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Abstract: Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell-wall-modifying enzyme
participating in diverse cell morphogenetic processes and adaptation to stress. In this study,
48 XTH genes were identified from two pineapple (Ananas comosus) cultivars (‘F153’ and ‘MD2’) and
designated Ac(F153)XTH1 to -24 and Ac(MD2)XTH1 to -24 based on their orthology with Arabidopsis
thaliana genes. Endoglucanase family 16 members were identified in addition to XTHs of glycoside
hydrolase family 16. Phylogenetic analysis clustered the XTHs into three major groups (Group I/II, III
and Ancestral Group) and Group III was subdivided into Group IIIA and Group IIIB. Similar gene
structure and motif number were observed within a group. Two highly conserved domains, glycosyl
hydrolase family 16 (GH16-XET) and xyloglucan endotransglycosylase C-terminus (C-XET), were
detected by multiple sequences alignment of all XTHs. Segmental replication were detected in the
two cultivars, with only the paralogous pair Ac(F153)XTH7-Ac(F153)XTH18 presented in ‘F153’ prior
to genomic expansion. Transcriptomic analysis indicated that XTHs were involved in the regulation
of fruit ripening and crassulacean acid metabolism with tissue specificity and quantitative real-time
PCR analysis suggested that Ac(MD2)XTH18 was involved in root growth. The results enhance our
understanding of XTHs in the plant kingdom and provide a basis for further studies of functional
diversity in A. comosus.

Keywords: xyloglucan endotransglycosylase/hydrolase; Ananas comosus; F153; MD2; crassulacean
acid metabolism

1. Introduction

Pineapple (Ananas comosus), a member of the Bromeliaceae family, is cultivated widely in tropical
and subtropical regions and is renowned for its nutritional and medicinal values [1]. Given its status
as a herbaceous perennial monocotyledon with classical crassulacean acid metabolism (CAM), the
pineapple genome was sequenced in 2015 as a model plant [2]. The genome of the cultivar ‘MD2’,
which is the predominant pineapple cultivar grown worldwide by virtue of its fruit flesh flavor and
commercial value, and the cultivar ‘F153’ has been sequenced [3]. Pineapple genome sequencing has
provided valuable information for further research for crop improvement [4,5].

Xyloglucan endotransglycosylase/hydrolase (XTH) participates in diverse physiological processes,
especially cell elongation and stress resistance [6]. XTH is a cell-wall-modifying enzyme encoded by a
multigene, which belongs to a subfamily of the glycoside hydrolase family 16 (GH16) [7,8]. Generally,
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XTH proteins perform two diverse catalytic activities: xyloglucan endohydrolase (XEH) and xyloglucan
endotransglycosylase (XET) [9,10]. XET activity is characterized by the no-hydrolytic cleavage and
rejoining of xyloglucan (XyG) chains, whereas XTH activity irreversibly cleaves hydrolytic XyG chains
to promote the expansion, degradation, remediation, and morphogenesis of the cell wall [6,9]. To
date, the majority of identified XTH proteins show XET activity [6]. XTH proteins share the conserved
glycosyl hydrolase family 16 domain (GH16_XET) with a specific EXDXE motif likely to be the
catalytic site for both XET and XEH activities. XTH proteins also contain the significant xyloglucan
endotransglycosylase C-terminus domain (C-XET), which distinguishes XTH proteins from other
GH16 subfamilies [6,11,12]. The XTH gene subfamily was originally divided into three major groups,
of which Group III was subdivided into subgroups IIIA and IIIB [10,13]. With the expansion of XTH
observations, more detailed clade and subclade groupings (Group I/II, IIIA, IIIB, and an Ancestral
Group) were applied to different species on the basis of sequence similarity [10,11]. Interestingly, XTH
genes predominantly display XET activity in Group I/ II and IIIB, whereas XEH activity is characteristic
of Group IIIA [13]. In Arabidopsis thaliana, Group IIIA genes are ubiquitous and dispensable in plant
growth [14].

An increasing number of XTHs have been identified using publicly available datasets [15]. For
instance, 33, 29, 25, 56, 61, and 24 potential XTH members have been defined in A. thaliana, Oryza sativa,
Solanum lycopersicum, Nicotiana tabacum, Glycine max, and Hordeum vulgare, respectively [5,16–20]. In
A. thaliana, XTHs show distinct and diverse organ-specific expression patterns. Five genes (AtXTH-1,
-21, -22, -30, and -33) were expressed preferentially in green siliques, whereas two genes (AtXTH-24
and -32) were expressed primarily in stems [16]. In O. sativa, seven root-specific XTH genes (OsXTH1,
-2, -4, -13, -15, -16, and -25) were predominantly expressed in roots of 14-d-old seedling, whereas no
expression was detected in other tissues [17]. XTH proteins modify the complex structure of lignin
and cellulose in a variety of developmental processes, such as root formation, flower generation,
and fruit softening [5,21,22]. Numerous XTHs have been detected in root elongation zones and
trichoblasts of diverse vascular plants [23]. Compared with other tissues in Dianthus caryophyllus,
DcXTH2 and DcXTH3 transcripts were markedly accumulated in petals and showed XET activity
during flower opening stages [22]. SlXTH5 detected at multiple stages during tomato fruit’s expansion
and displayed XET activity in concordance with results for apple, kiwifruit, and strawberry [24,25].
Thus, XTH proteins play a critical role during fruit growth and ripening. In addition, XTHs show
abnormal expression under abiotic stress. The XTH gene CaXTH3 of Capsicum annuum showed a high
expression level in transgenic A. thaliana lines and conferred enhanced salt and drought tolerance [26].
AtXTH14, -15, and -31 showed remarkably low expression under aluminum treatment in A. thaliana
roots, especially AtXTH31 [27]. In contrast, MtXTH3 was strongly up-regulated by a higher NaCl
concentration in Medicago truncatula [28]. Thus, XTHs possess considerable spatial and temporal
specificity, and respond to a variety of environmental stimuli for adaptation cell wall enzyme activities.

Additional potential members of the XTH gene family can be identified by genome-wide analysis
using the published genome resources in silico. Systematic identification and characterization of
XTHs in pineapple have received only limited attention to date [15]. In this study, we conducted
a comprehensive analysis, including the classification, evolutionary relationships, and expression
patterns of XTHs to determine whether pineapple XTHs participate in the CAM pathway and perform
important functions in the leaf and root. This research provides novel insights into the functional
characteristics of XTHs in pineapple and will facilitate further study of the regulatory mechanism at
different developmental stages.

2. Materials and Methods

2.1. Dataset Compilation and Identification of the XTH Gene Family

The protein sequences of A. comosus (L.) Merry two cultivars: ‘F153’ and ‘MD2’ were
downloaded from the National Center for Biotechnology Information database (accession numbers are
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GCA-001540865.1 and GCA-001661175.1, respectively) [29]. The protein sequences for A. thaliana were
obtained from The Arabidopsis Information Resource [30]. The protein ID of XTHs in A. thaliana as
reference sequences collected from a former publication [9].

Two Hidden Markov Models (HMMs) were downloaded from Pfam and used to scan XTH
sequences using the default E-value in HMMER 3.0 [31,32]. The HMM profile established for AtXTH
genes was used to search for candidate XTH family members in pineapple. Potential XTH protein
sequences were further detected using BLASp. Candidate genes were filtered and identified using
the Conserved Domain Search Service (CD-Search) [33]. The length, molecular weight (MW), and
theoretical isoelectric point (PI) of XTHs were characterized with ExPASy [34]. Their single peptide
and subcellular localization were predicted by SignalP 4.1 and Plant-mPLoc [35,36].

2.2. Multiple Sequence Alignment and Identification of Motifs

A multiple sequence alignment of the candidate pineapple XTH proteins was generated and
obvious features of the sequences were displayed using ClustalX2 with the default options [37]. In
addition, motifs were detected using Multiple Expectation Maximization for Motif Elicitation with a
motif width of 6–50 residues and a maximum of 10 motifs [38].

2.3. Phylogenetic Tree Analysis and Nomenclature of XTHs

Multiple sequence alignments of the XTH proteins from pineapple and A. thaliana were generated
using the ClustalW with default parameters (pairwise alignment with gap opening penalty of 10 and
gap extension penalty of 0.1, multiple alignment parameters with gap opening penalty of 10, a gap
extension penalty of 0.2, and delay divergent sequences set at 30%) [37]. A phylogenetic tree was
constructed using the neighbor-joining algorithm with 1000 bootstrap replications using MEGA7 [39].
All members were numbered sequentially and designated as Ac(F153)XTH or Ac(MD2)XTH based on
the genotypic origin of the gene [40].

2.4. Gene Structure Analysis

The gene structures of the candidate XTHs were predicted using the online software Gene Structure
Display Server [41]. The complex figure including the phylogenetic tree, gene structure, and motif
distribution was arranged correctly using TBtools [42].

2.5. Chromosomal Distribution and Gene Duplication

All Ac(F153)XTH genes were localized on chromosomes based on their physical coordinates
using MapChart and Perl script [43]. The Multiple Collinearity Scan toolkit was employed to identify
syntenic blocks in the two pineapple genome assemblies and Circos software was used to depict the
collinearity relationships [44,45].

2.6. Calculation of Ka/Ks

The synonymous substitution (Ka) and non-synonymous substitution (Ks) of XTH pairs were
calculated using Ka/Ks Calculator 2.0 by the Nei and Gojobori (NG) method [46]. Fisher’s exact test
was applied to confirm the validity of the ratio. To estimate the selection pressure, a ratio of Ka/Ks
greater than one, equal to one, and less than one displayed positive selection, neutral selection, and
purity selection respectively. The divergence time (T) was calculated as T = Ks/(2 × 6.1 × 10−9) × 10−6

million years ago (Mya).

2.7. Transcriptome Analysis and Gene Expansion Patterns

Pineapple transcriptome data were downloaded from the Pineapple Genomics Database consisting
of data from fruit at five developmental stages, the green leaf tip, and white leaf base tissues. The
stages Fruit1 to Fruit 5 were ordered chronologically and represented the entire period of fruit ripening.
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Leaves were harvested from plants of the cultivar ‘MD2’ at 13 time points over a 24-h period [47].
Daytime is from 6.a.m to 4.p.m. and nighttime is from 4.p.m. to 6.a.m. in this study. The white leaf
base comprised non-photosynthetic tissues sensitive to sunlight and the green leaf tip represented
photosynthetic tissues. The transcript levels were visualized using R software.

2.8. Experimental Validation of XTH Transcript Levels by RT-qPCR Analysis

The green leaf tip, white leaf base, and root of ‘MD2’ plants were sampled at the Fujian Agriculture
and Forestry University. All samples were rapidly frozen in liquid nitrogen then stored at −80 ◦C.
Total RNA was extracted from each sample using a RNA extraction kit (Roche Diagnostics GmbH,
Mannheim, Germany), then stored at −80 ◦C until further analysis. Quantitative real time PCR
(RT-qPCR) analysis was performed using the BIO-RAD CFX Connect™ Real-time PCR Detection
System with three biological replicates per sample. The transcript levels were analyzed using the
2−∆∆Ct method and means ± standard errors (SE). The primer sequences used are presented in Table S1.

3. Results

3.1. Identification and Characteristics of XTHs

Twenty-eight potential XTH family members were detected with the two HMM models of the
GH16_XET domain with a β-jelly-roll topology and XET_C domain, and 24 proteins were detected by
BLASTp in the ‘F153’ reference genome. Candidates were confirmed to contain two highly conserved
domains using CD-Search. Redundant proteins were manually removed on account of the absence of
characteristic amino acid residues in the C-terminal region or a lack of the conserved motif ExDxE [12].
Finally, 24 candidates were identified in ‘F153’ and were designated Ac(F153)XTH1 to -24 based on
homology with the classification of A. thaliana (Figure 1). In the same manner, 24 proteins were
identified in ‘MD2’ and designated Ac(MD2)XTH1 to -24 in ‘MD2’. In addition, EG16 homologs, which
are related to XTH members of the GH16 family but lack the XET_C extension, were identified in
cultivars ‘F153’ and ‘MD2’ [48].Genes 2019, 10, x FOR PEER REVIEW 6 of 15 
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Figure 1. The classification of XTH genes in ‘F153’, ‘MD2’ and A. thaliana. Four colorful braches with
red, green, blue, and purple were showed Group I/II, IIIA, IIIB and Ancestral Group, respectively.
Circles of different color represented the kinds of species (‘MD2’ with blue circles, ‘F153’ with purple
circles and A. thaliana with black circles).
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The candidate XTHs exhibited similar properties, including length, molecular weight (MW),
isoelectric point (PI), and signal peptide (SP) (Table 1). Comparison of the length of the 48 XTH proteins
revealed that Ac(MD2)XTH5 was the largest protein with 575 amino acids, and the smallest one was
Ac(MD2)XTH1 with 230 amino acids. The MW ranged from 25.99 kDa to 64.58 kDa and corresponded
with the protein length. Owing to the complex amino acid polarity, the PI ranged from 4.68 to 9.53.
Subcellular localization prediction revealed that each XTH was localized to the cell wall, and 14 (7/7,
‘F153’/‘MD2’) proteins were targeted in both the cell wall and cytoplasm. The majority of the proteins
contained signal peptide sequences (Figure S1).

Table 1. The physicochemical properties of XTHs from ‘F153’ and ‘MD2’.

Name Transcript ID Length MW (kDa) PI SP Catalytic Site Subcellular Localization

Ac(F153)XTH1 XP_020091206.1 292 32.78 5.35 20 DELDFEFLG Cell wall
Ac(F153)XTH2 XP_020111283.1 296 34.17 5.98 20 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH3 XP_020087864.1 318 37.29 7.59 − DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH4 XP_020102739.1 268 30.71 5.96 − DELDFEFLG Cell wall
Ac(F153)XTH5 XP_020102738.1 291 33.33 6.06 24 DELDFEFLG Cell wall
Ac(F153)XTH6 XP_020109096.1 327 35.98 5.07 24 NEFDFEFLG Cell wall
Ac(F153)XTH7 XP_020084286.1 285 31.65 5.53 27 DEVDFEFLG Cell wall
Ac(F153)XTH8 XP_020104828.1 303 35.62 8.81 − DEIDFEFLG Cell wall
Ac(F153)XTH9 XP_020089756.1 270 30.56 6.1 20 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH10 XP_020090359.1 270 30.63 6.43 20 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH11 XP_020110218.1 281 31.54 4.69 21 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH12 XP_020102740.1 285 31.58 4.75 24 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH13 XP_020091231.1 281 31.46 5.71 23 DEIDFEFLG Cell wall Cytoplasm
Ac(F153)XTH14 XP_020090869.1 282 32.15 5.41 25 DEVDFEFLG Cell wall
Ac(F153)XTH15 XP_020097886.1 291 33.33 4.8 26 DEIDYEFLG Cell wall
Ac(F153)XTH16 XP_020100605.1 293 32.89 9.04 20 NEVDFEFLG Cell wall
Ac(F153)XTH17 XP_020106929.1 340 38.92 5.95 28 DELDFEFLG Cell wall
Ac(F153)XTH18 XP_020104936.1 339 38.68 6.56 26 DELDFEFLG Cell wall
Ac(F153)XTH19 XP_020092864.1 349 39.41 8.69 23 DELDFEFLG Cell wall
Ac(F153)XTH20 XP_020094226.1 331 37.68 5.79 20 DELDFEFLG Cell wall
Ac(F153)XTH21 XP_020085280.1 334 37.63 5.93 19 DELDFEFLG Cell wall
Ac(F153)XTH22 XP_020085278.1 334 37.65 5.93 19 DELDFEFLG Cell wall
Ac(F153)XTH23 XP_020085279.1 334 37.65 5.93 19 DELDFEFLG Cell wall
Ac(F153)XTH24 XP_020112380.1 290 33.23 9.53 18 DEVDIEFLG Cell wall
Ac(MD2)XTH1 OAY79161.1 230 25.99 5.36 − DELDFEFLG Cell wall
Ac(MD2)XTH2 OAY64709.1 274 32.15 7.63 − DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH3 OAY72845.1 274 31.83 5.98 − DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH4 OAY65283.1 296 34.17 5.98 20 DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH5 OAY76125.1 575 64.58 5.26 24 DELDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH6 OAY78767.1 296 32.87 5.7 38 DEVDFEFLG Cell wall
Ac(MD2)XTH7 OAY70160.1 328 36.16 5 24 NEFDFEFLG Cell wall
Ac(MD2)XTH8 OAY63484.1 327 35.98 5.07 24 NEFDFEFLG Cell wall
Ac(MD2)XTH9 OAY62696.1 256 29.06 6.1 − DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH10 OAY67076.1 256 29.06 6.1 − DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH11 OAY62698.1 284 32.34 5.41 27 DEVDFEFLG Cell wall
Ac(MD2)XTH12 OAY79036.1 286 32.28 5.97 25 DEIDFEFLG Cell wall
Ac(MD2)XTH13 OAY76653.1 281 31.57 4.69 21 DEIDFEFLG Cell wall Cytoplasm
Ac(MD2)XTH14 OAY71418.1 272 30.48 4.68 21 DEIDFEFLG Cell wall
Ac(MD2)XTH15 OAY73488.1 293 32.89 9.04 20 NEVDFEFLG Cell wall
Ac(MD2)XTH16 OAY70295.1 330 37.64 6.6 26 DELDFEFLG Cell wall
Ac(MD2)XTH17 OAY81259.1 345 38.76 5.63 − DELDFEFLG Cell wall
Ac(MD2)XTH18 OAY66122.1 285 32.60 6.22 − DELDFEFLG Cell wall
Ac(MD2)XTH19 OAY83621.1 289 32.55 8.57 − DELDFEFLG Cell wall
Ac(MD2)XTH20 OAY70631.1 287 32.53 8.26 − DELDFEFLG Cell wall
Ac(MD2)XTH21 OAY84325.1 335 37.79 6.17 19 DELDFEFLG Cell wall
Ac(MD2)XTH22 OAY70279.1 335 37.80 6.17 19 DELDFEFLG Cell wall
Ac(MD2)XTH23 OAY81925.1 331 37.68 5.95 20 DELDFEFLG Cell wall
Ac(MD2)XTH24 OAY65080.1 367 41.61 8.54 − DELDFEFLG Cell wall

MW: molecular weight; PI: isoelectric point; SP: Signal Peptide.
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3.2. Phylogenetic Analysis and Classification of XTH Proteins

A phylogenetic tree representing the relationships among 81 (24/24/33) XTHs of ‘F153’, ‘MD2’
and A. thaliana was constructed. The XTHs were clustered into three main groups (Group I/II, III, and
Ancestral Group) (Figure 1). The majority of groups comprised the same number of XTHs in ‘F153’
and ‘MD2’. Group III consisted of nine Ac(MD2)XTH, eight Ac(F153)XTH, and seven AtXTH genes,
and was further subdivided into Group IIIA and Group IIIB, as described previously by Baumann
et al. [10]. Group IIIA contained only Ac(F153)XTH24. The Ancestral Group contained the fewest
members group, namely Ac(F153)XTH1 and Ac(MD2)XTH1, whereas Group I/II contained the most
members in each cultivar.

3.3. Sequence Alignment of XTHs

Multiple sequence alignment showed that Ac(MD2)XTHs and Ac(F153)XTHs genes shared a highly
conserved domain containing the motif ExDxE (Figure S1) [12]. One potential N-linked glycosylation
site sharing N(T)-L(K/R/V/T/I)-S(T)-G(N) was located close to catalytic residues in 30 XTHs [49]. In
addition, a conserved DWATRGG motif and Cys residues were located in the C-terminal region.

3.4. Gene Structure Analysis and the Pattern of the Motif in XTHs

Highly structural similarity was evident in each phylogenetic group of XTHs. The exon number
varied from three to seven in ‘F153’ and ‘MD2’ (Figure S2). Three or four exons were observed in
majority of XTHs. Group I/II comprised three or four exons, except that Ac(MD2)XTH5 contained
seven 7 exons. Fourteen of the 17 genes in Group III possessed four exons, whereas Ac(MD2)XTH19,
Ac(MD2)XTH20 and Ac(F153)XTH23 comprised three, three and five exons, respectively. Ac(MD2)XTH1
with three exons and Ac(F153)XTH1 with four exons were placed in Group IV. Ac(MD2)XTH5 with
seven exons was longer than all other members (Figure S2), because it possessed four highly conserved
domains: two GH16_XET and two C-XET domains (Figure 2).

Almost all XTHs within the same group shared common motifs (Figure 2). Motif1-2 and motif5
were highly conserved in all XTHs. Motif1-7 and motif 10 were present in Group I/II except that
Ac(MD2)XTH12 lacked motif3 and five genes contained the additional motif8. Ac(MD2)XTH5 contained
16 motifs in accordance with its structure. Ac(F153)XTH24 shared motif1-7 in Group IIIA and motifs
without rules (6–9 motifs) were presented in Group IIIB. In Group IV, Ac(MD2)XTH1 possessed the
fewest motifs and the motif composition of Ac(F153)XTH1 was identical to that of Group I/II.

3.5. Chromosomal Distribution and Syntenic Analysis of XTH Genes

Twenty-four Ac(F153)XTHs genes were unevenly distributed in 14 of 25 linkage groups (LG) in
‘F153’. LG06 contained the most Ac(F153)XTHs genes (Figure 3A). Three linkage groups, consisting of
LG03, LG14, and LG15, shared more than two XTH members, whereas only one gene was discovered
on each of the remaining chromosomes. All Ac(MD2)XTH genes were mapped on different scaffolds in
‘MD2’ (Figure S4).

To analyze duplication events, we detected syntenic blocks using MCScanX in ‘F153’ and ‘MD2’.
Thirteen collinear pairs, including 14 Ac(F153)XTHs and 12 Ac(MD2)XTHs genes, were discovered
through synteny analysis (Figure 3B, Table S2). Almost all pairs represented segmental duplication
without tandem duplication and were placed in the same phylogenetic group. The gene pair of
Ac(F153)XTH6-Ac(MD2)XTH8 was placed in Group I/II and Ac(F153)XTH20-Ac(MD2)XTH23 was
placed in Group IIIB, which indicated that XTHs generated multiple segmental duplications have
occurred during XTH diversification in pineapple.
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3.6. Ka/Ks Analysis of XTH Genes

To assess whether XTH genes had been subject to Darwinian selection, all paralogous XTH pairs
were used to calculate Ka/Ks values (Table S3). Thirteen XTH paralogous with high similarity were
detected with the Ka/Ks < 1, which suggested that XTHs had undergone strong purifying selection in
‘F153’ and ‘MD2’. Most paralogous showed a relatively recent duplication time with an average value
of about 1.7 Mya, except that Ac(F153)XTH18-Ac(MD2)XTH18 and Ac(F153)XTH7-Ac(F153)XTH18
diverged about 388 and 340 Mya, respectively (Table 2).

Table 2. Ka/Ks analysis and estimated divergence time of XTHs.

Collinear XTH Pairs Ka Ks Ka/Ks p-Value
(Fisher)

Duplication
Time (Mya)

Ac(F153)XTH7-Ac(MD2)XTH6 0.003077 0.03004 0.102442 0.003098 2.46
Ac(F153)XTH21-Ac(MD2)XTH22 0.003969 0.024998 0.158756 0.008438 2.05
Ac(F153)XTH21-Ac(MD2)XTH21 0.006628 0.029215 0.226877 0.011896 2.39

Ac(F153)XTH3-Ac(MD2)XTH2 0.00155 0.011451 0.135322 0.107858 0.94
Ac(F153)XTH1-Ac(MD2)XTH1 0.008336 0.010261 0.812454 0.377377 0.84

Ac(F153)XTH19-Ac(MD2)XTH19 0.007705 0.019414 0.396873 0.150722 1.59
Ac(F153)XTH7-Ac(MD2)XTH12 0.062047 0.071925 0.862666 0.630505 5.90
Ac(F153)XTH20-Ac(MD2)XTH24 0.001324 0.008482 0.15611 0.130065 0.70
Ac(F153)XTH16-Ac(MD2)XTH15 NA 0.005103 0 NA 0.41
Ac(F153)XTH18-Ac(MD2)XTH18 0.265729 4.64275 0.057235 1.19E−40 380.55
Ac(F153)XTH17-Ac(MD2)XTH18 NA NA NA NA NA
Ac(F153)XTH7-Ac(F153)XTH18 0.311919 4.15239 0.075118 1.28E−41 340.36
Ac(F153)XTH6-Ac(MD2)XTH18 NA NA NA NA NA
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Figure 3. The chromosome distribution and synteny analysis of XTHs in pineapple. (A) There were 24
Ac(F153)XTHs on each chromosome in ‘F153’. Each pillar represented a chromosome and the scale bar
was set in mega base (Mb). The gene names were shown on each chromosome with red; (B) Syntenic
relationships among ‘F153’ and ‘MD2’. The links represented different gene replications across cultivars
or chromosomes. ‘F153’ marked by the purple arcs and ‘MD2’ marked by the orange arcs.

3.7. Differential Expression Profiles of XTHs during Development

Fifteen XTH genes were simultaneously induced in the green leaf tip and white leaf base, which
were used to investigate diurnal expression patterns (Figure 4A). The majority of XTHs expressed
in the green leaf tip showed transcript levels lower than those detected in the white leaf base or no
transcripts were detected. Four genes (27%), comprising Ac(MD2)XTH6, 11, 15, and 20 exhibited
higher transcript levels. Interestingly, several XTHs may show a diurnal expression pattern owing to
the contrasting transcript levels detected during day and night in each tissues.



Genes 2019, 10, 537 9 of 15

Genes 2019, 10, x FOR PEER REVIEW 9 of 15 

 

3.6. Ka/Ks Analysis of XTH Genes  

To assess whether XTH genes had been subject to Darwinian selection, all paralogous XTH pairs 
were used to calculate Ka/Ks values (Table S3). Thirteen XTH paralogous with high similarity were 
detected with the Ka/Ks < 1, which suggested that XTHs had undergone strong purifying selection 
in ‘F153’ and ‘MD2’. Most paralogous showed a relatively recent duplication time with an average 
value of about 1.7 Mya, except that Ac(F153)XTH18-Ac(MD2)XTH18 and Ac(F153)XTH7-
Ac(F153)XTH18 diverged about 388 and 340 Mya, respectively (Table 2). 

Table 2. Ka/Ks analysis and estimated divergence time of XTHs. 

Collinear XTH Pairs Ka Ks Ka/Ks P-value (Fisher) Duplication Time 
(Mya) 

Ac(F153)XTH7-Ac(MD2)XTH6 0.003077 0.03004 0.102442 0.003098 2.46 
Ac(F153)XTH21-Ac(MD2)XTH22 0.003969 0.024998 0.158756 0.008438 2.05 
Ac(F153)XTH21-Ac(MD2)XTH21 0.006628 0.029215 0.226877 0.011896 2.39 
Ac(F153)XTH3-Ac(MD2)XTH2 0.00155 0.011451 0.135322 0.107858 0.94 
Ac(F153)XTH1-Ac(MD2)XTH1 0.008336 0.010261 0.812454 0.377377 0.84 

Ac(F153)XTH19-Ac(MD2)XTH19 0.007705 0.019414 0.396873 0.150722 1.59 
Ac(F153)XTH7-Ac(MD2)XTH12 0.062047 0.071925 0.862666 0.630505 5.90 
Ac(F153)XTH20-Ac(MD2)XTH24 0.001324 0.008482 0.15611 0.130065 0.70 
Ac(F153)XTH16-Ac(MD2)XTH15 NA 0.005103 0 NA 0.41 
Ac(F153)XTH18-Ac(MD2)XTH18 0.265729 4.64275 0.057235 1.19E−40 380.55 
Ac(F153)XTH17-Ac(MD2)XTH18 NA NA NA NA NA 
Ac(F153)XTH7-Ac(F153)XTH18 0.311919 4.15239 0.075118 1.28E−41 340.36 
Ac(F153)XTH6-Ac(MD2)XTH18 NA NA NA NA NA 

3.7. Differential Expression Profiles of XTHs during Development 

Fifteen XTH genes were simultaneously induced in the green leaf tip and white leaf base, which 
were used to investigate diurnal expression patterns (Figure 4A). The majority of XTHs expressed in 
the green leaf tip showed transcript levels lower than those detected in the white leaf base or no 
transcripts were detected. Four genes (27%), comprising Ac(MD2)XTH6, 11, 15, and 20 exhibited 
higher transcript levels. Interestingly, several XTHs may show a diurnal expression pattern owing to 
the contrasting transcript levels detected during day and night in each tissues.  

. 

Figure 4. The expression patterns during development in ‘MD2’. (A) The expression in the green leaf 
tip and white leaf base during thirteen time points over a 24-h period. GN was displayed green leaf 
tip during nighttime, GD was displayed green leaf tip during daytime, WN was displayed white leaf 
base during nighttime, WD was displayed white leaf base during daytime; (B) The expression levels 
during fruit development. Fruit1, Fruit 2 and Fruit 3 were indicated immature stages, Fruit 4 and 
Fruit5 displayed maturity stages. 

Fifteen Ac(MD2)XTHs genes, which were divided into three diverse categories, were detected 
during fruit ripening (Figure 4B). Five genes showed higher transcript levels at the Fruit1 and/or 

Figure 4. The expression patterns during development in ‘MD2’. (A) The expression in the green leaf
tip and white leaf base during thirteen time points over a 24-h period. GN was displayed green leaf
tip during nighttime, GD was displayed green leaf tip during daytime, WN was displayed white leaf
base during nighttime, WD was displayed white leaf base during daytime; (B) The expression levels
during fruit development. Fruit1, Fruit 2 and Fruit 3 were indicated immature stages, Fruit 4 and Fruit5
displayed maturity stages.

Fifteen Ac(MD2)XTHs genes, which were divided into three diverse categories, were detected
during fruit ripening (Figure 4B). Five genes showed higher transcript levels at the Fruit1 and/or
Fruit2 stages than that at advanced stages of ripening. Ac(MD2)XTH6, 15, 20, and 22 showed normal
transcript levels or no significant difference among immature stages, but showed a high transcript
level in Fruit3 and subsequently a low transcript level during fruit maturation stages. Six XTHs were
showed a low transcript levels at the onset of maturity and subsequently were highly expressed.
Notably Ac(MD2)XTH8 and Ac(MD2)XTH23, for which expression increased more than 6-fold and
11-fold, respectively, were indicated to have important roles in fruit ripening.

3.8. RT-qPCR Analysis of XTH Genes in Root and Leaf

Quantitative real-time PCR analysis was used to analyze the expression patterns of 11 selected
Ac(MD2)XTH genes in the root and leaf of ‘MD2’. Eight of the 11 Ac(MD2)XTH genes showed
differential expression patterns in different tissues, and expression of the remaining three Ac(MD2)XTH
genes was not detected (Figure 5, Figure S3). Ac(MD2)XTH15 and Ac(MD2)XTH18 were detected
simultaneously in three tissues. Ac(MD2)XTH15 showed the highest relative expression level in
the green leaf tip, sequentially in the root, and finally in the white leaf base. Ac(MD2)XTH18 was
significantly more highly expressed in the root compared with the other tissues (Figure 5A). Four genes
(Ac(MD2)XTH11, 15, 18, and 20) showed higher relative expression levels in the green leaf than those
in the white leaf base consistent with the corresponding transcriptome except for Ac(MD2)XTH18
(Figure 5B, Figure S3). Six genes were observed to show a low relative expression level in the white
leaf base, of which the highest was Ac(MD2)2XTH13 about 0.12 (Figure S3). The relative expression
level of four genes ranged from 0.13 to 49.5 in the green leaf tip. In the root, Ac(MD2)XTH18 showed
the highest relative expression level of about 532.5.
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Figure 5. The relative expression level in different tissues of ‘MD2’ by RT-qPCR. WB, GT, and R
represented white leaf base, the green leaf tip, and root, respectively. (A) The expression levels in the
green leaf tip, white leaf base, and (or) root; (B) Expression levels of several Ac(MD2)XTH genes in the
green leaf tip and root.

4. Discussion

As a vital cell-wall-modifying enzyme, XTH is implicated in the incorporation or hydrolysis
of XyG to regulate cell wall remodeling and degradation. In this study, 48 (24/24) non-redundant
XTHs were identified in pineapple ‘F153’ and ‘MD2’, respectively. The number of XTHs identified
is fewer than that in a previous study because of the redundancy of annotation [15]. The number
of XTHs detected in each cultivar is less than that reported in most vascular plant species except
Actinidia deliciosa (14 AdXTHs) and Malus sieversii (11 MsXTHs) [24]. The difference may be attributed
to fewer duplication events of pineapple compared with most other plant species. Gene duplication
provides a source for gene functional diversification and contributes to amplification of the number of
members of a gene family. For example, an ancient whole-genome duplication (WGD) with massive
gene duplication were occurred in O. sativa and the genome of A. thaliana primarily experienced at
least four large-scale duplication events [50,51]. Therefore, the limited number of XTHs in pineapple
might reflect that the genome diverged prior to the Poales-specific %WGD event [2].

The groups retrieved in the phylogenetic tree contained a similar number of XTH genes from
each cultivar, which indicated that XTH genes were relatively conserved before the differentiation of
cultivars in pineapple. Although differing considerably in MW, PI, and length, the XTHs contained
relatively conserved motifs and gene structure in each group, indicating that XTHs of the same group
may perform similar functions. In addition, unique traits of XTHs were confirmed in pineapple.
For instance, the catalytic sites, D(N)E(L/I/V)DF(Y)EFLG as motif B, were highly conserved in all
XTH proteins, especially three absolutely conserved catalytic residues (ExDxE) [12], suggesting that
the highly conserved motif could have a similar and conserved function in plant XTHs [13,52]. All
proteins were localized to the cell wall, and several proteins were also localized to the cytoplasm.
These results indicated that XTH proteins could easily access the substrate and promote catalytic
reactions. A signal peptide of about 20–25 nucleotides adjacent to the start codon was present in
the majority of XTHs, which suggested that this short sequence of hydrophobic amino acids may
be responsible for transmembrane transport of XTH proteins through interaction with subcellular
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organelle membranes [53]. Motif 9 distinguished Group IIIB from the other groups, and thus might play
an important role in the distinctive function of Group IIIB XTHs. Several Cys residues present in the
C-XET domain may contribute to the structural stabilization through disulfide bonds [12,54]. Therefore,
the conservation of features of the domains, motifs, and gene structure strongly supported the reliability
of phylogenetic classification and especially the close evolutionary relationship of two cultivars.

Group I/II was the biggest group of XTHs, whereas Group IIIA was the smallest group in each
cultivar, which was consistent with other species [10]. The XEH activity of Group IIIA evolved as
a-gain-of function in ancestral XET [6,10]. However, no XTH from ‘MD2’ was placed in Group IIIA.
Archetypal XTH from Tropaeolum majus, Vigna angularis, and A. thaliana in Group IIIA only showed
demonstrable XEH activity [14,55,56]. Hence, we speculated that Ac(F153)XTH24 in Group IIIA might
possess XEH activity.

Twenty-six of the 48 XTHs identified were involved in the segmental duplication events without
tandem duplication, which implied that segmental replication events played an important role in XTH
gene family expansion and greatly drove the evolution of XTHs in pineapple. Tandem duplication events
are undoubtedly crucial for genome expansion [57]. Each gene of the Ac(F153)XTH7-Ac(F153)XTH8 pair
was linked and connected with Ac(MD2)XTH18. This result indicated that the three XTHs were highly
conserved and experienced translocation or segmental replication in ‘F153’ first, and subsequently
evolved in parallel in the two cultivars [58]. The paralogous pairs Ac(F153)XTH7-Ac(F153)XTH18 and
Ac(F153)XTH18-Ac(MD2)XTH18, which were indicated to have diverged more than 300 Mya, arose
before divergence of the Poales [59–61]. All XTHs were indicated to have undergone strong purifying
selection suggesting that XTHs have evolved slowly between cultivars [62].

Expression of XTHs varies under exposure to stress and shows tissue, organ, and temporal
specificity [4,22,25]. The contrasting expression patterns in the green leaf tip and white leaf base was
suggestive of tissue specificity of XTHs in pineapple. Pineapple fixes carbon dioxide nocturnally
by activity of CAM-related enzymes and is stored rapidly as malic acid in the vacuole [2,63].
Ac(MD2)XTH15, Ac(MD2)XTH11, Ac(MD2)XTH6, and Ac(MD2)XTH20 showed higher expression
levels in photosynthetic tissues and may be putative CAM-related genes that enhance the efficiency of
water use by the CAM pathway. Several XTHs participated in fruit ripening, such as in apple and
kiwifruit [24]. Together with fruit ripening, continuously fluctuating expression patterns with gradual
decline or accumulated increment indicated that XTHs showed polygenic interaction and temporal
expression during fruit development stages. In addition, the RT-qPCR results were highly consistent
with the transcriptomic data. The results revealed that the expression pattern of Ac(MD2)XTH15
differed from that of Ac(MD2)XTH18 in three tissues consistent with placement of the two genes in
different phylogenetic groups. An extremely high expression level of Ac(MD2)XTH18 in the root at noon
suggested this gene may be involved in root growth during photosynthesis. These results indicated that
several XTHs are involved in photosynthesis with tissue specificity as putative CAM-related enzymes.
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are indicated in black line and letters. The arrow indicates the N-linked glycosylation site. Supplement File 2:
Figure S2: Gene structure of XTHs in ‘F153’ and ‘MD2’. Supplement File 3: Figure S3: The relative expression
level in the green leaf tip and white leaf base of ‘MD2’ by RT-qPCR. WB and GT represented white leaf base and
the green leaf tip. (A) The expression levels of Ac(MD2)XTH18 and Ac(MD2)XTH15 in two tissues; (B) Different
expression profiles of genes in the white leaf base. Supplement File 4: Figure S4: The position of Ac(MD2)XTHs
on scaffold. Supplement File 5: Table S1: Primer sequence used in RT-qPCR. Supplement File 6: Table S2. The
position information of XTHs in ‘F153’ and ‘MD2’ Supplement File 7: Table S3. The ratio of Ka/Ks in XTH gene
pairs based on p-value < 0.05. Supplement File 8: 48 protein sequences in ‘F153’ and ‘MD2’. Supplement File 9:
The FASTA format file of XTHs’ multiple sequence alignment. Supplement File 10: The FASTA format file of
EG16’s multiple sequence alignment. Supplement File 11: The result file of EG16’s domain analysis by CD-search.
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