosis is imperative, as 
these individuals would gain similar benefits from aggressive 
treatment as patients with non-HIV glioblastoma [18,19]. 
While there has been some concern for toxicity and increased 
risk for opportunistic infections from radiotherapy and che-
motherapy in HIV patients, we found no evidence to suggest 
that the treatment strategy for HIV-associated glioblastoma 
should be any different than non-HIV glioblastoma, with the 
addition of HAART.

HIV and glioblastoma
As a neurotrophic virus [12,27], HIV mainly targets mi-

croglia and macrophages within the central nervous system 
(CNS). HIV has been found in glial cells in vitro [13,28,29]. A 
number of studies have identified selective expression of viral 
proteins within astrocytes of HIV patients. Astrocytes can 
serve as an important HIV reservoir and act as potential me-
diators of HIV-induced neuronal damage [30]. HIV infection 
of microglia depends on CD4 and the chemokine co-receptors 
(e.g., CCR5 and CCR3), whereas HIV infection of glial cells is 
CD4-independent [30]. The mechanism of HIV infection is 
thought to include the human mannose receptor [30]. Inter-
estingly, HIV is unable to exert its typical cytopathic effects in 
astrocytes [13,31]. Astrocytes cannot sustain HIV gene expres-
sion and replication due to restrictions on the HIV viral life 
cycle [32]. These restrictions of viral replication include inade-
quate expression and activity of viral Rev protein in astrocytes 
[32]. The Rev protein regulates nuclear export [33,34], transla-
tion, and packaging of viral ribonucleic acid (RNA) [35]. How-
ever, given its resistance to HIV-mediated cytotoxicity and 
persistence of the virus in the host genome, astrocytes have the 
potential to transform during HIV infection [13], with activa-

tion of oncogenes or inactivation of tumor suppressors [36].
Numerous studies have recognized the transforming po-

tential of HIV regulator genes. The transactivator gene (Tat) 
is a critical regulator of HIV replication and can up-regulate 
HIV gene expression by modifying transcriptional and post-
transcriptional processes [37]. Vogel et al. [38] found that ex-
pression of HIV Tat in transgenic mice induces dermal le-
sions resembling Kaposi’s sarcoma. Another study found that 
the Tat gene could directly transform human keratinocytes 
in culture and contribute to epidermal hyperplasia, which is 
associated with development of squamous and basal cell car-
cinomas in AIDS patients [37].

Other investigators have demonstrated neuron-specific 
transforming potential of Nef, another regulatory HIV pro-
tein [39-41]. Nef expression alters the growth and morpholo-
gy of astrocytes to resemble that of neoplastic transformation 
in vitro [39,42]. Murine neural stem cells expressing HIV Nef 
exhibited alterations associated with cell transformation, in-
cluding morphological changes, increased motility, loss of 
contact and anchorage growth inhibition, and increased cell 
proliferation. Mice undergoing intracranial injection with 
Nef-expressing neural stem cells formed tumors, while those 
injected with Nef-defective stem cells did not. Human astro-
cytoma cells expressing Nef injected into mice led to a greater 
incidence of tumor formation than injection with Nef-mutat-
ed astrocytoma cells. Interestingly, these tumors resembled 
glioblastomas [39]. Thus, Nef can induce tumor formation in 
neural stem cells and increase the malignancy of low-grade 
astrocytomas [39]. While the mechanisms underlying tumor-
igenesis are unclear, the in vivo data shows the transforming 
potential of Nef and its abundant expression in HIV-infected 
astrocytes, which suggests that Nef is important in the devel-
opment of glial tumors in HIV-positive patients [11,39]. HIV 
infection also induces the secretion of a number of cytokines 
including interleukin -1, -6, -8 and tumor necrosis factor-α 
that may facilitate glioma development [13,29,43].

The immunocompromised state of HIV/AIDS patients may 
create an environment permissive to the development of neo-
plasms, as is the case for primary cerebral lymphoma and Ka-
posi sarcoma [14]. Several lines of evidence support a complex 
interplay between the immune system, specifically immuno-
surveillance within the CNS, and glioma pathogenesis. A 
number of large epidemiological studies have found that pa-
tients with a history of allergic disease have a reduced risk for 
developing gliomas, suggesting that a heightened immune sta-
tus may be associated with a more robust intracranial defense 
against certain neoplasms [44,45]. Immunosuppression result-
ing from treatment with immunosuppressive drugs has been 
strongly associated with increased frequency of intracranial 
gliomas in organ transplant recipients [46,47]. In a study of 
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6,700 transplant recipients, Schiff et al. [48] reported 6 cases of 
gliomas consisting of 5 glioblastomas and 1 oligodendroglio-
ma. Another series of 1,597 renal transplant recipients found 3 
glioblastomas among 106 tumors [49]. Consistent with these 
studies, HIV mediated immunosuppression is associated with 
an increased frequency of gliomas.

In addition to HIV’s primary cytotoxic effects on helper T 
cells, HIV-associated immunodeficiency can be mediated by 
the overexpression of transforming growth factor beta (TGF- 
β) by infected macrophages in the brains of HIV-infected pa-
tients. TGF-β2 is a cytokine with immunosuppressive effects 
and is detected in the brains of HIV-infected patients, but 
not in uninfected individuals [13,50]. Similarly, TGF-β2 is 
overexpressed in many astrocytomas and in glioblastoma, 
but not in normal brain [13].

Immuno-glioma interface
The immuno-glioma interface represents the distinct im-

mune environment of the CNS and the local immunosup-
pression induced by glioma-secreted factors. Tumors found 
in the CNS do not elicit the same type and degree of immu-
nological responses as tumors found peripherally. This phe-
nomenon is attributed to the classical understanding that the 
brain is strictly immune privileged [51,52]. However, this con-
cept of “immune privilege” has evolved to mean a modified 
immune status, rather than a state devoid of immune reactiv-
ity [53,54]. The differences between systemic and CNS im-
munological surveillance are not qualitative, but rather quan-
titative [55]. Very low lymphocyte levels and low antibody 
diffusion normally characterize the anti-inflammatory CNS 
environment. During pathological states, the normally absent 
dendritic cells (DCs) can be recruited to inflammatory foci. 
Microglia that do not normally express detectable levels of 
major histocompatibility complex (MHC) class I and II mol-
ecules, can be induced to express MHC class II after expo-
sure to stimulatory signals and brain trauma [56]. Expression 
of MHC antigens, normally absent in neurons and astrocytes 
in the CNS, is upregulated at sites of CNS inflammation and 
neoplasia [51].

Although studies examining the immunogenicity of glioma-
specific antigens are scarce, evidence suggests that gliomas can 
elicit an immune response [57]. For example, tumor associated 
antigens gp100 and (melanoma-associated antigen 1) MAGE-1 
are expressed in glioblastoma cell lines and it is thought that 
cognate cytotoxic T cells (CTLs) could recognize glioblastoma 
cells in an antigen-specific MHC class I manner [57]. More-
over, treatment with interferon-gamma has demonstrated 
greater CTL recognition through induction of MHC class I ex-
pression in glioblastoma cells [57,58].

EGFRvIII, a sequence variant of the epidermal growth fac-

tor receptor, is found in 20–25% of glioblastoma patients 
[57,59]. Wu et al. [59] found EGFRvIII peptide-pulsed DCs 
can induce autologous EGFRvIII-specific CTLs in vitro, and 
these CTLs are able to mediate cytotoxic effects on glioma ex-
pressing EGFRvIII. Although the brain does not exhibit a tra-
ditional lymphatic drainage system, studies of multiple sclero-
sis patients and experimental autoimmune encephalomyelitis 
(EAE) animal models have demonstrated that intracranial an-
tigens can drain to cervical lymph nodes, suggesting a poten-
tial line of communication between the CNS and the periph-
eral lymphatic system that may be important in initiating an 
intracranial tumor response [60]. Activated microglia express-
ing MHC class I and II are candidate antigen presenting cells 
(APCs) within the CNS [61]. Recent studies using animal and 
EAE models have suggested that DCs may be important APCs 
involved in intracranial immunity. Further studies are neces-
sary to elucidate the role of DC in antigen presentation in the 
setting of glioblastoma [57,62,63].

Several studies utilizing autoimmune disease models have 
demonstrated that lymphocytes can cross the blood-brain 
barrier (BBB) [64,65]. Antigen activation can mediate specif-
ic T cell migration into brain parenchyma [51,66]. Calzascia 
et al. [67] demonstrated that brain tissue-specific CTLs, cross-
primed within the cervical lymph nodes, can be imprinted 
through APCs presenting brain tumor antigens with a CNS-
homing phenotype [57]. Additionally, glioma-induced angio-
genesis can compromise the integrity of the BBB. The more po-
rous blood-tumor barrier exhibits a number of alterations at 
the cellular level, including hyperdilated or absent tight junc-
tions, downregulation of critical tight junction molecules, and 
loss of the basement membrane [57,68].

Although human gliomas have been demonstrated to elicit a 
spontaneous antigen-mediated immune response, mainly 
comprised of CD8+ T cells, this is insufficient to control tumor 
growth [69]. Glioma-induced immunomodulation may pre-
vent effective local and systemic response, and likely contribute 
to malignant progression and treatment resistance [70]. The 
immunosuppression in the glioma microenvironment is attrib-
uted to a number of factors including low MHC class I expres-
sion and expression of human leukocyte antigen (HLA) type G. 
HLA-G, is a non-classical MHC I molecule that serves as a po-
tent immunosuppressor by decreasing glioma susceptibility to 
an antigen-specific anti-tumor response through mechanisms 
that include inhibition of tumor specific effector cell priming 
and T cell proliferation/cytotoxicity [55]. Additionally, secre-
tion of tumor factors by glioma cells contributes to immune 
paralysis within the glioma microenvironment through dis-
rupting T cell receptor signaling and APC function [51].

As previously mentioned, TGF-β2 is one of many cytokines 
over-expressed in glioblastomas. TGF-β2 is a multifunctional 
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molecule normally involved in regulating cell growth and mo-
tility, and has been implicated in glioma angiogenesis, immu-
nosuppresssion, and immune escape. In vivo data has demon-
strated that TGF-β2 can down-regulate MHC II expression, 
inhibit natural killer lymphocyte activity, and hamper T-cell-
mediated anti-tumor activity [71,72]. Thus, an intracranial an-
titumor response must overcome several challenges to be ef-
fective. Barriers include insufficient extravasation of activated 
T cells across the BBB, lack of antigens that allow proper dis-
crimination between malignant and normal cells, insufficient 
glioma MHC expression, and local immunosuppression with-
in the tumor microenvironment [53,56].

A number of studies have examined the relationship be-
tween the presence of tumor infiltrating lymphocytes (TILs) 
and tumor progression, and have demonstrated the presence 
of an immunosurveillance process in humans. These studies 
have begun to unravel the extent of the immune system’s role 
in intracranial tumor pathogenesis. While several investiga-
tors have examined TILs, namely in melanoma, ovarian cancer, 
and colorectal cancer, the significance of TILs in glioblasto-
ma progression is less clear. Brooks et al. reviewed biopsies of 
149 patients with gliomas, of which 45% exhibited lympho-
cyte infiltration. Infiltration within the perivascular spaces was 
correlated with a statistically significant increase in survival 
(range, 2–4 months) compared to patients whose gliomas did 
not exhibit lymphocyte cuffing. Palma et al. [73] published a 
similar study of 200 non-HIV glioblastoma patients and found 
that patients with resection specimens exhibiting definite lym-
phocyte infiltration (23/200 patients) were associated with sig-
nificantly longer survival compared to those exhibiting slight 
or absent TILs (p<0.01). Similarly, in another study of 199 
glioblastomas, Böker et al. [74] noted that 72.6% of samples 
possessed histological evidence of TILs, which correlated 
with prolonged survival (8.1 months) versus those without 
TILs (5.6 months). Other studies assessing TILs and tumor 
progression have reported conflicting results. Schiffer et al. 
[75] found no correlation between the presence of lymphocyte 
infiltration and clinical outcome in their study of 324 malig-
nant gliomas. In a review of 68 grade III/IV astrocytomas, 
Rossi et al. [76] found no correlation between the presence of 
CD4+ and CD8+ T cells, or macrophages and increased sur-
vival. Furthermore, in a study of 342 grade III/IV astrocyto-
mas, Safdari et al. [77] reported a negative correlation and 
found that patients with TILs had a shorter average survival 
than those lacking infiltration. Recently, Yang et al. [64] found 
that the extent of CD8+ infiltrate in non-HIV glioblastomas 
is positively correlated with survival. Patients with long term 
survival (>403 days) were more likely to have intermediate 
or extensive CD8+ infiltration than short-term survivors 
(<93 days) (p<0.06). These studies have provided mounting 

evidence for the critical role of the immune system in the clini-
cal progression of glioblastoma.

HAART and HIV
HAART has been a treatment standard for HIV patients. 

Clinical outcomes of HAART have been dramatic and include, 
but are not limited to, prolonged disease-free survival, HIV 
replication suppression, immunologic repletion, and reduction 
in hospitalization rates [78]. The effect of HAART on the im-
mune system is not completely understood [79]. Although re-
covery of the immune system can occur in most individuals 
when viral replication is suppressed [79], time to and extent of 
immune recovery is uncertain [80]. Additionally, not only are 
CD4+ T cell numbers depleted during HIV infection, but im-
mune cell functions are impaired and are not fully recovered 
under HAART. For example, plasmacytoid DCs and natural 
killer cell activity levels remain incompletely reconstituted af-
ter a year of effective therapy [81].

Despite nearly 15 years of experience with antiretroviral 
therapy for the treatment of HIV-positive individuals, consen-
sus on the optimal time to initiate HAART has yet to be 
reached [82]. Aggressive early treatment in the course of infec-
tion was initially purported to present significant side effect 
risks and development of drug resistance [83]. Plettenburg et 
al. [82] recently identified that initiation of HAART in patients 
with higher CD4 counts correlated with improved outcomes. 
Aggressive and early treatment, even in asymptomatic HIV-
positive patients, is recommended by most clinicians [84]. A 
recent analysis by Leone et al. [85], found that even treatment 
experienced HIV-positive individuals with over a decade of 
HAART therapy were at greater risk of death compared to the 
uninfected population. However, the leading cause of death 
was discovered to be malignancies (rather than AIDS-associ-
ated complications). While a direct effect of HIV on malig-
nancy development has not been defined, there is an associa-
tion between malignancy development and immune 
suppression. Leone et al. [85] reported significantly lower CD4 
counts in patients presenting with aids-defining malignancies 
(ADMs) versus patients that did not.

In addition to HIV-associated illnesses, complications sec-
ondary to HAART can arise. A complication that has been rec-
ognized is immune reconstitution inflammatory syndrome 
(IRIS). As the immune system recovers due to HAART initia-
tion, dormant infections can awaken. This pathological inflam-
matory response to previously treated or subclinical infections 
can result in aseptic meningitis or necrotizing lymphadenitis. It 
is recommended that HAART-naïve patients who initiate anti-
retroviral drug treatment and have a rapid decline in HIV RNA 
level should be monitored for the development of IRIS [86]. 
Other complications include reverse transcriptase inhibitor-as-
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sociated peripheral neuropathy, pancreatitis, lipoatrophy, and 
hypersensitivity reactions [87].

HAART plays a role in restoring immune function. A rapid 
increase in CD4+ memory cells is followed by a more gradual 
increase in T-cells [88]. Immune reconstitution following 
HAART is found at all stages of disease and is thought to be 
responsible for the decrease in ADMs [88]. It is believed that 
CD4+ T cells are released from lymphoid tissues (in which 
they were sequestered) as viral replication is suppressed in 
lymphoid tissue following HAART treatment [89]. Addition-
ally, the introduction of HAART leads to a decrease in level of 
immune activation as evidenced by reduction of expression of 
HLA-DR and CD38 activation markers on CD4+ and CD8+ 
T cells. Despite partial immune restoration, the increase in 
CD4+ T cells may not be adequate [89]. Immunotherapy has 
been suggested as a beneficial adjunct to HAART, but further 
studies are required to establish its role (if any) in HIV-associ-
ated glioblastoma [90].

HAART and glioblastoma
Neurological complications associated with HIV infection 

are common [91]. The BBB can prevent permeation of anti-
viral drugs, resulting in chronic intracerebral HIV infection. 
Once HIV enters the brain, it invades microglia and macro-
phages in the CNS, leading to chronic infectious diseases such 
as HIV-associated dementia (HAD) [91]. Although HIV en-
ters the nervous system early after infection, damage to the 
CNS almost never occurs until systemic immunosuppression 
is established. Before the introduction of HAART, the inci-
dence of HAD in AIDS patients was about 10%. After the in-
troduction of HAART in 1996, the incidence of HAD de-
creased to approximately 50%. Maso et al. [92] conducted a 
record-linkage study to analyze the changing incidence of 
cancer in persons with HIV/AIDS (from years 1986 to 2005) 
using the year 1997 (the introduction of HAART) as the 
point of comparison to determine if cancer risk had changed 
in the HAART era. CNS cancer slightly decreased from 3.5 
(95% CI: 1.5–7.0) to 3.2 (95% CI: 1.4–6.3) standardized inci-
dence ratios (SIR) (from 1986–1996 and 1997–2004, respec-
tively) after the introduction of HAART. Shiels et al. [93] found 
a decrease of 1.9 (0.66, 5.7) to 1.0 (0.63, 1.7) SIR of brain can-
cer in a meta-analysis of forty-two studies comparing the 
pre-HAART and HAART era. A case report by Aboulafia et 
al. [94] described a patient with primary CNS lymphoma 
that remained in complete remission with just HAART, nul-
lifying the need for palliative whole-brain radiotherapy and 
the use of corticosteroids. Bayraktar et al. [95] also confirmed 
these findings in a retrospective study from 1999-2008, re-
porting that OS was better in HIV-associated lymphoma pa-
tients that received HAART.

Protease inhibitors may have a potential therapeutic effect 
against glioblastoma [11]. Ritonavir blocks the ubiquitin/
proteasome pathway and has been demonstrated to exhibit 
anti-tumor activity through blocking cell cycle progression 
and inducing secondary apoptosis [96-99]. The ubiquitin/
proteasome pathway regulates protein degradation, cell cycle 
progression, and cell survival, and is often disrupted in glio-
blastoma [96,100-102]. Laurent et al. [96] demonstrated that 
ritonavir has cytotoxic effects on glioblastoma-derived cell 
lines in vitro. However, ritonavir was not found to control tu-
mor proliferation, which was potentially due to sub-thera-
peutic levels of ritonavir in the cerebrospinal fluid. Neldina-
vir (another HIV protease inhibitor) down-regulates vascular 
endothelial growth factor (VEGF) and hypoxia-inducible 
factor (HIF) by disrupting the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT) pathway. The PI3K/AKT path-
way is commonly activated in many cancers and regulates 
the expression of VEGF and HIF-1a among other cell process-
es [102-104]. Neldinavir treatment decreases angiogenesis 
and increases radiosensitivity in glioblastoma cells from mice 
bearing xenographed tumors [105]. The specific therapeutic 
role of protease inhibitors, as part of HAART regimens, has 
yet to be defined. As in the treatment of HIV, it is likely that the 
combination of drugs, rather than a single drug, is responsi-
ble for the immunomodulatory effects.

In conclusion, our analysis of 17 cases of HIV-associated 
glioblastoma revealed a male predilection, and a younger 
mean age at glioblastoma diagnosis in HIV-positive patients 
(when compared to HIV-negative individuals with glioblas-
toma). Age and CD4 count at initial diagnosis of glioblastoma 
were not correlated with survival and were not prognostic 
indicators (unlike non-HIV glioblastoma). Tumor progres-
sion (rather than AIDS-related complications) dictated sur-
vival. Treatment trends for HIV-associated glioblastoma are 
similar to non-HIV glioblastoma, with temozolomide being 
well tolerated in this specific patient population. Our data 
suggests that HAART is associated with improved survival in 
patients with HIV-associated glioblastoma, although the pre-
cise mechanisms underlying this improvement remain un-
clear. Future studies should further elucidate the potential 
protective mechanisms of HAART against the development 
of non-ADMs and the molecular underpinnings of HIV-as-
sociated glioblastoma.
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