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KEY POINTS

� Respiratory viruses other than rhinovirus or respiratory syncytial virus can be associated
with acute wheezing illness.

� Contribution to recurrent/wheezing is not well studied.

� Children with human metapneumovirus lower respiratory tract infection may have
increased risk of subsequent recurrent wheezing over the several years after initial
infection.
With the dissemination of the use of sensitive molecular methods for viral detection,
the opportunities to evaluate the role of respiratory viruses in acute and chronic respi-
ratory illness has expanded in the past decade. Acute wheezing illnesses are com-
mon, especially in young children, and viral agents have been shown to be found in
60% to 100% of these episodes using these sensitive detection methods.1–3 Multiple
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viruses are associated with acute wheezing illness, including rhinovirus (RV), respira-
tory syncytial virus (RSV), human metapneumovirus (hMPV), influenza virus, parain-
fluenza virus, adenovirus, human bocavirus (HBoV),1 coronavirus, and enterovirus
(Table 1). These viruses have also been shown to be associated with asthma exacer-
bations.4,5 RV and RSV are the most frequently detected pathogens (see Table 1),
with RSV more prevalent in younger children in winter months and RV more prevalent
in older children.2 There is a large body of evidence implicating the association of
RV6–8 and RSV9,10 with the subsequent development of recurrent wheezing and/or
asthma. Viruses other than RV or RSV can be detected in 50% of wheezing ill-
nesses,1,11,12 but there are limited data regarding the association of these other vi-
ruses and asthma. Conducting studies to evaluate the long-term consequences of
these other viruses has been challenging for several reasons. First, the detection
rate of these viruses is often lower compared with RV and RSV, so a much larger
cohort is required to perform a study with adequate representation of patients infected
with these other viruses. The prospective study that investigated the role of hMPV
infection in the development of wheezing and asthma required screening of more
than 400 children infected with hMPV over a 5-year period of recruitment.13 Second,
establishing appropriate animal models has been challenging and existing models
may not adequately model human infection to evaluate long-term outcomes. Third,
it is difficult to tease out the specific contribution of other viruses because the associ-
ation of RV and RSV can confound the analysis given the high rate of coinfection with
these viruses. For instance, in a community cohort of 147 children with high atopic
risk, wheezy, febrile lower respiratory tract infection (LRTI) during the first year of life
was associated with a higher risk of persistent wheezing (odds ratio [OR], 3.5) and
asthma (OR, 4.9) at age 10 years if they were atopic by age 2 years.3 Respiratory virus
was detected in 62% of these patients with febrile LRTI with a large proportion (60%–
70%) of the detected viruses being RV or RSV, so this observed association may be
primarily caused by the effect of RV or RSV infection. However, there are data sug-
gesting that viral infection in early life with any cause may be important in increasing
the risk of asthma. In a high-risk birth cohort study in Demark, the number of respira-
tory episodes in the first year of life was associated with the development of asthma at
age 7 years regardless of virus type.14

This article focuses on 3 viruses (hMPV, HBoV, and influenza virus) in which an as-
sociation with wheezing illness has been most studied. It provides an aggregate of
Table 1
Frequency of viruses detected in acute wheezing illness in children

Virus Frequency (%)

RV 28–76

RSV 16–29

Enterovirus 4–27

Bocavirus 5–18

Parainfluenza virus 8–9

HMPV 3–6

Adenovirus 3–7

Coronavirus 2–5

Influenza virus 2–4

Data from Refs.1–3
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available data reviewing the current research investigating the role of these viruses in
acute and chronic respiratory disease.
HUMAN BOCAVIRUS

hMPV is a paramyxovirus first discovered by van den Hoogen and colleagues15 in
2001. Similar to RSV, hMPV is a single-stranded RNA virus belonging to the Pneumo-
viridae subfamily, and causesmany of the same symptoms as RSV. Typical symptoms
of hMPV infection include mild, self-limiting, acute upper respiratory tract infections to
more severe LRTIs, with wheezing and pneumonia. It is a frequent cause of bronchio-
litis in young children.16 Cough, rhinorrhea, wheeze, and fever are commonly reported
symptoms in children infected with hMPV.17–22

Virtually all children have evidence of exposure to hMPV by age 5 years.15 hMPV
is responsible for a significant portion (2%–12%) of respiratory tract infec-
tions16,17,19,23–26 and is associated with a large burden of hospitalizations and outpa-
tient visits in younger children.18,20 It tends to peak during the late winter and spring
seasons, typically between December and April,16,19,22,24 often peaking in February
and March. Compared with infection with other viruses, there have been conflicting
data on whether hMPV infections result in greater hypoxemia or duration of hospital-
ization or intensive care unit (ICU) stays.23,24 The severity of illness is worse in those
with a history of extreme prematurity.25

Although hMPV causes wheezing and lower respiratory tract symptoms, the contri-
bution of hMPV to asthma exacerbations varies among different populations. In those
with asthma exacerbations, the detection rate of hMPV is approximately 5% world-
wide,4 whereas in those with hMPV LRTI a much higher proportion have a diagnosis
of asthma. In a study of children with hMPV LRTIs in the United States, 14% to
33% carried a diagnosis of asthma or history of wheezing.16,19 In a study of children
with hMPV in Spain, 60.7% of those infected with hMPV alone carried a diagnosis
of recurrent wheeze or asthma, which was higher than rates in RSV or adenovirus
but similar to that of RV or HBoV. Children with RSV were more likely to have a diag-
nosis of bronchiolitis than children with hMPV.24 hMPV can cause an illness consistent
with bronchiolitis, but children may be diagnosed less often with this term, given that it
often is synonymous with RSV infections in young children. Nonetheless, hMPV
causes wheezing in young children; can often precipitate episodes of wheezing in
those prone to do so, such as asthmatics; and is an important cause of viral-
induced asthma exacerbations. In children with asthma, studies have shown synergis-
tic effects of allergic characteristics of the host (ie, immunoglobulin E level, house dust
sensitization) and the severity of asthma exacerbation by RV,27,28 but the interaction of
allergy of the host and hMPV infection has not been well studied.
In contrast with the large number of studies reporting the association of hMPV in

early childhood with acute wheezing illnesses or asthma at the time of illness,16,23

there are sparse data on the long-term consequences after the acute infection. One
study from Garcia-Garcia and colleagues26 retrospectively identified children 2 to
5 years of age who were hospitalized with hMPV or RSV bronchiolitis in their first
24 months of life and contacted them to assess their diagnosis of asthma at the
time of the study. Of 101 children with hMPV-positive bronchiolitis (without coinfec-
tion) over the course of the prior 5 years (October 2000 to June 2005), they were
able to obtain follow-up on 23 children with no prior history of wheezing. They then
selected a random sample of children in that same time period with RSV bronchiolitis
and obtained follow-up on 32 of those children. A diagnosis of recurrent wheezing and
asthma was more frequent in children with a history of hMPV bronchiolitis or RSV
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bronchiolitis compared with control children who were hospitalized around the same
time because of rotavirus. hMPV bronchiolitis was the strongest independent risk fac-
tor for asthma (OR, 15.9; confidence interval [CI], 3.6, 70.5), followed by RSV bronchio-
litis (OR, 10.1; CI, 2.5, 40.1) and allergic rhinitis (OR, 4.9; CI, 1.2, 40.1) at age 3 to 5
years. Another study prospectively followed premature infants with viral LRTI and,
although it did not track wheezing or asthma status, found that airway resistance mea-
sures were increased at 1 year of age, although this study included only 4 infants with
hMPV.29

Stronger evidence for the long-term effect of hMPV LTRI was found in a recent pro-
spective study that evaluated the effects of hMPV infection on wheezing and asthma
outcomes. Children less than 5 years of age hospitalized or treated in the emergency
room with hMPV LRTI and no prior history of wheezing were prospectively followed
along with a control group, with outcome assessment every 3 to 6 months for up to
3 years, and a final follow-up as late as 6.5 years.13 This prospective study design
enabled the investigators to obtain the child’s wheezing history and capture the
outcome securely in a longitudinal fashion. Follow-up data were collected on 29 chil-
dren with hPMV LRTI and 27 controls. Children with hMPV LRTI had a higher likelihood
of wheezing episodes during the follow-up period (hazard ratio [HR], 2.8; CI, 1.4, 5.8)
than controls. In addition, children with hMPV LRTI had earlier onset of recurrent
wheezing, both with and without colds, than the control children (Fig. 1). The associ-
ation with the development of asthma was not statistically significant (HR, 2.5; CI, 0.8,
8.1; P5 .12), although the number of children diagnosed with asthma was larger in the
hMPV group (9 of 29) than the control group (4 of 27). There is more to learn, but these
studies suggest an increased risk of asthma development following hMPV infection
early in life.
The mechanism of short-term and long-term pathologic effects of hMPV infection is

not well studied compared with that of RSV. Infection with hMPV in mice was shown to
lead to persistence of viral RNA, pulmonary inflammation, and airway hyperrespon-
siveness several months after the infection,30 suggesting long-term pathologic
changes can occur after hMPV infection.
Fig. 1. Survival analysis for wheezing and asthma after hMPV LRTI. Kaplan-Meier estimates
of freedom from any wheezing episodes, P 5 .004; hMPV LRTI subjects had wheezing earlier
in follow-up compared with control subjects. (From Coverstone AM, Wilson B, Burgdorf D,
et al. Recurrent wheezing in children following human metapneumovirus infection. J Al-
lergy Clin Immunol 2018;142(1):299; with permission.)
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Studies in both mice and humans have suggested several different molecular mech-
anisms of hMPV affect airway inflammation and function at the time of acute infection,
often comparing these mechanisms with those of other viral causes. Alveolar macro-
phage activity may be augmented in hMPV infection, leading to detrimental effects on
the airway, whereas alveolar macrophage depletion was seen in RSV andmay provide
protection against the harmful effects of the virus.31 The chemokine profile of nasal se-
cretions was also shown to differ in hMPV, with high concentrations of interleukin (IL)-8
(neutrophil chemotactic factor) and low concentrations of RANTES (regulated on acti-
vation, normal T-cell expressed and secreted) (eosinophil chemotactic factor) in indi-
viduals infected with hMPV compared with the increased RANTES concentrations
seen in RSV.17 In another study of children 1 to 14 years of age with hMPV infection,
differences in measures of cell-mediated immunity distinguished hMPV from other
respiratory viruses, such as RSV and influenza.22 Thymic stromal lymphopoietin
(TSLP) as well as IL-4 plasma levels were higher in children with wheezing and
hMPV than in those without wheezing and hMPV or without wheezing and another res-
piratory virus. TSLP has been implicated as a mediator in the pathway of pediatric
asthma, with higher plasma TSLP levels correlating with poor asthma control.32

TSLP promotes basophil production and type 2 inflammation.33 Infection of human
airway epithelial cells with hMPV induced expression of TSLP, as well as leading to
upregulation of IL-8 and IL-33, whereas TSLP blockade led to reduced lung inflamma-
tion,34 indicating activation of the TSLP pathway initiating airway inflammation by
hMPV acute infection. These studies may suggest the involvement of the TSLP
pathway as a molecular mechanism for how hMPV leads to a recurrent wheezing
and asthma phenotype, although further investigation is warranted.
HUMAN BOCAVIRUS

HBoV is a parvovirus that was discovered in 2005 from pooled nasopharyngeal sam-
ples bymolecular screening.35 Subsequent studies have shown that HBoV genotype 1
is commonly detected in respiratory samples from children with acute wheezing.1,12 In
children with acute wheezing for the first time, HBoVwas detected in 18%.12 However,
it is also known that the coinfection rate of HBoV with other viruses is very high (15%–
100%). In addition, detection in asymptomatic individuals is also frequent. HBoV was
found to be present in 17% of healthy controls admitted to the hospital for elective sur-
gery,36 and in participants in a household study in which symptoms and nasal samples
were prospectively collected for 12 months, 50% of HBoV detection occurred in those
without symptoms.37 Viral persistence is thought to be responsible for the high fre-
quency of coinfection.37,38 HBoV 1 is implicated to be an important respiratory path-
ogen by many,39,40 but the precise pathologic contribution of HBoV in acute
respiratory disease is still not accurately defined and HBoV may be both a passenger
and a causative pathogen.36,41 HBoV may interfere with RV-induced immune re-
sponses during acute wheezing. Lukkarinen and colleagues42 compared the T-helper
(Th) 1, Th2, proinflammatory cytokine response profile in young children with RV,
HBoV, and RV-HBoV coinfection with acute wheezing illness. Unlike RV, HBoV infec-
tion was not associated with systemic proinflammatory or Th2-type responses and the
RV-HBoV coinfection resulted in a non–Th2-type immune response.
Although bocavirus is frequently detected and seems to be associated with acute

wheezing episodes, the data on long-term consequences after the acute infection
are sparse. One retrospective study from Spain identified children who were previ-
ously hospitalized with HBoV (n 5 10) or RSV bronchiolitis (n 5 80) in their first
24 months of life and evaluated them to assess clinical outcomes, including a
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diagnosis of asthma and presence of atopy at age 5 to 7 years.43 All children in the
HBoV group developed recurrent wheezing. Fifty percent in the HBoV group and
23% in the RSV group had a diagnosis of asthma at age 5 to 7 years. The proportion
of those with atopy was similar among those with HBoV and RSV. Another study in
children hospitalized for acute viral wheezing showed that 13 children with HBoV-
associated bronchiolitis had recurrent wheezing 2 years after the initial hospitalization
less often than children with RV-associated bronchiolitis (HBoV 40% vs RV 60%).42

The association of HBoV LRTI in early life and asthma is inconclusive and larger pro-
spective studies are required to confirm these findings.
INFLUENZA VIRUS

Influenza viruses are responsible for an average of 3.1 million annual hospitalized
days, and 31.4 million outpatient visits,44 and is one of the frequently detected viruses
during asthma exacerbations. It has long been identified as a precipitant of asthma ex-
acerbations in all age groups.2,4,45 In people with asthma exacerbations, the detection
rate of influenza virus is approximately 10% worldwide,4 but, during a flu season, the
prevalence of influenza viruses can be as high as 20% in wheezing infants and 20% to
25% in adults with acute asthma exacerbations.2,46,47 Although involvement of influ-
enza virus is common in asthma exacerbation, influenza virus is an infrequent cause
of acute wheezing illness in younger children.1–3 The authors are not aware of any
studies evaluating the role of influenza virus LRTI on the development of recurrent
wheezing and/or asthma later in life.
The cytokine IL-33 is implicated as an important driver for influenza-induced

asthma exacerbations in animal studies.48,49 In the influenza-infected mouse
models, IL-33 expression is upregulated, shifting the balance of Th1/Th2 immu-
nity.48,50 A recent study has shown that IL-33 is produced by ciliated bronchial
cells and type II alveolar cells on viral-induced exacerbation in human and mice
and dampened innate and adaptive Th1-like and cytotoxic responses, which sub-
sequently results in increased viral loads and enhanced airway inflammation un-
derlying the influenza-induced asthma exacerbation.49 Meanwhile, heightened
IL-33 production induces substantial IL-13 production in type 2 innate lymphoid
cells (ILC-2), Th2 cytokine–producing cells that promote allergic inflammation in
mouse models of asthma and atopic dermatitis.51 In another study, influenza A
infection induced acute airway hyperreactivity that was medicated by ILC-2, sug-
gesting the importance of the IL-33–IL-13 axis in influenza-induced acute asthma
exacerbations.52

Whether asthmatics are more frequently infected by influenza virus is still a matter
of debate. It has been shown that patients with asthma have reduced type 1 inter-
feron (IFN) responses on RV infection,53,54 but a few studies did not confirm this
observation.55,56 Human bronchial epithelial cells from patients with asthma show
increased IFN-lambda 1 levels and preserved IFN-beta levels when infected with
influenza A virus, although viral levels were higher in asthmatics compared with non-
asthmatics.56 In a US study, children with asthma were found to be infected twice as
often as nonasthmatics by H1N1 influenza when monitored by weekly nasal samples
and symptoms scores during the 2009 to 2010 season.57 Regardless, it has been
accepted that asthma is a risk factor of severe disease with influenza once acquired,
and patients with asthma have been listed as a priority population for vaccination.58

The population studies in the 2009 H1N1 pandemic have provided interesting obser-
vations regarding this susceptibility. Having asthma was found to be a risk factor for
hospitalization for H1N159,60 and was found in 10% to 20% of the hospitalized
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patients worldwide.61 Nonetheless, an observation has also been made that having
asthma may be protective once patients are hospitalized from influenza. Patients
with asthma had decreased risk of ICU stay, mechanical ventilation, and death
from H1N1, compared with other chronic conditions, such as cardiovascular dis-
eases and obesity.62–64 The observed protective effect may be in part explained
by early hospital admission and/or a favorable response to steroids.65 In mouse
models, this protective effect of allergic asthma on influenza infection has been reca-
pitulated and the increased eosinophil levels in asthmatic airways may be one of the
mechanisms.66 With putative antigen-presenting functions, eosinophils enhanced
influenza-specific CD81 T cells after infection, mediating the viral clearance of influ-
enza virus in a mouse asthma model.66 Rapid induction of type III IFNs, natural killer
cells, and TGF-beta was also observed in asthmatic mice on influenza infection, indi-
cating a potential mechanism for enhanced antiviral immunity against influenza in
asthmatics.66–68

Influenza vaccine is recommended for patients with asthma in many countries, but
there has not been clear evidence showing a protective benefit. The most recent
Cochrane Review, in 2013, which included 18 trials across the world, concluded
that inactivated influenza vaccine did not provide significant reduction in the number
or duration of influenza-related asthma exacerbations.69 Safety concern was raised in
an earlier study that showed a decrease in peak flow following the administration of
the inactivated influenza vaccine.70 A subsequent study in the Netherlands71 and a
large study in the United States72 enrolling more than 2000 patients with asthma
confirmed that there is no increase in risk for adverse events including asthma exac-
erbation within 2 weeks following the injection. This Cochran Review also conducted a
systematic review in 3 trials comparing intranasal vaccine with intramuscular infection
in infants and older children and concluded that event rates for asthma exacerbation
and wheezing were similar in both vaccine types.69 A more recent study in the United
Kingdom evaluated the safety of intranasal live attenuated influenza vaccine in atopic
children with well-defined allergy to eggs. Sixty-seven percent of children had asthma
in addition to their egg allergies. There was no systemic reaction following the injec-
tions and 8 mild self-limiting symptoms after 433 doses given in 282 children, which
also ensured safety.73

SUMMARY

Respiratory viruses other than RV or RSV, especially hMPV, influenza virus, and HBoV,
can be detected frequently in acute wheezing illness. The interaction of these other vi-
ruses with an allergic host, and their contribution in the development of asthma after
acute infection, are not well understood, although there is evidence to suggest that
children with hMPV LRTI have a higher likelihood of subsequent and recurrent
wheezing over the several years after initial infection.
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