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Machine Learning Driven
Improvement of Signal
Detection by Implantable
Cardiac Monitors
Implantable cardiac monitors (ICMs) are small, single-
lead devices implanted subcutaneously that are
capable of monitoring cardiac rhythms for months to
years. The main advantages of ICMs include longer
monitoring duration and the ability to provide early
notifications. However, the single-lead recordings,
percutaneous placement, and possibility of device
movement can compromise data quality leading to
reduced signal-to-noise ratio and increased false-
positive readings.1 To address this, a software pro-
gram has been designed to aid in signal processing.2

Recent studies however have shown that false posi-
tives continue to burden device clinics and care
teams, with important health economic implications.1

Here, we present an artificial intelligence (AI)-driven
solution to improve the accuracy of arrhythmia clas-
sification from ICM signals.

Thirty-three patients with hypertrophic cardiomy-
opathy were referred to our Heart Rhythm clinic in
Vancouver, British Columbia, for sudden cardiac
death risk stratification and management. Consecu-
tive patients considered to be at low or moderate risk
of sudden cardiac death according to recent guide-
lines were enrolled in a prospective study employing
Bluetooth-enabled Confirm Rx ICMs (Abbott Medi-
cal).3,4 Study protocols were approved by the UBC
Providence Health Care Research Institute Office of
Research Ethics (study ID: H17-02707).

We developed a predictive model for arrhythmia
classification using a recently published deep neural
network (DNN).5 A DNN is a type of machine
learning method consisting of multiple data-
processing layers. DNNs are unique because they
can accept raw and unprocessed data to produce
customized specific outcomes. Training a DNN de-
scribes the process whereby abstract inputs undergo
sequential calculations to produce desired specific
results.
We trained and subsequently validated this model
using distinct data sets composed of electrogram
(EGM) transmissions from ICMs. The model was
trained to identify cardiac rhythms of 5 categories:
supraventricular tachycardia (SVT), ventricular
tachycardia (VT), sinus bradycardia (SB), atrial fibril-
lation (AF), and normal sinus rhythm (NSR). EGM
transmissions were annotated by expert technicians
from Abbott Laboratories using a combination of
software andmanual review. Annotated transmissions
were spliced into 20-second segments (n ¼ 1,639) and
grouped into 1 of the 5 aforementioned categories. For
the training data set, 1,147 EGM-annotated segments
were provided in random order to the DNN to train the
model in classifying raw EGM traces. Next, the model
was validated using 492 new EGM segments to eval-
uate its classification accuracy. The overall accuracy
of the DNN was 94%, defined as the overall proportion
of correctly classified signals. We also calculated
the sensitivity and positive predicted value of the DNN
as they are gold standard measures of diagnostic
performance (Figures 1A and 1B). The model’s sensi-
tivity in identifying SVT, VT, SB, and AF was 95.5%,
100%, 94.4%, and 100%, respectively. The specificity
was 89.5%, defined as (model predicted true SNR)/
(true SNR). All model training and analyses were
performed using Python 3.5.

A prototype rule-based predictive algorithm used
in a recent clinical trial of novel ICMs found positive
predictive values of 4.3%, 30.2%, and 84.1% for AF,
tachyarrhythmias (including SVT and VT), and SB,
respectively.4 Positive predictive values estimated
with our new algorithm suggest performance im-
provements compared to traditional rule-based algo-
rithms. Our application of a recently developed DNN
to develop a predictive model with ICM data is a
practical example of using clinical data to pilot test
and improve machine learning tools. Utilizing real-
world data to inform machine learning models can
increase the translational potential of tools developed
from such models. This approach however also has
limitations, including the quality and quantity of the
data generated. Clinical data are rarely collected with
the intention of generating high-quality and abun-
dant data for basic science experimentation. There-
fore, certain subsets of clinically irrelevant data may
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FIGURE 1 Performance Characteristics of a Deep Neural Network Model for Classifying Arrhythmias

A
Category Sensitivity (95% CI) Positive Predictive Value (95% CI)

supraventricular tachycardia 
(n = 134 transmissions)

0.955 (0.919 - 0.990) 0.970 (0.941 - 0.999)

ventricular tachycardia 
 (n = 28 transmissions)   

1 (1 - 1) 1 (1 - 1)

sinus bradycardia (n = 143
transmissions)

0.944 (0.906 - 0.982) 0.957 (0.924 - 0.990)

atrial fibrillation (n = 53
transmissions)

1 (1 - 1) 0.869 (0.777 - 0.961)

normal sinus rhythm 
(n = 134)

B
DNN classification

supraventricular 
tachycardia

ventricular 
tachycardia

sinus 
bradycardia

atrial 
fibrillation

normal sinus 
rhythm

Expert 
annotation

supraventricular 
tachycardia 128 (0.260) 0 0 4 (0.008) 2 (0.004) 134

ventricular 
tachycardia 0 28 (0.057) 0 0 0 28

sinus 
bradycardia 0 0 135 (0.274) 0 8 (0.016) 143

atrial fibrillation 0 0 0 53 (0.108) 0 53

normal sinus 
rhythm 4 (0.268) 0 6 (0.012) 4 (0.008) 120 (0.244) 134

132 28 141 61 130 492

(A) Summary of prediction performance of a deep neural network-powered prediction model for classification of arrhythmias from

implantable cardiac monitor recordings. Sensitivity is defined as: (model predicted true arrhythmia)/(true arrhythmia þ false negative).

Positive predictive value is defined as: (model predicted true arrhythmia)/(total model predicted arrhythmia). (B) Confusion matrix for DNN

classification vs expert annotation of ICM-derived EGM segments. CI¼ confidence interval; DNN ¼ deep neural network; EGM¼ electrogram;

ICM ¼ Implantable cardiac monitor.
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be less prioritized and not as available. Confounds
may be introduced into the data set that can be
difficult to reduce or control because of the real-world
nature of clinical data. In this study, the NSR subset
of our data set was from segments that were labeled
as not containing an arrhythmia. This suggests that
the true EGM signal may be NSR but may also be
uninterpretable noise or artifact. Therefore, our
model’s true accuracy and generalizability of identi-
fying NSR requires further testing and validation.

This report describes a novel application of an AI-
driven improvement to automated classification of
ICM recordings. The DNN used was originally applied
to single-lead ECG data, and our results suggest the
presence of translatability of AI tools designed for 1
data set toward other similar data sets.5 Accordingly,
it is probable that this model can be applied to other
yet untested data sets such as recordings from cardiac
telemetry or Holter monitoring to improve signal
detection and classification. This presents 1 future
direction for this work. Other important avenues of
research include demonstration of the generaliz-
ability of this predictive model. This would require
external validation with data sets consisting of larger
and more heterogeneous samples. Moreover, other
DNN or machine learning tools should be used to
power the predictive model and assess whether
further improvements in classification can be made.
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