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Abstract: COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical
sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic
and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the
metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-
19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic
analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity
as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes
increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed
dysregulation of energy production and amino acid metabolism. Globally, the variations found in the
serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced
by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.

Keywords: COVID-19; SARS-CoV-2; coronavirus; metabolomics; mass spectrometry; serum cy-
tokines; lactic acid

1. Introduction

At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has emerged in China as a highly pathogenetic and infectious virus, causing in a short
amount of time a worldwide global pandemic [1,2]. The so-called COVID-19 (COronaVIrus
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Disease 19) is commonly characterized by severe pneumonia and respiratory symptoms,
as well as multi-organ failure and death [3–5]. Due to the compelling necessity of pharma-
cological treatments and effective vaccines, drug repurposing represents one of the most
tested approaches [6–9]. The main cause of systemic inflammatory damage is ascribed
to the cytokine storm that is depicted by disproportionate release of proinflammatory
cytokines leading to lymphocyte exhaustion and a poor outcome [10–14].

Such immune dysregulation is more significant in severe COVID-19 patients [15].
Particularly significant is the relationship between the metabolic regulation and the im-
mune response [16]. The interplay between metabolism and immunity in the host can be
explicated by the role of succinic acid as innate immune signal, which can boost the release
of IL-1β during inflammation [17]. Furthermore, it was established as a leading function
for inflammatory cytokines in host metabolism reprogramming during infections, being
able to modulate glucose and lipid metabolism [18].

In the COVID-19 disease, owing to the failure of respiratory functions subsequent
to lung damage, the oxygen deprivation involves other tissues and organs such as brain,
kidney, and liver. In fact, severe COVID-19 patients may receive mechanical ventilation
to supply oxygen deprivation [19]. The modulation of oxygen levels in the organisms is
tightly regulated and, in particular, a lactate-induced signaling as response to hypoxia
was revealed [20–22]. Actually, extremely important is the role of metabolites in oxygen
homeostasis, and the association of lactic acid to a waste product of the glycolysis due to
the hypoxic environment is common. Despite such considerations, which have represented
an axiom for ages, the lactate paradigm has shifted. A lot of evidence suggests that lactate
accumulation as consequence of oxygen imbalance is more an exception rather than the
rule [20,23]. Nevertheless, it has been shown that lactate modulates the immune response
during sepsis [24]. The activated immune cells draw on glycolytic metabolism and the
lactate converted during the glycolysis may play an important immunosuppressive role in
sepsis [24].

Despite a one-year experience of the pandemic and the advances in understanding the
biology of SARS-CoV-2, the mechanisms related to virus infection and disease progression
are not exhaustively clear, thus, results are imperative to better investigate the molecular
pathways involved in the pathophysiology of COVID-19 [25,26].

In the present study, the serum obtained from a cohort of COVID-19 patients classified
according to a different grade of severity as mild, moderate, and severe was used to perform
targeted metabolomics analysis in order to detect possible metabolic alterations [27–29].
Our analysis defined a clear signature of COVID-19 that includes increased levels of lactic
acid in all the forms of the disease. The dysregulation of pathways linked to energy
production and amino acid metabolism was disclosed by bioinformatics analysis. Globally,
the variations found in the serum metabolome may reflect a more complex systemic
perturbation induced by SARS-CoV-2, which might affect carbon and nitrogen metabolism
in liver. These lines of evidence speculate on a plausible metabolic reprogramming of the
urea cycle and/or Krebs cycle that may control the metabolic responses of the organism to
the infection of SARS-CoV-2.

2. Results
2.1. Serum Metabolomic Alterations in COVID-19 Patients

A targeted metabolomic analysis was performed on serum samples obtained from
a cohort of 52 hospitalized COVID-19 patients, classified according to a different grade
of severity as mild (n = 20), moderate (n = 16), and severe (n = 16). In addition, 9 control
(CTRL) subjects with a negative PCR test for SARS-CoV-2 infection were included in the
analysis, with a total of 61 samples analyzed. Globally, 143 metabolites were correctly
quantified. A comprehensive list of the measured metabolites, including metabolite names,
abbreviations, and group classification, and their raw concentrations in each patient, is
shown in Supplementary Table S1.
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To categorize the patients according to the severity of the disease and the metabolic
profile, a supervised multivariate analysis was performed. In particular, partial least
squares-discriminant analysis (PLS-DA) was carried out to assess the variance between
the four analyzed conditions. PLS-DA clustered the metabolome datasets into four well-
separated groups, distributing COVID-19 patients according to the disease severity (vari-
ance of the principal components (PC): PC1 = 6.6%, PC2 = 3.6%) (Figure 1A). The Variable
Importance in Projection (VIP) measure was used to identify the most discriminant metabo-
lites characterizing the four groups, and 36 molecules were highlighted with values of
VIP scores >1.0 (Figure 1B). The metabolites with the highest VIP scores were lactic acid
and glutamate, both showing an increasing trend in their concentrations from the control
and mild groups till the severe condition. Then, the heatmaps of the serum metabolome
dataset provided a visualization of the lower and the higher abundant metabolites in each
analyzed groups (control, mild, moderate, and severe patients) showing the individual
concentrations for each patient and average values (Figure 1C,D).

Moreover, a correlation analysis of metabolites’ concentrations was performed against
a pattern of disease severity, whereas the chosen pattern was used to search for features
that increased linearly with the progression of the disease in a time-series data with
four severity groups (Figure 2A). According to the VIP analysis, the pattern analysis
confirmed a positive correlation (correlation coefficient ?0.5) of lactic acid and glutamate
as the most discriminant metabolites with a crescent pattern from the control/mild to the
severe condition, but also of glycine and aspartate; it also revealed a negative correlation
(correlation coefficient >−0.5) of trigonelline. Metabolites with low correlation values
and with high standard deviations were not considered. Graphical plots reporting the
normalized distributions of the above-mentioned pattern-correlating metabolites, which
all showed in the previous VIP analysis scores >2.0, are displayed in Figure 2B.

Then, to focus on the independent changes in metabolite levels, univariate statistical
analysis was employed to detect more strictly the significant differences in the metabolome
profiles, respectively comparing mild, moderate, and severe patients to the control group.
Volcano plots for the binary comparisons are reported in Figure 3A–C and a list comprising
all the differential metabolites in the three comparisons is shown in Table 1.

Figure 1. Cont.
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Figure 1. Descriptive changes in the serum metabolome of COVID-19 patients at different degree of severity. (A) The
supervised partial least squares-discriminant analysis (PLS-DA) plot shows the segregation of the four-condition analyzed
metabolomes. (B) Discriminant metabolomic features identified according to the Variable Importance in Projection (VIP)
score. The 36 most important molecules with values of VIP scores >1.0 are reported. The intensity of the colored boxes
denotes the relative metabolite abundance in each group of patients. Heatmaps of the individual (C) and average (D) serum
metabolites concentrations (µM) in each patients group (0 = controls, 1 = mild, 2 = moderate, 3 = severe). The top 60 features
ranked by t-tests were selected to retain the most contrasting patterns.

Figure 2. Pattern correlation analysis. (A) The analysis was performed correlating the metabolome features with a pattern
of concentration increasing toward the degree of COVID-19 severity, in the order from control, to mild, to moderate, to
severe patients. The graph reports the significant features detected ordered according to their correlation coefficient. Pink
and light blue bars refer to positively and negatively correlated metabolites, respectively. (B) The box and whisker plots
summarize the normalized values of five selected metabolites, with a correlation coefficient ?0.5 or >−0.5 and lower
standard deviations.
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Figure 3. Volcano plot analysis of the differentially abundant serum metabolites in COVID-19 patients. The graphs plot the
relative abundance of each metabolite against its statistical significance, respectively reported as difference and −log10
(q-value), in (A) MILD vs. CTRL, (B) MODERATE vs. CTRL, and (C) SEVERE vs. CTRL comparisons. Blue and pink dots
refer to increased and decreased metabolites, respectively. Green dots refer to statistically significant metabolites with a
relative abundance below the difference threshold. Gray dots refer to all the other metabolites identified in the dataset
whose relative concentrations are not significantly changed between COVID-19 patients and the CTRL group.

The comparison MILD vs. CTRL revealed only lactic acid as a differentially abundant
(up-regulated) metabolite, and this difference is maintained in COVID-19 patients also in
all the other comparisons, thus suggesting lactic acid dysregulation as the major signature
of the serum metabolome of COVID-19 patients. Volcano plot analyses highlighted 16 dif-
ferential metabolites (4 down and 12 up) in the MODERATE vs. CTRL, and 12 differential
metabolites (3 down and 9 up) in the SEVERE vs. CTRL comparison. Spermidine (for
both disease groups) and spermine (only for the severe group) were both statistically
significant and slightly increased in COVID-19 patients, but those remaining below the
considered abundance threshold were not included in Table 1. Revealing a metabolomic
signature that brings together moderate and severe COVID-19 patients, we found that the
following metabolites commonly increased: lactic acid, glutamate, aspartate (confirming
the results obtained from multivariate analysis, Figures 1 and 2), phenylalanine, β-alanine,
ornithine, arachidonic acid, choline, and xanthine. On the other hand, C5:1 (tiglylcarni-
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tine) was commonly found decreased. Specific features of the moderate condition are
the increase of succinic acid, serine, and C18:1 (octadecenoylcarnitine), and the decrease
of trigonelline (confirming multivariate analysis, Figures 1 and 2), hippuric acid, and
deoxycholic acid. Specific features of the severe condition are the decrease of serotonin and
DHEAS (dehydroepiandrosterone sulfate).

Table 1. List of the differentially abundant metabolites and the respective log2 difference values in
the MILD vs. CTRL, MODERATE vs. CTRL, and SEVERE vs. CTRL comparisons.

Metabolite
Difference

MILD MODERATE SEVERE

β-Alanine - 0.9 0.9
Arachidonic acid - 1.5 1.0

Aspartate - 2.1 1.6
C18:1 - 0.7 -
C5:1 - −2.5 −1.6

Choline - 1.6 1.4
Deoxycholic acid - −2.9 -

DHEAS - - −2.5
Glutamate - 3.3 2.9

Hippuric acid - −2.5 -
Lactic acid 1.5 2.0 2.2
Ornithine - 1.0 1.0

Phenylalanine - 1.4 1.1
Serine - 0.7 -

Serotonin - - −0.6
Succinic acid - 0.5 -
Trigonelline - −1.8 -

Xanthine - 2.1 1.4
Metabolites were ordered alphabetically.

2.2. Bioinformatics Enrichment of Dysregulated Pathways

To investigate the potential metabolic alterations in COVID-19 patients, combined
metabolite set enrichment analysis (MSEA) and pathway analysis was performed in all
the three disease comparisons (Figure 4 and Table 2). Reflecting the same level of dysreg-
ulation found by volcano plot analysis, bioinformatic analysis revealed more pathways
enriched (FDR < 0.01) in the moderate and severe patients rather than mild ones, thus
suggesting a lower perturbation of the serum metabolome and related metabolic path-
ways in patients with fewer symptoms. As is a common signature of the consequence of
SARS-CoV-2 infection, the three populations of COVID-19 patients all showed alteration of
Glycolysis/Gluconeogenesis (identified also as pyruvate metabolism), D-Glutamine and
D-Glutamate metabolism, Nitrogen metabolism, and purine and pyrimidine metabolism.
Instead, more metabolic pathways were affected only in the moderate and severe condi-
tions, commonly impacting amino acid metabolism (Phenylalanine, tyrosine and trypto-
phan biosynthesis, Arginine biosynthesis, Alanine, aspartate and glutamate metabolism,
and beta-Alanine metabolism), Glutathione metabolism, Glyoxylate and dicarboxylate
metabolism, Nicotinate and nicotinamide metabolism, Pantothenate and CoA biosynthesis,
and Aminoacyl-tRNA biosynthesis. The four exclusive pathways enriched in the mod-
erate patients, namely Arachidonic acid metabolism, Arginine and proline metabolism,
Propanoate metabolism, Selenocompound metabolism, were also found in the severe
condition but were not included because their enrichment was above the FDR threshold.
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Figure 4. MSEA and pathway analysis in COVID-19 patients. A summary plot for Quantitative Enrichment Analysis (QEA)
is reported at the top of the figure showing the top 25 enriched terms for each disease condition: (a) mild, (b) moderate, and
(c) severe. At the bottom, the pathway view shows for each condition all the matched pathways according to the p-values
and the pathway impact values; the size of each pathway is a measure of the number of hits detected within that pathway.
For both plots, p-values range from yellow (less significant) to red (more significant). (d) The Venn diagram shows the
relationship between all the pathways identified in mild, moderate, and severe COVID-19 patients highlighting six terms
common to all, and 11 terms common to moderate and severe.
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Table 2. MSEA and pathway analysis in COVID-19 patients. Results of the significant (FDR < 0.01) enriched pathways
according to KEGG database.

Enriched Metabolic Pathway
FDR (<0.01); Impact Score

MILD MODERATE SEVERE

Glycolysis/Gluconeogenesis 1.7 × 10−5; 0.0 5.9 × 10−8; 0.0 1.5 × 10−7; 0.0
Pyruvate metabolism 1.7 × 10−5; 0.0 5.9 × 10−8; 0.0 1.5 × 10−7; 0.0

D-Glutamine and D-Glutamate metabolism 6.0 × 10−4; 0.5 2.0 × 10−5; 0.5 9.3 × 10−6; 0.5
Nitrogen metabolism 6.0 × 10−4; 0.0 2.0 × 10−5; 0.0 9.3 × 10−6; 0.0

Pyrimidine metabolism 6.8 × 10−4; 0.0 5.9 × 10−6; 0.0 3.5 × 10−5; 0.0
Purine metabolism 0.00102; 0.03 3.4 × 10−4; 0.03 9.8 × 10−5; 0.03

Phenylalanine, tyrosine and tryptophan biosynthesis - 1.5 × 10−7; 1.0 0.00135; 1.0
Phenylalanine metabolism - 2.2 × 10−6; 0.4 0.00528; 0.4

Arginine biosynthesis - 2.2 × 10−6; 0.5 1.8 × 10−5; 0.5
Aminoacyl-tRNA biosynthesis - 5.9 × 10−6; 0.2 1.1 × 10−5; 0.2

Alanine, aspartate and glutamate metabolism - 5.9 × 10−6; 0.6 5.9 × 10−6; 0.6
Glyoxylate and dicarboxylate metabolism - 1.9 × 10−5; 0.2 5.9 × 10−6; 0.2

beta-Alanine metabolism - 2.2 × 10−5; 0.45 0.00135; 0.45
Glutathione metabolism - 6.4 × 10−5; 0.1 0.00329; 0.1

Pantothenate and CoA biosynthesis - 2.7 × 10−4; 0.02 0.00528; 0.02
Nicotinate and nicotinamide metabolism - 0.00498; 0.0 0.00504; 0.0
Porphyrin and chlorophyll metabolism - 0.00570; 0.0 0.00474; 0.0

Arachidonic acid metabolism - 0.00191; 0.3 -
Arginine and proline metabolism - 0.00221; 0.5 -

Propanoate metabolism - 0.00529; 0.0 -
Selenocompound metabolism - 0.00753; 0.0 -

Enriched metabolic pathways were ordered according to decrescent FDR in MILD patients. The pathway impact score was shown for each
enriched metabolic pathway.

Above all, the molecular pathways related to the amino acid metabolism, includ-
ing Phenylalanine, tyrosine and tryptophan biosynthesis, Alanine, aspartate and gluta-
mate metabolism, D-Glutamine and D-Glutamate metabolism, and Arginine and proline
metabolism results, were characterized by the most significant pathway impact (Impact
score ≥0.5).

2.3. Correlation Analyses of Metabolites with Proinflammatory Cytokines in COVID-19 Patients

Correlation analyses were performed to possibly find association between metabolites
levels with proinflammatory cytokines, recently described for lung damage and immune
response in SARS-CoV-2 infection by leading to local and systemic inflammation [30].
Figure 5A shows the significant correlations obtained by Spearman’s correlation analysis
between metabolites and at least one cytokine factor. We found the highest number of
associations with the levels of TNF-α, IL-17 A, and IL-26, mostly including amino acids
and amino acid-related metabolites. Then, considering lactic acid change as the main
signature of the serum metabolome of COVID-19 patients at all the degrees of severity,
we found a positive correlation between lactic acid and four molecules, namely succinic
acid, xanthine, ornithine, and glutamate, which were found all up-regulated in moderate
and severe patients (except for succinic acid that was up-regulated only in the moderate
condition). Coherently, these associations were not found significant with the lactic acid
levels of the CTRL group (Figure 5B). Furthermore, xanthine was found to positively
correlate with IL-17 A.
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Figure 5. Correlation analysis of the metabolites with inflammatory cytokines and between the metabolites. (A) The analysis
was performed correlating the concentrations of the metabolites with cytokine parameters in COVID-19 patients. Only
metabolites with at least one significant association with cytokines were reported. Dark blue cells denote positive association,
while light blue cells denote negative association. Squared numbers refer to significant positive or negative association,
with red and green squares indicating p < 0.05 and p < 0.01, respectively. (B) Significant metabolites positively correlating
with lactic acid levels in mild, moderate, and severe patients. For each metabolite found statistically significant, a numbered
dot corresponding to a given disease group is aligned with the r value of correlation with lactic acid on the x-axis.
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3. Discussion

Our metabolomics study revealed common metabolic signatures affecting all COVID-
19 patients and emphasized the major changes to affect the moderate and severe conditions.
In particular, our data did not reveal huge alterations in mild patients compared to healthy
individuals, suggesting that SARS-CoV-2 infection that induces mild symptoms does
not substantially affect the serum metabolome and related metabolic pathways in these
patients. Instead, the prevalent differences appear evident in the moderate condition,
and are maintained in the severe one. In accordance with the trend of these findings, in
a multi-omics study, a high similarity between moderate and severe COVID-19 and a
major sharp shift between mild and moderate disease [31] was identified, which would be
responsible for the key differences found in the serum metabolome of our patients’ cohort.

Starting from the analysis of the common features, we identified increased levels of
lactic acid in all the forms of the pathology, and a crescent quantitative pattern from mild
to severe, suggesting this as the major signature of the serum metabolome of COVID-19
patients. Our analysis also revealed the most significantly enriched metabolic pathways
in the three populations as Glycolysis/Gluconeogenesis and Pyruvate metabolism, two
overlapping terms showing the same enrichment ratio and p-value (in each disease sub-
group) and both including lactic acid. Even though its quantitative dysregulation did not
represent the biggest variation found in comparison with control individuals, this was the
only metabolite changing in all the disease forms. Accordingly, lactic acid is one of the
factors regularly assured as a serum inflammatory marker, and high levels of lactic acid
and lactate dehydrogenase have been identified as strong predictors of COVID-19 disease
severity [32–35].

Lactic acid is a classic marker of mitochondrial metabolic dysfunction together with
acylcarnitines [36]. In COVID-19 patients, the mitochondrial energetic mechanisms of
ATP production seem to be partially suppressed, suggesting that SARS-CoV-2 infection
induces a metabolic shift from aerobic respiration to lactic fermentation (Warburg-like
effect) [37]. In addition, increased levels of lactic acid were found in condition of sepsis and
circulatory shock. Severe sepsis and such severe inflammatory states are associated with
tissue hypoxia, producing high lactate levels that are released from muscular tissues [32,38].
Despite the findings from our analyses, no significant correlation between lactic acid
and proinflammatory cytokines levels was identified, but some evidence suggests that
there is a pathogenic connection between lactic acid and the immune response, with high
lactate levels being strongly associated with a poor outcome and severe adverse effects of
COVID-19 [39]. In fact, the novel lactate blockers approach is hypothesized to be potentially
beneficial for COVID-19 complications [39,40].

Consistent with our study, also other metabolomics investigations found modification
of aspartate, glutamate, alanine, phenylalanine, and arginine amino acid metabolism,
revealing increased levels of aspartate, glutamate, phenylalanine, and a decline of serotonin
along COVID-19 disease severity, as well as accumulation of succinic acid [18,41,42]. In
the mitochondrion, succinic acid can be produced in the metabolic pathway of propionate
through the breakdown of branched-chain amino acids, or the β-oxidation of odd-chain
fatty acids and cholesterol degradation [43,44]. The increase of such amino acids and
succinic acid might be related to a dysregulation of the liver central carbon metabolism in
COVID-19 patients and to general metabolic and oxidative stress [41]. For example, the
inflammation induced by severe sepsis and the increase of ROS (reactive oxygen species)
levels deplete a significant amount of tetrahydrobiopterin, which is the cofactor of the
phenylalanine hydroxylase for the conversion of phenylalanine to tyrosine in hepatocytes,
limiting phenylalanine metabolization. Thus, serum levels of phenylalanine showed
augmentation in such patients as a result of the activation of the immune response, also
magnifying inflammation processes [45–47]. The activation of the immune response and
inflammation is observed also in other diseases or models of metabolic disorders showing
impairment of amino acid metabolism, in which cytokines’ release is strictly regulated by
the inflammasome [48–50]. In addition, being succinic acid, an innate immune signaling
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molecule during inflammation in macrophages, its increase may enhance the cytokine
production during the cytokine storm syndrome that affects COVID-19 patients [18].

We found that the increase of serum lactic acid strongly correlates in a positive trend
with the significant increase of succinic acid, but also xanthine, ornithine, and glutamate
in all mild, moderate, and severe COVID-19 patients. This suggests a strong connection
between the hypoxemia state and the subsequent oxidative stress and the dyslipidemia
of COVID-19 patients, which may have a paramount effect on the mitochondrial energy
metabolism and detoxification processes in the liver [30,41]. Our metabolomics data
sharply suggest impairment of the metabolic hub that connects the urea cycle and the
Krebs (Tricarboxylic acids, TCA) cycle (Figure 6).

Figure 6. Proposed model for a plausible liver metabolic perturbation upon SARS-CoV-2 infection that involves energy
pathways and nitrogen metabolism. The metabolites reported in the figure are interconnected within the mitochondrial
Krebs and urea cycles. Metabolite violin plots were reported only for significantly changed metabolites between CTRL
and the diverse forms of pathology as resulted from volcano plot analysis. The violin plots show log2-transformed
and normalized concentration values analyzed by one-way ANOVA with Dunnett’s multiple comparison test correction.
Significant * are all below 95% confidence (** p < 0.01, **** p < 0.001). NS = not significant. This figure was drawn adapting
the vector image form the Servier Medical Art bank (http://smart.servier.com/; last accessed 24 June 2021).

Despite many reports highlighting liver injury as associated with coronaviruses in-
fection, possibly resulting from a direct insult or as part of the systemic inflammatory
reaction, the precise mechanisms are not defined yet [51]. In fact, the liver represents an
immunoregulatory hub between the pathogens delivered in the blood and the immune
system. The hepatic urea cycle is the main metabolic pathway involved in the detoxification
processes, metabolizing ammonia to urea, with a fumarate shunt that connects the urea
cycle and the TCA cycle [52]. Consequently, fumarate can be converted to aspartic acid
and α-ketoglutaric acid. Also, our hypothesis relies on the fact that the urea cycle is strictly
connected with pathways related to amino acids and polyamines metabolism, representing
the central core of global nitrogen metabolism. Nitrogen metabolism was found from our
data being present between the top-enriched pathways in all mild, moderate, and severe
conditions. In addition, we found in moderate and severe COVID-19 patients increased
levels of ornithine as the main metabolite of the urea cycle, and also increased levels of as-

http://smart.servier.com/
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partate and glutamate, which are linked to the cycle. What is more, ornithine and glutamate
showed positive correlation with lactic acid, suggesting that these disturbances may be
strictly interconnected with the overall damage induced by SARS-CoV-2 infection, in part
including oxygen imbalance and tissue injury. Accordingly, increased levels of glutamic
acid were found to positively correlate with anion gap values in severe COVID-19 [42].
Beside its role in the neurotransmission, an important immunomodulator function has
been addressed to the glutamate, finding several glutamate receptors on the surface of
T-cells and glutamate transporters in antigen presenting cells such as dendritic cells and
macrophages [42,53].

Remarkably, it has been recently proven that virus infection is able to disturb the
hepatic urea cycle and alter the systemic metabolism through the activation of the interferon
type I signaling to suppress virus-specific CD8+ T-cell responses. This led to down-
regulation of the enzymes of urea cycle, including ornithine transcarbamylase that converts
ornithine to citrulline, suggesting that the hepatocytes are reprogrammed during the
infection, showing increased degradation of arginine and accumulation of ornithine, finally
limiting aspartate consumption by the urea cycle [54]. In the context of coronaviruses
infection, the modulation of the liver metabolism and the urea cycle may act as endogenous
immunoregulative mechanisms during SARS-CoV-2 infection and pathology.

Finally, in addition to these regulatory mechanisms, the dysregulation of ornithine
metabolism may increase the synthesis of polyamines. In particular, the enzyme ornithine
decarboxylase converts ornithine into putrescine, which is in turn converted into spermi-
dine, and then into spermine by the enzymes spermidine synthase and spermine synthase,
respectively. Our metabolomics analysis identified spermidine and spermine as slightly
increased in the serum of COVID-19 patients. Since the key role of polyamines has been
established for several viral processes, such as infection, structural assembling, and genome
replication, targeted approaches to block polyamine synthesis have been investigated as
potential broad-spectrum antiviral strategies [55]. Such approaches may be taken into
account also in the view of combatting SARS-CoV-2 infections.

Globally, our correlation analyses revealed that the highest number of associations
with the levels of proinflammatory cytokines mostly involved amino acids and amino acid-
related metabolites, but also bile acids, carboxylic acids, and acylcarnitines. In particular,
we found a positive correlation between asparagine, isoleucine, leucine, and valine with
TNF-α, proline with IL-17 A and IL-17 RA, threonine with IL-26, and a negative correlation
of tryptophan with IL-26. Recently, it was found that circulating proinflammatory cytokines
levels strongly correlated with amino acids involved in arginine metabolism, tryptophan
metabolism, as well as nucleic acid metabolism [18]. Intriguingly, we found a correlation
of IL-17 A with xanthine, a purine base that was up-regulated in moderate and severe
patients. Xanthine derivative compounds such as caffeine, theophylline, and theobromine
have been employed in the treatment of respiratory diseases, cardiovascular diseases,
and cancer [56–58]. Particularly, caffeine is known to improve the pulmonary functions
used as treatment of the apnea of prematurity in preterm infants [59]. The xanthine-
derived drug pentoxifylline has shown to have an immunomodulatory role by inducing
the downregulation of TNF-α and other inflammatory cytokines in pulmonary diseases and
chronic heart failure. Moreover, the effect of pentoxifylline has been demonstrated to treat
fibrotic lesions by immunomodulation and reduction of inflammation processes [60]. Since
upregulated xanthine (and eventually xanthine-derived compounds) is strongly associated
with increased lactic acid levels correlating with the hypoxic state induced by SARS-CoV-2
infection, pentoxifylline and xanthine-derived metabolites may be employed in view of
adjuvant treatments of COVID-19 to handle respiratory symptoms, taking advantage from
their immunomodulatory and anti-inflammatory properties [61].
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4. Materials and Methods
4.1. Patients

A cohort of 52 COVID-19 patients confirmed by a positive RT-PCR test for SARS-
CoV-2 on a nasopharyngeal swab, and 9 control donors with a negative RT-PCR test for
SARS-CoV-2 were recruited at one of the following hospitals of Campania region (Italy):
Department of Clinical Medicine and Surgery–Section of Infectious Diseases, University
Hospital Federico II, Naples; Department of Infectious Disease and Infectious Urgencies–
Division of Respiratory Infectious Disease, Cotugno Hospital, AORN dei Colli, Naples,
Pathophysiology and respiratory rehabilitation-1 utsir COVID. The 52 COVID-19 patients
had a median age of 58 years and were distributed as 36/52 males (70%) and 16/52 females
(30%). The distribution of the control group was 40% males and 60% females, with a median
age of 46 years. The classification of the COVID-19 cohort was performed on the basis of a
seven-point ordinal scale, as explained elsewhere [30]. Then, such patients were assembled
in three major groups according to their clinical features, and categorized as mild (n = 20),
moderate (n = 16), and severe (n = 16). Serum samples were gathered at hospital admission
and stored at −80 ◦C until metabolomics analysis was performed. All the methods and
the experimental procedures were accomplished according to the relevant guidelines and
regulations included in the n◦191/20 protocol approved by the Ethics Committee at the
University of Naples Federico II. The current study was carried out in accordance with
the Declaration of Helsinki, and did not include human subjects under the age of 18 years.
Each patient (and/or legal guardian) gave fully informed consent for the participation to
the research and the use of their biological samples for research purposes.

4.2. Sample Preparation and Metabolomics Analysis

The analysis of the serum of COVID-19 patients was performed by targeted metabolomics
using tandem mass spectrometry (MS/MS) [27,29,62]. Globally, the analysis performed
allowed the quantification of 630 metabolites. Of these, 483 lipids have been analyzed
independently and the results obtained on the serum lipidome of COVID-19 patients
published previously [30]. In the current work, we have analyzed 146 metabolites (Sup-
plementary Table S1), partitioned as the following: 106 small molecules, including amino
acids (AA) (20 molecules), AA related (30 molecules), bile acids (14 molecules), fatty acids
(12 molecules), biogenic amines (9 molecules), carboxylic acids (7 molecules), hormones
(4 molecules), indoles derivatives (4 molecules), and alkaloids, amine oxides, cresols, vita-
mins and cofactors (6 molecules), and 40 lipids, including acylcarnitines (40 molecules).
The remaining class of carbohydrates that includes the sum of hexoses (1 molecule) was
discarded from both the analyses. Metabolome analysis was carried out, following the pro-
tocols of MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria), on a Triple
Quad™ 5500 + System–QTRAP® Ready (AB Sciex, Framingham, MA, USA) coupled to a
1260 Infinity II HPLC (Agilent, Santa Clara, CA, USA) for the liquid chromatography (LC).
In detail, 10 µL of patient serum were pipetted onto a 96-well extraction plate containing the
positions for blanks, PBS, calibrants, and quality controls (QC), and dried under nitrogen
stream. Then, each sample was incubated for 1 h with 50 µL of 5% phenyl isothiocyanate
(PITC) solution to derivatize amino acids and biogenic amines and dried again. Metabolites
were extracted with 300 µL of 5 mM ammonium acetate in methanol in the shaker (30 min,
450 rpm) and eluted in a new 96-well plate by centrifugation. For LC analysis, 150 µL of
each extract were diluted with an equal volume of HPLC-grade water, while 10 µL of each
extract were diluted for flow injection analysis (FIA) with 490 µL of FIA solvent (provided
by Biocrates). After dilution, LC-MS/MS and FIA-MS/MS measurements were carried
out to target and quantify by multiple reaction monitoring (MRM) small molecules and
lipids, respectively. Data were generated using the Analyst software v.1.7.1 (AB Sciex,
Framingham, MA, USA) and further processed for calculating metabolites concentrations
using the MetIDQ™ Oxygen software (Biocrates Life Sciences AG, Innsbruck, Austria).
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4.3. Metabolomics Features Selection and Statistical Analyses

The concentrations of 146 serum metabolites were calculated, and three of them
were excluded for carrying invalid values, for a total of 143 quantified metabolites. The
metabolomic dataset was analyzed by multivariate statistical analysis using MetaboAn-
alyst 5.0 software [63–65]. The concentration values of the molecules identified in the
metabolome of COVID-19 patients and controls sera were imputed to remove missing
values, log2-transformed and auto scaled. The normalized dataset was used to perform
PLS-DA (Partial Least Squares-Discriminant Analysis), VIP (Variable Importance in Projec-
tion), and pattern correlation analyses. The heatmaps were produced using non-normalized
individual and average concentrations values in all the groups of patients. In addition, uni-
variate statistical analysis was performed using GraphPad Prism 9.0 (San Diego, CA, USA).
In particular, volcano plot analysis was employed to compare each COVID-19 metabolomic
dataset at different degree of severity with the control (CTRL) group. After log2 transfor-
mation of metabolomic concentrations, unpaired t-test with Welch correction was applied.
The False Discovery Rate (FDR) approach was selected for the statistical significance of the
difference (FDR = 1%), applying the two-stage step-up method of Benjamini, Krieger, and
Yekutieli. For each comparison, the relative abundance was calculated as the difference
of the log2-transformed means of COVID-19 metabolites and CTRL ones. Differentially
abundant metabolites were selected using the following criteria: (i) difference values larger
than ± 0.5 and (ii) FDR < 0.01, reported as −log10(q-value) > 2.

To measure the strength of association between the 143 quantified metabolites and the
levels of the cytokines TNF-α, IL-6, IL-10, IL-17 A, IL-17 RA, and IL-26 in COVID-19 pa-
tients, the Spearman correlation was performed computing the r value for the metabolites
against each cytokine dataset. A confidence interval at 95% was chosen for the statistical
significance. The metabolites passing the D’Agostino & Pearson normality and/or log-
normality tests were correlated with lactic acid levels applying the Pearson correlation.
To detect significant associations within each disease group independently, a confidence
interval at 95% was chosen for the statistical significance. Then, the correlating metabolites
found significant in all the three disease groups, but which did not show significant cor-
relation also in the control group, were selected and graphed. Correlation analyses were
performed using GraphPad Prism 9.0 software.

4.4. Metabolic Pathway Analysis

Metabolite set enrichment analysis (MSEA) and pathway analysis were combined to
detected significant disturbed metabolic pathways in mild, moderate, and severe patients
compared to the control group using MetaboAnalyst 5.0 software. MSEA was performed
using the quantitative enrichment analysis (QEA) tool that used the normalized quantitative
metabolomics dataset to generate a list of biologically meaningful terms. Then, MSEA
analysis was integrated with pathway analysis, which combined the p-values obtained from
the QEA and the pathway impact values from the pathway topology analysis, selecting the
KEGG as pathway library. The software and the KEGG database were not able to match the
corresponding names for many acylcarnitines, which were automatically excluded from
the analysis. Only significant enriched pathways with FDR < 0.01 were presented. Finally,
Euler–Venn analysis was performed using InteractiVenn software to show the relationship
between all the significant pathways identified in mild, moderate, and severe COVID-19
patients [66,67].

5. Conclusions

Mass spectrometry-based targeted metabolomics analysis performed on the serum
of COVID-19 patients allowed us to define a clear signature of the effects of SARS-CoV-
2 infection that includes augmented levels of lactic acid in all the disease groups. In
particular, moderate and severe patients showed the major dysregulations in metabolite
levels, with only little differences between these two groups. Energy production and
amino acid metabolism pathways resulted largely dysregulated, suggesting that COVID-19
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has a strong impact on the metabolism. Our metabolomics data may provide reasonable
indication of liver metabolism injury, suggesting a plausible alteration of carbon and
nitrogen metabolism in affected patients.
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