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Measles vaccination is a public
health ‘best buy’, with the highest
cost of illness averted of any
vaccine-preventable disease (Ozawa
et al., Bull. WHO 2017;95:629). In
recent decades, substantial re-
ductions have been made in the
number of measles cases, with an
estimated 20 million deaths averted
from 2000 to 2017 (Dabbagh et al.,
MMWR 2018;67:1323). Yet, an im-
portant feature of epidemic dynam-
ics is that large outbreaks can
occur following years of appar-
ently successful control (Mclean
et al., Epidemiol. Infect. 1988;100:
419–442). Such ‘post-honeymoon
period’ outbreaks are a result of
the nonlinear dynamics of epi-
demics (Mclean et al., Epidemiol.
Infect. 1988;100:419–442). Antici-
pating post-honeymoon outbreaks
could lead to substantial gains in
public health, helping to guide the
timing, age-range, and location of
catch-up vaccination campaigns
(Grais et al., J. Roy. Soc. Interface
2008003B6:67–74). Theoretical con-
ditions for such outbreaks are
well understood for measles, yet
the information required to make
these calculations policy-relevant
is largely lacking. We propose that
a major extension of serological
studies to directly characterizemea-
sles susceptibility is a high priority.

‘Post-honeymoon outbreaks’ have re-
cently affected multiple countries around
the world, including Madagascar, the
Philippines, and Egypt (Figure 1A). The
‘honeymoon’ consists of the period follow-
ing vaccine introduction or a mass vacci-
nation campaign where cases are low,
resulting in reduced immunization by natu-
ral infection of individuals born into the
population (or already in the population)
who remain unvaccinated and suscepti-
ble. Once the size of the susceptible pool
exceeds a threshold, a new outbreak can
occur if an infectious individual enters the
population (Figure 1B).

Measles is an exceptionally well under-
stood infection epidemiologically [1], and
the theoretical conditions necessary for
an outbreak to occur are clearly defined.
Following extinction, the shortest possible
waiting time until a post-honeymoon out-
break is determined by the growth of the
susceptible population, that is, the cumu-
lative number of births subsequently unim-
munized by vaccination and susceptible
individuals who enter the population
(Figure 1B). Outbreaks can only occur if
the size of the susceptible pool is above
the threshold for herd immunity, most sim-
ply defined as 1/R0 (the basic reproduction
number, R0, or expected number of new
infections per one infectious individual
in a completely susceptible population,
which, for measles, typically ranges from
15 to 20). The other key requirement for
a post-honeymoon outbreak is the arrival
of an infectious individual who sparks a
new outbreak (Figure 1B).

However, deploying this rich mechanistic
understanding of measles requires core
processes to be adequately observed. In
general, they are not. For example, when
the size of the susceptible pool is calcu-
lated for each of the outbreaks illustrated
(Figure 1A), using data on vaccination
coverage, births, and estimates of extinc-
tion time, this quantity cannot predict epi-
demic occurrence (Figure 1C). Outbreaks
occur at a wide range of sizes of the
susceptible pool, including values so
small as to suggest (if susceptibles are
evenly distributed in the population) an
R0 N45, which is at the larger end of values
reported (Figure 1C, right hand axis). While
birth rates are reasonably characterized
globally, vaccination coverage remains
surprisingly uncertain [2], making it a
critical ‘known unknown’ for predicting
the timing of post-honeymoon outbreaks
(Figure 1B).

The other ‘known unknown’ concerns
introduction rates. Formally, the hazard of
a reintroduction sparking a measles
epidemic can be expressed as [3]:

h tð Þ ¼ R0St 1− exp −cStð Þð Þ
1þ R0St

½1�

whereSt is the proportion of susceptible indi-
viduals at time t and the term 1 − exp (−cSt)
represents the probability that, during a
time step, a contact occurs between a
susceptible from the community and an
infected individual that arrives from the out-
side,R0St/[1 +R0St] represents the probabil-
ity that that contact initiates an outbreak, that
is, that at least one person will be infected by
the arrived infectious individual. St grows ac-
cording to St+1 = St + (1 − v)B, where the

approximate generation time of the
infection (approximately 2 weeks for
measles), B is the number of births
expected to occur during this time period,
v is the effective vaccination coverage
(proportion immune after vaccination), and
c is the rate of arrival of infected individuals.

The waiting time to reintroduction is de-
fined by a waiting time distribution which
is defined by W(T) = h(T)∏t=1

T−1(1 − h(t)).
Around the globe, annual birth rates
range from ~12 to 45 per 1000 people
per year; and immunization via routine

interval separating t and t + 1 is the
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Figure 1. (A) Time-series of Exemplar Countries Having Experienced a Measles Post-honeymoon Outbreak Showing Numbers of Cases Each Month.
(B) Schematic indicating that, following extinction, when cases are reduced to zero (lower panel), which occurs when there are too few susceptible individuals for the
infection to keep spreading, the duration of a honeymoon is shaped by two ‘known unknowns’: (i) effective vaccination coverage, which, in combination with birth
rates, determines the time until susceptible individuals exceed the threshold for an outbreak (upper panel, blue lines); and (ii) the arrival of an infected individual. (C) For
non-outbreak (left) and outbreak (right) years in the countries from Figure 1A during the honeymoon period, the proportion susceptible in each year (y axis, left) is
established by accumulating the unvaccinated fraction of the birth cohort for each year without an outbreak. Outbreak years do not have significantly more
susceptibles, and furthermore the span of R0 values inferred to be required to result in an outbreak under these conditions (defined by the fact that RE = SR0 must
be N1, where S is the proportion susceptible) suggests unrealistically large magnitudes of R0 (y axis, right), noting that this framing makes the simplifying assumption
that populations are well mixed. (D) Predicted average waiting times to a new outbreak (contours indicate years, also shown by the colors) over the span of turnover of
human populations (x axis) that emerges as a result of birth rates and vaccination coverage; and rates of introduction of infected individuals (y axis); assuming that,
following local extinction, the starting proportion susceptible St=0 = 1/R0, that is, the proportion susceptible expected in an endemic setting. (E) Map of countries having
experienced a post-honeymoon outbreak between 2010 and 2020 (hashed lines) where all countries are colored by the number of years that they experienced
vaccination coverage b90% (yellow indicates 1–5 years, green 6–10 years, and blue 11–16 years).
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vaccination coverage is generally N70%,
and can exceed 95%. From this, we can
bound the range of growth of susceptible
individuals (Figure 1D, x axis) and establish
the average waiting time to an outbreak
(Figure 1D, surface) for a range of rates
598 Trends in Microbiology, August 2020, Vol. 28, No. 8
of introduction of infectious individuals
(Figure 1D, y axis).

High rates of introduction correspond to
short delays and this is amplified at greater
susceptible accumulation (Figure 1D). Yet,
estimating stochastic introduction rates
is not straightforward, requiring both
nuanced travel data and information on
infection status. Furthermore, successful
introduction may take longer than the
rates of travel by infectious individuals
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might suggest, as populations are not well
mixed, such that an infectious individual
may not come into contact with the
susceptible population (e.g., contact
between individuals of different ages may
be limited [4]). Seasonality in transmission
[1] reflecting periods of the year, when
contact between susceptibles is low, will
also make introductions at certain times
of year ineffectual.

These threads of uncertainty indicate a
need to reframe the prediction question
more conservatively, to focus on the
more tractable ‘known unknown’ of popu-
lation susceptibility. Every community is
likely to be at risk of reintroduction of mea-
sles given current travel patterns andmea-
sles incidence (Figure 1E). We argue that
the key issue is therefore to know how far
the population is from the threshold for
herd immunity: once the size of the sus-
ceptible population exceeds this thresh-
old, longer delays allow a larger pool of
susceptibles, and bigger eventual out-
breaks. Theoretically, knowledge of vacci-
nation history and incidence are sufficient
to project population immunity and char-
acterize the risk and urgency of inter-
ventions to prevent a post-honeymoon
outbreak. In reality, heterogeneity in vac-
cination coverage [5] combined with
uncertainty in vaccination data [2], and
under-reporting of disease incidence
(also a source of immunity) makes this
indirect calculation intractable [6].

Instead, population immunity can be
directly measured by serology. Crucially,
this has proven successful in predicting
the risk of measles outbreaks in a few
settings. A cross-sectional population
serological survey was harnessed to
launch a vaccination campaign and thus
avert a post-honeymoon outbreak in
England and Wales [7]. More recently,
analysis of a serological convenience
sample, taken from fever/rash surveillance,
estimated a large susceptible population
in Madagascar, suggesting that the
country had been experiencing a ‘honey-
moon period’ and was at considerable
risk of a measles outbreak [8]. This subse-
quently occurred (Figure 1A).

In practice, serological data necessary for
such predictions are rare. We can ap-
proach this problem via two immediately
available sources of samples, allowing
increasing granularity of prediction; there
is also potential for a much more compre-
hensive approach. First, samples that
could be leveraged for serological analysis
are often available, collected as part of
efforts for routine surveillance (such as
fever and rash surveillance [8]), and stored
at national reference laboratories in coun-
tries around the world. Second, large
cross-sectional surveys [7] that include
blood samples taken to test for other
health outcomes (e.g., HIV prevalence
studies) are widespread, often multina-
tional (e.g., the Demographic Health
Surveys) and may be repeated across
years, providing the important perspective
of changes across time. However, these
existing sources of data and samples
are not sufficient to provide a systematic
assessment of susceptibility in all key
contexts. A Global Immunological Obser-
vatory [9], that unified and significantly
extended current samples, would allow
much more systematic prediction of risk,
severity, and, importantly, the likely age
ranges of measles cases following out-
breaks in many settings. Inevitably, no
sampling scheme for serological data
(whether opportunistic or systematic) will
be without uncertainties in terms of range
and characteristics of individuals reached,
or in our ability to delineate heterogeneities
in space and time. Additionally, the
measles serological assay has its own
challenges, including a small but existing
probability of false negatives and the
necessity for both a laboratory and labora-
tory expertise to conduct the assay with
quality control and assurance. Neverthe-
less, these threads are likely to bring
another key angle on the data already
available, and would prove a powerful
asset for targeting vaccination campaigns
to those communities, age groups, or
subpopulations at highest risk, ultimately
improving the efficiency of campaigns.
Furthermore, expanding research in this
area could lead to important innovations
[9], such as the ability to distinguish natural
and vaccine-induced immunity, which will
improve our understanding of vaccination
coverage, arguably the critical known un-
known. Such advances will yield dividends
both in low- and middle-income countries,
where low vaccination coverage is gener-
ally driven by logistical barriers; but also
in countries where vaccine hesitancy is
the main barrier to achieving population
immunity, yet vaccination rates are often
uncertain in key settings [10]. With the
potential for the current COVID-19 pan-
demic to disrupt vaccination programs,
evaluating population measles immunity
will become increasingly important to un-
derstand the impact on outbreak risk.t
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in cleavage of viral RNA and, generally,
suppression of viral replication. In turn,
viruses evolved counter-defense strate-
gies to evade antiviral RNAi immunity.
Many viruses of plants and insects en-
code suppressors of RNAi (VSRs) that
interfere at different steps and through
different mechanisms with RNAi. For
example, many VSRs bind long dsRNA
or vsiRNAs, thereby preventing Dicer
processing or Argonaute loading, re-

to as the hypersensitive response, HR).
Several examples in plants illustrate that
the zigzag model may also apply to inter-
actions between viruses and host RNAi.
Recently, Zhang et al. proposed a
counter-counter-defense to a virus-
encoded RNAi suppressor in the fruit fly
Drosophila melanogaster [9], extending
the zigzag model to the animal kingdom.

Drosophila C virus (DCV) is a natural path-
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Countering Counter-
Defense to Antiviral RNAi
Valerie Betting1 and
Ronald P. Van Rij1,*

RNA interference (RNAi) is a power-
ful host defense mechanism against
viruses. As a counter-defense,many
viruses encode suppressors of
RNAi, which – in plants – has
provoked counter-counter-defense
strategies. Recently, a mechanism
was proposed in Drosophila (Zhang
et al.) wherein a long noncoding
RNA senses a virus-encoded RNAi
suppressor to activate an innate
immune response.

Viruses exist in many flavors, but all have
one thing in common: they hijack cellular re-
sources and may thus compromise
wellbeing and survival of the host. Multiple
mechanisms exist to fight viral infections,
one of which is RNAi. In this mechanism,
viral double-stranded RNA (dsRNA) is proc-
essed by Dicer nucleases into 21–24 nt
viral small interfering RNAs (vsiRNA) which
are loaded onto Argonaute proteins to
form RNA-induced silencing complexes
(RISCs) [1]. Argonaute is guidedby vsiRNAs
to complementary sequences, resulting

spectively [1–5]. Other VSRs interfere at
the effector stage of RNAi by binding
Argonaute, suppressing its catalytic ac-
tivity, or promoting its degradation [1,6]
(Figure 1).

Coevolution and recurring infections result
in an arms race that selects for adapta-
tions and counter-adaptations in viral and
host genes. For example, VSRs may in-
duce adaptations in host RNAi genes to
restore effective immunity, which necessi-
tates counter-adaptations in VSR genes
to ensure efficient RNAi suppression.
Such a perpetual cycle may explain the
observations that RNAi genes are among
the most rapidly evolving genes in
Drosophila and that VSRs can be host
specific [6,7].

Antagonistic coevolution between virus
and host may also lead to host mecha-
nisms to counteract viral counter-defense,
that is, counter-counter-defense. This was
first described in plants as a ‘zigzag’
model of immunity to nonviral pathogens
[8]. In this model, host immunity is first
induced after detection of pathogen-
associated molecular patterns (PAMPs). In
response, pathogens encode effectors to
interfere with the induced immune re-
sponse. These effectors are, in turn,
recognized by the host via members of
the diverse family of nucleotide-binding
leucine-rich repeat (NB-LRR) proteins
(referred to as Resistance (R) proteins),
leading to the induction of a specific form
of programmed cell death that limits
systemic spread of the pathogen (referred

ogen of D. melanogaster that encodes a
dsRNA-binding protein, named 1A, that
prevents processing of dsRNA by Dicer-
2 [2]. Unexpectedly, Zhang et al. found
that DCV 1A also binds a long noncoding
(lnc) RNA, which they named VSR-
interacting RNA (VINR) [9]. DCV 1A stabi-
lizes VINR, and VINR in turn protects a
protein called Cactin from degradation by
the ubiquitin-proteasome pathway. Previ-
ously proposed as a regulator of the NF-
κB pathway, the authors found that Cactin
binds to RNA polymerase II and the tran-
scription factor Deaf1 to induce expres-
sion of a specific set of antimicrobial
peptide (AMP) genes. In accordance, vinr
knockout flies exhibited defective AMP
gene induction, both after bacterial and
viral challenge, and showed enhanced
susceptibility to DCV infection. The au-
thors thus propose that VINR acts as a
host sensor that detects a dsRNA-
binding VSR to activate a noncanonical in-
nate response.

More than 20 years ago, a counter-
counter-defense strategy was described
in plants wherein an alternative immune
pathway is activated in response to a
VSR. Specifically, the Tomato aspermy
cucumovirus 2b protein (Tav2b), which
binds vsiRNAs to prevent Argonaute load-
ing, induces HR to limit viral spread in the
tobacco Nicotiana tabacum [10]. A similar
strategy was identified in the pepper
Capsicum annuum, in response to the
nonstructural NSs protein of Tomato
spotted wilt virus (TSWV) [4]. NSs binds
dsRNA to prevent Dicer processing and
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