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Background: Stroke patients with diabetes suffer from higher mortality rate and

worsened neurological outcome. However, the responses of immune system to cerebral

ischemia in the setting of diabetes remain poorly understood.

Methods: In this study, we investigated the temporal profile of leukocyte mobilization

and brain infiltration following distal middle cerebral artery occlusion (dMCAO) in db/db

mouse model of type 2 diabetes (T2D) and its db/+ normoglycemic controls.

Results: We found a significant increase of brain-infiltrating CD4+ T cell at day 3 after

dMCAO, and a delayed and dramatic increase of brain-infiltrating neutrophils, CD4+ T

cells, CD8+ T cells, and B cells at day 7 after dMCAO in db/db mice vs. db/+ controls.

Leukocyte subsets in the circulation and spleen were also measured, however, there

is no significant difference between non-diabetic and diabetic groups. Furthermore,

we identified an increased expression of activation marker CD69 in brain-infiltrating

neutrophils, CD4+ T and CD8+ T cells, and IFN-γ in brain-infiltrating CD4+ T cells in

db/db mice at day 7 after dMCAO.

Conclusions: These findings for the first time demonstrate that cerebral ischemia

induces a delayed and sustained augmentation of brain infiltration and activation of

neutrophils and lymphocytes in type 2 diabetic mice and these altered immune responses

might contribute to the severer brain tissue damage and worse neurological outcomes

of diabetes stroke, which warrants further investigation.

Keywords: ischemic stroke, distal middle cerebral artery occlusion, diabetes mellitus, immune system, leukocyte

mobilization, leukocyte brain infiltration, db/db type 2 diabetes mice

INTRODUCTION

Stroke is a leading cause of death and long-term disability accompanied by a major economic
and healthcare burden. Among the prominent risk factors of stroke, diabetes mellitus (DM) has
been linked to higher mortality rate and worsened neurological outcome in stroke patients (1–3).
Approximately 30% of stroke patients are diabetic (4, 5), however, the underlying mechanisms
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responsible for the increased post-ischemic brain injury in subset
of stroke patients remain poorly understood.

Nearly 90% of DM patients suffer from type 2 diabetes (T2D).
Emerging evidence suggests that immune and inflammatory
response is a critical driver in the pathogenesis of T2D, including
obesity-related insulin resistance, impaired insulin secretion,
and diabetes-related vascular complications (6–14). Given that
inflammation is a key participant in brain injury and recovery
after ischemia, and that the immune system and its responses to
injury is profoundly altered in diabetes, how the immune system
respond to cerebral ischemia in the setting of diabetes remains a
fundamental yet unanswered question.

The leptin receptor deficient db/db mice are the most
commonly used T2D rodent models in study of diabetes
pathophysiology and complications including ischemic stroke
(15–18). It has been reported that after focal cerebral ischemia,
diabetic db/db mice presented confounding pathological
features, including metabolic dysregulation, systemic, and
vascular inflammation, aggravated blood-brain barrier integrity
disruption and pro-inflammatory response, white matter
integrity loss, severer brain damage, and worse neurological
deficits (19, 20). These pathological outcomes closely mimic
clinical observations (21, 22). In the same distal middle
cerebral artery occlusion (dMCAO) stroke model of db/db
mice, our previous study showed that compared to the non-
hyperglycemic genetic control mice, T2D db/db mice had
sustained hyperglycemia after stroke, elevated blood HbA1c
level, hyperinsulinemia, and lowered serum adiponectin level
(20). Importantly, we also found there are a larger infarct
and an aggravated pro-inflammatory response including
increased mRNA expression of pro-inflammatory cytokines
and elevated M1-like pro-inflammatory microglia/macrophage
activation in the T2D db/db mouse brain after dMCAO (20).
To explore the potential role of infiltrated leukocytes in the
ischemic brain inflammation process of T2D stroke, for the
first step, in this study we investigated the temporal profile of
leukocyte mobilization and infiltration in adult db/db mice
following dMCAO.

MATERIALS AND METHODS

All experiments were conducted in accordance with the
standards and procedures of the American Council on Animal
Care and Use Committee of Massachusetts General Hospital
Neurological Institute. The study design, power calculations,
experiments conduct, statistical analyses, and results reporting all
fulfilled the ARRIVE guidelines (23).

dMCAO Model
The db/db and db/+ mice (12 weeks) were purchased from
Charles River Laboratories. Mice were maintained in Allentown
individually ventilated caging with acidified water in bottles and
rodent chow fed ad libitum. Lights are on a 12 h/12 h light/dark
cycle, ON at 7:00 a.m., OFF at 7:00 p.m. Room temperature is

Abbreviations: dMCAO, distal middle cerebral artery occlusion; T2D, type 2

diabetes; DM, diabetes mellitus.

maintained between 22 and 30◦C and humidity is maintained
between 30 and 70%. Mice were housed in pathogen-free
condition at the Massachusetts General Hospital Neurological
Institute. Male db/db and db/+ mice were used in this study.
Anesthesia was induced by 2.5% isoflurane and maintained with
1.5% isoflurane during surgery. Core body temperatures were
monitored with a rectal probe. The distal middle cerebral artery
(dMCA) was exposed and cauterized above the rhinal fissure.
The bilateral common carotid arteries (CCAs) were occluded for
90min and then released, whereas the dMCA remained occluded.
Animals received intensive care and continuous monitoring until
they were capable of functioning normally (24). There was no
mortality in each group of present study. Body weight and
blood glucose levels have no statistic difference between sham
and dMCAO stroke groups neither in db/db nor db/+ group.
As reported previously, there are significant differences of body
weight and blood glucose levels between db/db and db/+ control
mice (Supplementary Figure 1) (20).

Flow Cytometry
Single-cell suspensions were prepared from spleen, blood or
brain tissues of sham or dMCAO db/db and db/+ mice at
day 3 and 7. To collect cells from brain, brain tissues were
grinded and homogenized with 40mm nylon cell strainers
in PBS. Cell suspensions were centrifuged at 2,000 rpm for
5min, and cell pellets were collected. Thereafter, 5ml of
30% Percoll solution was used to resuspend the cell pellet.
The gradient was centrifuged at 2,000 rpm for 30min at
room temperature. Cell pellets were collected for antibody
staining. Then these cells were stained with fluorochrome
conjugated antibodies. All antibodies were purchased from BD
Bioscience (Franklin lakes, NJ, USA) or Biolegend (San Diego,
CA, USA). Antibodies were directly labeled with one of the
following fluorescent tags: fluorescein isothiocyanate (FITC),
phycoerythrin (PE), allophycocyanin (APC), PerCP-Cy5.5, or
PE-Cy7. The following antibody to mouse antigens were used:
CD3, CD4, CD8, CD19, CD45, CD11b, F4/80, Ly6G, Interferon
gamma (IFN-γ) (XMG1.2), CD69 (H1.2F3), CD86 (GL1), CD206
(MR5D3). Antibodies staining were performed according to their
instructions, additional cell fixation and permeabilization were
needed for intracellular antigens staining. Cell surface phenotype
and intracellular cytokine expression were performed on a FACS
FORTESSA flow cytometer (BD Bioscience, Franklin lakes, NJ,
USA). Data were analyzed with Flow Jo software version 7.6.1
(Flow J, LLC, Ashland, OR, USA).

Immunohistochemistry
Paraffin-embedded tissue sections at thickness of 8µm
were used in this study. Coronal sections were prepared
from 1mm behind the bregma. For immunostaining, the
following primary antibodies were used: anti-CD4, C-Terminal
antibody produced in rabbit (1: 200, SAB4503583, Sigma-
Aldrich), Purified Rat Anti- Mouse CD8a (1: 200, 550281, BD
Biosciences), Alexa Fluor R© 647 anti-mouse CD19 Antibody
(1: 100, 550281, BioLegend), Purified Rat Anti-Mouse Ly-
6G (1: 200, 550291, BD Biosciences), Alexa Fluor R© 488
anti-mouse CD45.2 Antibody (1: 100, 109815, BioLegend).
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Primary antibodies were incubated at 4◦C overnight, followed
by incubation with species-specific Alexa Fluor (488 and
594)-conjugated secondary antibodies for 1 h. Pictures were
acquired with a Nikon Eclipse T300 fluorescence microscope
and analyzed using Image Pro Plus (Media Cybernetics, Inc.
Rockville, MD). For cell counting, positive cell numbers were
counted in every tenth tissue section through the entire tissue
block (25–27).

Quantitative Real-Time PCR
Brain tissues of peripheral infarct were obtained from mice
1 and 3 days after distal MCAO model. Total RNA was
extracted and reverse-transcribed using RNeasy Lipid Tissue
Mini Kit (Qiagen) and QuantiTect reverse transcription
system (Qiagen) according to the manufacturer’s instructions.
Real-time polymerase chain reaction (PCR) was performed
on an ABI 7500 Fast Real-Time PCR system using Taqman
gene expression assays for CX3CL1 (Mm00436454_m1),
CXCL12 (Mm00445553_m1), CCL2 (Mm00441242_m1),
CCL9 (Mm00441260_m1), and housekeeping gene B2M
(Mm00437762_m1) (Applied Biosystems, USA). Reactions

were performed in duplicate according to the manufacturer’s
instructions. Relative expression levels were measured with the
2−11Ct method.

Statistical Analysis
Based on our publications (20, 27) and power analysis, at least
six biological replicates were used for each biochemical and
histological analysis, whereas a sample size of 8 per group
was used for assessments of leucocytes number and function.
Sample size per experimental model was determined a priori by
performing a power calculation with G∗Power (3.1) software.
D’Agostino and Pearson omnibus normality test were performed
to determine normal distribution. All surgery and histology
measures were performed by researchers who were blinded with
respect to the different groups. All results were expressed as mean
± s.e.m. Statistical analysis was performed using Graphpad prism
7.6.1 (Graphpad Software Inc., San Diego). Two-tailed unpaired
t-test was used for comparison between two groups. One-way
ANOVA followed by Tukey post-hoc test to compare three or
more groups.

FIGURE 1 | Augmented brain infiltration of leukocyte subsets in db/db mice subjected to dMCAO assessed by flow cytometry. Groups of db/db or db/+ mice were

subjected to sham or dMCAO surgery. Single-cell suspensions were prepared from brain tissues of indicated groups of mice. (A) Gating strategy of peripheral

leukocytes (CD45+), including macrophages (CD45highCD11b+ F4/80+, Mϕ), neutrophils (CD45high CD11b+ Ly-6G+), CD4+ T (CD45high CD3+ CD4+), CD8+ T

(CD45high CD3+ CD8+), and B (CD45high CD19+) cells in the ischemic brain at day 3 and day 7 after dMCAO. (B–G) Quantification of brain-infiltrating lymphocytes,

macrophages and neutrophils from sham and distal MCAO db/+ and db/db mice at indicated time points after ischemia. Data are expressed as mean ± s.e.m. *p <

0.05: db/+ vs. db/db at the same time point, n = 8 per group.
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RESULTS

Augmented Brain Leukocyte Infiltration in
db/db Mice Following Cerebral Ischemia
To characterize the profile of immune responses in diabetic
stroke, we first measured the counts of brain-infiltrating
leukocytes in db/db and db/+ mice subjected to dMCAO
using flow cytometry. The gating strategy of immune cell
subsets is shown in Figure 1A. At 3 days after ischemia,
the total numbers of leucocytes (CD45high), macrophages
(CD11b+CD45highF4/80+), neutrophils (CD11b+CD45highLy-
6G+), B cells (CD19+), or CD8+ T cells (CD3+CD8+) were

significantly increased in the ischemic brains of both db/db
and db/+ mice (Figures 1B,C,E–G). Interestingly, db/db mice
had significantly higher elevation of increased infiltrating CD4+

T cells (CD3+CD4+) at 3 days after dMCAO compared to
db/+ mice (Figure 1D). Importantly, at day 7 after dMCAO,
significantly increased numbers of infiltrating leucocyte subsets,
including CD4+ T cells, CD8+ T cells, B cells, and neutrophils,
were observed in db/db mice as compared to db/+ mice. Next,
immunostaining was performed to verify our flow cytometry
findings. At day 3 after dMCAO, an increase of infiltrating
CD4+ T cells was seen in the peri-infarct area of db/db mice.
Similarly, augmented infiltration of CD4+ T cells, CD8+ T cells,

FIGURE 2 | Accumulation of brain-infiltrating leukocyte subsets in the ischemic brain of db/db mice subjected to dMCAO assessed by immune staining. (A) At 7 days

after dMCAO, increased counts of CD45+ leucocytes, CD4+ T, CD8+ T, CD19+ B cells, and Ly-6G+ neutrophils were seen in the peri-infarct region of brain sections

from db/db mice vs. db/+ controls. The right side of white lines represents infarct area. Scale bars: 50µm. (B) Quantification of brain-infiltrating immune cell subsets

in db/+ and db/db mice subjected to dMCAO at day 7 after ischemia. Data are expressed as mean ± s.e.m. *p < 0.05: db/+ vs. db/db, n = 8 per group.
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FIGURE 3 | Counts of circulating leucocytes in db/db and db/+ mice following brain ischemia. Groups of db/db and db/+ mice were subjected to sham or dMCAO

surgery. The counts of circulating leucocyte subsets were measured by flow cytometry in indicated groups of mice. (A) Gating strategy of macrophages (CD11b+

F4/80+, Mϕ), neutrophils (CD11b+ Ly-6G+), CD4+ T (CD3+ CD4+), CD8+ T (CD3+ CD8+), and B (CD19+) cells in the blood at day 3 and 7 after dMCAO. (B)

Numbers of CD4+ T cells (CD3+CD4+), (C) CD8+ T cells (CD3+CD8+), (D) CD19+ B cells (CD19+), (E) neutrophils (CD11b+Ly-6G+), or (F) macrophages

(CD11b+F4/80+) in the blood of indicated groups of mice. Data are expressed as mean ± s.e.m, n = 8 per group.

B cells, and neutrophils was found in db/db mice at day 7 after
dMCAO (Figures 2A,B). Together, these data demonstrate that
the augmented infiltration of leukocytes in the ischemic brain of
db/db mice involves a significant elevation of CD4+ T cells at day
3, and the delayed and sustained elevation of leukocytes up to 7
days after dMCAO.

Leukocyte Subsets in the Circulation and
Spleen of db/db Mice vs. db/+ Controls
After dMCAO
In addition to the brain, we also measured the counts of
macrophages, neutrophils, CD4+ T, CD8+ T, and B cells in
the blood (Figure 3A). Our results showed that there was no
significant difference in the numbers of CD4+ T cells, CD8+

T cells, B cells, neutrophils, and macrophages in the blood of
db/db mice vs. db/+ controls at day 3 and 7 after dMCAO
(Figures 3B–F). Similarly, no significant alterations of these
leukocyte subsets were seen in the spleen of db/db mice vs. db/+
controls (Figures 4A,B). These data suggest that except elevated
and sustained brain infiltration, peripheral inflammatory cell

mobilization after ischemic stroke might not be significantly
altered by DM, at least in the adult db/db type 2 male mice
after dMCAO.

Upregulation of CD69 and IFN-γ in
Brain-Infiltrating Leucocytes of db/db Mice
Subjected to dMCAO
Next, we examined the expression of the leukocyte activation
marker CD69 and pro-inflammatory cytokine IFN-γ in brain-
infiltrating leukocyte subsets after dMCAO. We found an
upregulation of CD69 in brain-infiltrating CD4+ T, CD8+ T
cells, and neutrophils in db/dbmice accompanied by an increased
expression of IFN-γ at day 7 after dMCAO (Figures 5A–D).

In contrast, the expression of CD69 and IFN-γ was not
significantly altered in splenic CD4+ T, CD8+ T cells, and
neutrophils in db/db mice vs. db/+ controls following dMCAO
(Figures 6A–D). The expression of CD86 and CD206 was also
not altered in splenic macrophages (Figure 6E). Together, these
results suggest that the augmentation of leukocyte response
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FIGURE 4 | Counts of splenic leucocytes in db/db and db/+ mice following brain ischemia. The counts of splenic leucocyte subsets were measured at 3 days after

dMCAO in groups of db/db and db/+ mice by flow cytometry (A). Gating strategy of macrophages (CD11b+ F4/80+, Mϕ), neutrophils (CD11b+ Ly-6G+), CD4+ T

(CD3+ CD4+), CD8+ T (CD3+ CD8+), and B (CD19+) cells in the spleen at day 3 after dMCAO. (B) Quantification of splenic lymphocytes, macrophages and

neutrophils in indicated groups of db/+ and db/db mice. Data are expressed as mean ± s.e.m, n = 8 per group.

primarily occurs in the ischemic brain but not in the periphery
in db/db mice after dMCAO.

DISCUSSION

After permanent focal ischemia, diabetic db/db mice presented
confounding pathological features, including metabolic
dysregulation, more severe brain damage, and neurological
impairment, especially aggravated pro-inflammatory response
and white matter integrity loss (16, 19, 20). In this study,
we provide the first definitive evidence of augmented brain
infiltration of neutrophils and lymphocytes in type 2 diabetic
mice following cerebral ischemia. We found a delayed and
sustained augmentation of brain infiltration of neutrophils and
lymphocytes in type 2 diabetic mice up to 7 days after focal
cerebral ischemia. There was also a significant upregulation of
activation marker in these infiltrated cells. In contrast, the counts
of leukocytes were not significantly altered in the periphery.

The finding of augmented brain infiltration of leukocytes
in diabetic mice following cerebral ischemia indicates that
these cells may contribute to exacerbated ischemic brain injury
in diabetes. This speculation is supported by our previous
publications showing that blockade of leukocytes homing
into ischemic brain has neuroprotective and anti-inflammatory
benefits (28, 29). As these infiltrating leukocytes can boost
the brain inflammatory environment by producing various
effector molecules or inflammatory mediators, they may amplify

the pre-existing cerebral microvascular injury in diabetes to
augment brain edema and neural injury after ischemia (30).
Different than the augmented infiltration of leukocytes in the
brain of diabetic stroke mice, the leukocyte responses in the
peripheral compartment were relatively unaltered. These findings
together suggest that diabetes-associated alterations of leukocyte
responses predominantly occur in the ischemic brain. In humans,
obesity and T2D induce the expansion of pro-inflammatory T
cells such as CD4 (Th1, Th17) and CD8 populations, whereas
innate T cells such as invariant natural killer T cells and
mucosal-associated invariant T cells were found reduced (31).
Peripheral blood monocytes from T2D patients were found
constitutively activated (32). T2D has also been associated with
changes in neutrophil function including impaired bacterial
phagocytosis and killing activity (33). Although the brain
infiltration profiles of leukocytes have not been investigated in
diabetic patients, the similarity and discrepancy of peripheral
immune responses in diabetic patients and db/db mice might
involve the complicated effects of diabetes on the immune system
and warrant further investigation.

The early upregulation of chemokines in the brain of diabetic
mice after ischemia suggests that the augmented brain infiltration
of leukocytes in diabetic stroke may involve the upregulation of
chemokines in the brain. Because the activity of leukocytes is
largely determined by the environment in which they reside, it
is logic to infer that diabetes may alter the brain environment
that foster the cues to recruit peripheral leukocyte subsets after
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FIGURE 5 | Upregulation of CD69 and IFN-γ in brain-infiltrating T cells and neutrophils in db/db mice subjected to dMCAO. (A) Gating strategy of brain-infiltrating

CD4+ T, CD8+ T cells, and neutrophils expressing CD69 and IFN-γ after dMCAO. The counts of CD4+ T (B), CD8+ T cells (C), and neutrophils (D) expressing CD69

and IFN-γ in groups of db/+ and db/db mice at indicated time points after dMCAO. Mean ± s.e.m.; *p < 0.05: db/+ vs. db/db at the same time point, n = 8 per

group.

stroke. Once enter the ischemic brain, infiltrating leukocytes will
be exposed to additional factors that are different than those
in the peripheral compartment. This notion is supported by
our observation of upregulation of activation marker CD69 and
IFN-γ in brain-infiltrating leukocytes in diabetic stroke. Future
studies will be necessary to identify these unique brain-derived
factors thatmay govern the phenotype and function of infiltrating
leukocytes in diabetic stroke.

Preclinical and clinical studies indicate that modulation of the
immune system attenuates ischemic brain injury (34, 35). These
immune-driven effects may have broad implications for both
stroke and diabetes, because inflammation has been established
as a link between vascular complications in diabetes and
cerebrovascular disease risk. In this regard, anti-inflammatory

medications targeting components of the immune system have
shown beneficial effects on glycemia, β-cell function, and
insulin resistance (36). For example, independent clinical studies
conducted with an IL-1 receptor antagonist (anakinra) or IL-1β-
specific antibody (canakinumab) have demonstrated beneficial
effects on metabolic parameters including decreased HbA1c and
enhanced insulin sensitivity and β-cell secretory function, with
concomitant improvement in inflammatory markers in diabetes
(37, 38) and significantly reduced recurrent cardiovascular events
(39). Thus, a combination therapy that can curtail multiple
pathophysiological mechanisms including inflammation and
hyperglycemiamight be a good choice for preventing exacerbated
brain damage in diabetic stroke patients. In this study, we
found that the immune response of ischemic stroke combined

Frontiers in Immunology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 2392

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Exacerbated Brain Inflammation in Diabetic Stroke

FIGURE 6 | Expression of CD69 and IFN-γ in splenic leucocytes of db/db and db/+ mice after brain ischemia. (A) Gating strategy of CD4+ T, CD8+ T cells, and

neutrophils expressing CD69 and IFN-γ and macrophages expressing CD86 and CD206 in the spleen after dMCAO. The counts of CD4+ T (B), CD8+ T cells (C),

and neutrophils (D) expressing CD69 and IFN-γ in the spleen of db/+ and db/db mice at 3 and 7 days after ischemia. The counts of macrophages (E) expressing

CD86 and CD206 in the spleen of db/+ and db/db mice at 3 and 7 days after ischemia. Mean ± s.e.m. n = 8 per group.

with diabetes is very different from simple ischemic stroke. In
terms of future anti-stroke therapeutics, an important goal is
to realize the theory of precision medicine, which is based on
the concept that the etiology is not the same for all patients.
For example, the quantitative contribution of inflammation and
immune response will differ between subset patients, such as
diabetic stroke complication. For the first step, we investigated
the temporal profile of leukocyte mobilization and infiltration in
adult db/db male mice following dMCAO. An important future
goal is to gain a clear understanding of the underlying molecular
mechanisms for the different inflammatory responses of diabetic
stroke, which would help in development of specific and effective
anti-diabetic stroke therapies.

We are aware that there are several limitations in this
study. First, we used C57BLKS-Leprdb T2D mice (db/db
T2D mice, Jackson Lab), the leptin receptor mutation does

not reflect disease etiology in humans, although this model
provides us insight into glucose metabolism and identified
novel pathways of its complications (40). However, there are
variable pathogenic mechanisms between different T2D animal
models, investigation of inflammatory response in other diabetes
animal models with ischemic stroke should be pursued in
the future. Second, in this pilot study, we characterized the
temporal profile of leukocyte mobilization and brain infiltration
in T2D stroke mice. This servers as the first step for our
long-term goal to understand whether and how infiltrating
leukocytes contribute to exacerbated brain infarction in process
of T2D stroke. Although augmented neuroinflammation has
been linked to worsened neurological outcome in T2D
stroke, the contribution from specific components of immune
system to T2D-related brain pathology such as microvascular
dysfunction and increased BBB permeability remains elusive.
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In this regard, future studies are warranted to unveil the
precise role of immune components in these pathological
processes of T2D stroke. Third, we found highly elevated
CD4+ T cells in the early stage, delayed and sustained
inflammatory cells brain infiltration in T2D stroke mice,
but their pathological roles and underlying mechanism in
modulating the different inflammatory response needs to be
defined in the future. Fourth, although an altered macrophage
response was observed in diabetic mice, we did not investigate
polarization of macrophages. Considering the central role of
macrophage in tissue injury and repair, future studies are
required to further investigate macrophage responses in this
model. Last, this study was proposed as a proof-of-concept
investigation. Indeed, there are multiple pathological factors
that dynamically and interactively participate in inflammation-
associated T2D stroke brain damage evolution and recovery
processes (19), which require further investigation. In addition,
although a larger infarct volume in db/db mice might be a
contributor to increased brain infiltration of leukocyte, it is
also noteworthy that the increase of brain-infiltrating total
leukocytes, neutrophils, macrophages, CD8+ T cells, B cells and
lymphocytes did not occur at day 3 after stroke. A preferential
increase of CD4+ T cells at day 3 after stroke in db/db mice
suggests possible involvement of environmental cues in diabetic
brain that elicit an early CD4+ T cell response. We also
acknowledge the possible limitation of insufficient sample size
or relatively large variations, and will extend our studies in
the future.

CONCLUSIONS

In summary, experimental results from this study have
demonstrated a delayed and sustained augmentation
of brain infiltration and activation of neutrophils and
lymphocytesafter cerebral ischemia in type 2 diabetic
mice. The potential contribution of these altered immune

responses to the severer brain damage in diabetes stroke awaits
further investigation.
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