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The analysis of amino acids network is very important to studying the various physicochemical properties of amino acids. In this
paper we consider the amino acid network based on mutation of the codons. To analyze the relative importance of the amino
acids we have discussed different measures of centrality. The measure of centrality is a powerful tool of graph theory for ranking
the vertices and analysis of biological network. We have also investigated the correlation coefficients between various measures
of centrality. Also we have discussed clustering coefficient as well as average clustering coefficient of the network. Finally we have
discussed the degree of distribution as well as skewness.

1. Introduction

Amino acids are the building blocks of proteins. Each protein
is formed by a linear chain of amino acids. There are 20
different amino acids being found till now that occur in
proteins. Each amino acid is a triplet code of four possible
bases. A sequence of three bases forms a unit called codon. A
codon specifies one amino acid.The genetic code is a series of
codons that specify which amino acids are required to make
up specific protein. As there are four bases, (Adenine (A),
Cytosine (C), Guanine (G), or Thymine (T/U)) this gives us
64 codons. Out of these 64, the three triplets UAA, UAG,
and UGA are known as stop codons or nonsense codons and
their role is to stop the biosynthesis. The codon AUG codes
for the initiation of the translation process and is therefore
also known as start codon. Also a codon can be changed
in several ways; such change is known as mutation. There
are various types of mutation like substitution, insertion,
deletion, frameshift, and so forth. In this paper we have
considered one-point mutation of all possible bases. To
discuss relative importance or significance of amino acids
we have investigated four centrality measures in the amino
acid network. The compatibility relation of the graph is
defined based on the mutation of the codon. For example the
amino acid M (Methionine) is connected with K (Lysine),
T (Threonine), R (Argnine), I (Isoluecine), V (Valine), L
(Leucine), because all possible mutations of the base of

the codon AUG (M) represent amino acids K, T, R, I, V
and L. Different researchers have made many contributions
in this field. Kundu [1] discussed that hydrophobic and
hydrophilic network satisfy “small-world property” within
protein. Also he has discussed that hydrophobic network
has large average degrees of nodes than the hydrophilic
network. In 2007 Aftabuddin and Kundu [2] discussed three
types of networks within protein and give some idea about
all three types of networks. Jiao et al. [3] discussed the
weighted amino acid network based on the contact energy.
They have shown that weighted amino acid network satiety
is “small-world” property. Fell and Wagner [4] examined
whether metabolites with highest degree may belong to
the oldest part of the metabolism. Wuchty and Stadler [5]
discussed various centrality measures in biological network.
They concluded that the degree of vertex centrality alone is
not sufficient to distinguish lethal protein from viable ones.
Newman [6] discussed correlation of degree of centrality
and betweenness centrality. Also Schreiber and Koschutzki
[7] compared centralities for biological networks, namely,
PPI network and transcriptional network. As a result of
their study, it was observed that in the analysis of biological
networks various centrality measures should be considered.

This paper is organized as follows. In Section 2 we
define some preliminary concepts of the graph on which we
operate and briefly review the various centrality measures. In
Section 3 we define graph in amino acids based on mutation
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and discuss various centrality measures. Also we discuss the
bivariate correlation between different centralitymeasures. In
Section 4 we discuss some network parameters. In Section 5
we give the conclusion of this paper.

2. Preliminary Concepts of Graph

An undirected graph 𝐺 = (𝑉, 𝐸) consists of a finite set 𝑉
of vertices and a finite set 𝐸 ⊆ 𝑉 × 𝑉 of edges. If an edge
𝑒 = (𝑢, V) connects two vertices 𝑢 and V then vertices 𝑢 and
V are said to be incident with the edge 𝑒 and adjacent to each
other. The set of all vertices which are adjacent to 𝑢 is called
the neighborhood𝑁(𝑢) of 𝑢.The complete graph is a graph in
which each of the vertices connects to one another. A directed
graph or digraph 𝐺 consists of a set 𝑉 of vertices and a set
𝐸 of edges such that 𝑒 ∈ 𝐸, if each edge of the graph 𝐺 has
a direction. A graph is called loop-free if no edge connects a
vertex to itself. An adjacencymatrix𝐴 of a graph𝐺 = (𝑉, 𝐸) is
a (𝑛×𝑛) matrix, where 𝑎

𝑖𝑗
= 1 if and only if (𝑖, 𝑗) ∈ 𝐸 and 𝑎

𝑖𝑗
=

0 otherwise. The adjacency matrix of any undirected graph
is symmetric. The degree of a vertex V is defined to be the
number of edges having V as an end point. Awalk is defined as
a finite alternating sequence of vertices and edges, beginning
and ending with vertices, such that each edge is incident with
the vertices preceding and following it. No edges appearmore
than once in a walk. A vertex, however, may appear more
than once. In a walk beginning and ending vertices are initial
and terminal vertices. A walk is closed if beginning and end
vertices are the same. Also if beginning and end vertex are not
the same then that walk is called open walk. A trail is a walk
without repeated edges and path is a walk without repeated
vertices. A shortest or geodesic path between two vertices 𝑢,
V is a path with minimal length. A graph is connected if there
exists a walk between every pair of its vertices.

2.1. Centrality in Graph. In graph theory, centrality measure
of a vertex represents its relative importancewithin the graph.
A centrality is a real-valued function on the nodes of a graph.
More formally a centrality is a function𝑓which assigns every
vertex V ∈ 𝑉 of a given graph 𝐺 a value 𝑓(V) ∈ 𝑅. In
the following we have discussed four most commonly used
centrality measures.

2.1.1. Degree of Centrality. The most simple centrality mea-
sure is degree of centrality, 𝑐

𝑑
(𝑢). It is defined as the number

of nodes to which the node 𝑢 is directly connected.The nodes
directly connected to a given node 𝑢 are also called first
neighbors of the given node. Degree centrality shows that an
important node is involved in a large number of interactions.
This interaction gives the immediate importance or risk of
the node in the corresponding network. Mathematically it is
defined as

𝑐
𝑑 (𝑢) = deg (𝑢) . (1)

However in real world problem the degree of centrality is not
an actual measurement for finding importance or risk of a
node. In real situation an important node may be connected
indirectly with other nodes.

2.1.2. Eigenvector Centrality. Another important measure of
centrality is eigenvector centrality [8]. An eigenvalue of a
square matrix 𝐴 is a value 𝜆 for which det(𝐴 − 𝜆𝐼) =

0, where 𝐼 is the identity matrix of the same order as 𝐴.
Eigenvector centrality is defined as the principal eigenvector
of the adjacency matrix of corresponding graph.

In matrix-vector notation we can write

𝜆𝑋 = 𝐴𝑋, (2)

where 𝐴 is the adjacency matrix of the graph, 𝜆 is a constant
(the eigenvalue), and 𝑋 is the eigenvector. In general, there
will be different eigenvalues 𝜆 for which an eigenvector solu-
tion exists. However eigenvector of the greatest eigenvalue is
the eigenvector centrality [8]. Eigenvector centrality gives the
direct as well as indirect importance of a node in a network.

2.1.3. Closeness Centrality. The closeness centrality is the idea
how a vertex is close to all other vertices not only to the
first neighbor but also in global scale. Generally a vertex is
central; then it is close to all other vertices. If a vertex is
close to other vertices, then it can quickly interact with all
other vertices. In general closeness centrality is defined as the
inverse of the sumof the shortest path distances between each
node and every other node in the network [9].The closeness
centrality of a node depicts an important node that can easily
reach or communicate with other nodes of the network.
Mathematically it is defined as

𝐶cl (𝑢) =
(𝑛 − 1)

∑V∈𝑉 𝑑 (𝑢, V)
, (3)

where 𝑛 is the number of vertices of the network and 𝑑(𝑢, V)
is the shortest path distance between the pair of vertices 𝑢
and V. From the above definition it is clear that if a node has
minimum cumulative shortest path distance, then that node
has maximum closeness centrality. And maximum closeness
centrality node is very well connected to all other nodes.

2.1.4. Betweenness Centrality. Another well-known centrality
measure is the betweenness centrality [9]. Betweenness cen-
trality interactions between two nonadjacent nodes depend
on the other node, generally on those on the paths between
the two. The betweenness centrality of a node 𝑢 is the
number of shortest paths going through 𝑢. Mathematically it
is defined as

𝐶btw (𝑢) = ∑

𝑠 ̸=𝑢∈𝑉

∑

𝑡 ̸=𝑢∈𝑉

𝜎st (𝑢)

𝜎st
, (4)

where 𝜎st is the number of shortest paths from vertex 𝑠 to 𝑡
and 𝜎st(𝑢) is the number of shortest paths from 𝑠 to 𝑡 that
pass through 𝑢. Betweenness centrality depicts identifying
nodes that make most information flow of the network.
An important node will lie on a large number of paths
between other nodes in the network. From this node we can
control the information of the network.Without these nodes,
there would be no way for two neighbors to communicate
with each other. In general the high degree node has high
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betweenness centrality because many of the shortest paths
may pass through that node. However a high betweenness
centrality node need not always be high degree node.

3. Graph of Amino Acids

Every codon codes unique amino acids. A one-point muta-
tion of a codon may or may not change the corresponding
coded amino acid. All one-point mutations of a codon give
nine more codons. Some of these nine codons will code for
the same amino acid(s) other than the original one. In some
sense the nine mutants can be termed near or close to the
original one. In the language of topology these codons can be
termed vicinity of the original codon. In other words they are
related to the original one. Since any mutation has its reverse
mutation, this relation is bidirectional.This nearness relation
or affinity is naturally carried over to the amino acids. Thus
in the amino acids we have a binary relation which generated
an undirected graph.Thus in our amino acid graph the vertex
set is the set of amino acids and two amino acids 𝛼 and 𝛽
are linked/connected by an edge if one-point mutation of a
codon coding 𝛼 codes for 𝛽.Thus two amino acids connected
by an edge can be interpreted as having affinity towards each
other in the sense that one may evolve from the other. Thus
the amino acid graph gives a picture of the evolution of the
amino acids. We will call it the evolutionary graph of amino
acids. The corresponding graph is depicted in Figure 1.

From Figure 1, we observe that the graph is connected.
Corresponding adjacency matrix of the graph is given as
follows:

𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0

1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0

1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0

0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0

0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1

0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0

0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0

1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0

0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0

1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(5)

3.1. Centralities in Amino Acids Graph. To analyse the amino
acid graph (Figure 1) we have calculated different measures
of centrality. In Table 1, we represent the different centrality
values of the vertices.

FromFigure 1 we observed that the graph is not complete.
That means some of the amino acids are not linked with
some other amino acids. The amino acids R (Arginine) and
S (Serine) form a complete graph with respect to first base or
third base mutation of codon. Again the amino acids R and
S are well connected to all other amino acids through first
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base and/or second base mutations so its cumulative shortest
path distance is minimum. Hence the amino acids R and S
have high closeness centrality. Therefore the first base and/or
second base mutation has relative importance in terms of
closeness centrality.

Further we observed that any amino acid which has no
direct link with other amino acids, has indirect link through
one of R or S. For example, the amino acidGhas no direct link
with the amino acids, namely,M, L, I, F, Y, P, T,N,Q, K, andH.
But through the amino acids R and Swith the help of first base
and/or second basemutation they are linked indirectly. Again
when we observe betweenness centrality it is clear that the
amino acids R and S have high betweenness value. Because
the degree of these amino acids is high, many shortest paths
pass through them. As R and S are linked with other amino
acids through first base and/or second base mutation, we
conclude that first base and/or second base mutation has
relative importance in terms of betweenness centrality.

For degree of centrality point of view we observe that the
amino acids R and S have highest degree of centrality. As
it does not reflect the indirect link of the amino acids, we
cannot draw any conclusion regarding which base mutation
represents degree of centrality.

Again when we observe eigenvector centrality it is clear
that the amino acids R and S have maximum eigenvector
centrality because the sum of direct and indirect links of the
amino acids R and S has maximum. As eigenvector centrality
depends on direct as well as indirect link, and as indirect link
of any of the R and S with other amino acids is through first
base and/or second base mutation, we conclude that the first
base or third base mutation has relative importance in the
context of eigenvector centrality.

3.2. Correlation between Various Centralities. In this section
we have discussed the bivariate correlation of various mea-
sures of centralities for amino acids networks. Correlation
is the most important character to study assortative or
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Table 1: Centrality values for all amino acids.

Vertex Degree centrality (𝐶
𝑑
) Closeness centrality (𝐶cl) Betweenness centrality (𝐶bwt) Eigenvector centrality (𝐶

𝜆
)

S 12 0.730 15.350 0.336
R 12 0.730 14.716 0.342
L 10 0.678 10.100 0.289
I 9 0.655 5.716 0.276
G 8 0.633 7.616 0.219
V 8 0.633 8.166 0.210
T 8 0.633 4.149 0.246
A 7 0.612 4.449 0.191
D 7 0.612 6.166 0.163
P 7 0.612 2.983 0.220
K 7 0.612 4.366 0.198
N 7 0.612 5.533 0.192
H 7 0.612 5.033 0.195
M 6 0.593 3.833 0.143
C 6 0.593 3.833 0.143
E 6 0.593 3.833 0.143
F 6 0.593 2.149 0.183
Y 6 0.593 2.750 0.172
Q 6 0.593 3.283 0.158
W 5 0.575 0.450 0.173

Table 2: Correlation coefficients for the centrality positions.

𝐶
𝑑

𝐶cl 𝐶bwt 𝐶
𝜆

𝐶
𝑑

1 0.998 0.947 0.952
𝐶cl 0.998 1 0.951 0.951
𝐶bwt 0.947 0.951 1 0.820
𝐶
𝜆

0.952 0.951 0.820 1

disassortative networks. A network is called assortative if the
vertices with higher degree have the tendency to connect with
other vertices that also have high degree of connectivity. If
the vertices with higher degree have the tendency to connect
with other vertices with low degree then the network is
called disassortative. The correlation coefficients for all the
centrality measures are shown in Table 2. All correlation
coefficients (𝑟) are based on Pearson’s method. The range of
𝑟-value is between +1 and −1. If 𝑟 > 0 then the network is
assortative whereas if 𝑟 < 0 then the network is disassortative.

From Table 2, we observe that all the centrality measures
are highly correlated. Also from the above correlation coeffi-
cients we observed that the networks are of assortative type
(𝑟 > 0). Therefore the information can be easily transferred
through this network.

4. Network Parameters

There are various network parameters which are used in the
biological network. In this paper we have used basically three
network parameters, namely, clustering coefficient, degree of
distribution, and Pearson’s skewness. Clustering coefficient
is the measurement that shows the tendency of a graph to

be divided into cluster. A cluster is a subset of vertices that
contains lots of edges connecting these vertices to each other.
The clustering coefficient 𝐶

𝑖
of a node “𝑖” is the ratio between

the total number (𝑒
𝑖
) of links actually connecting its nearest

neighbours and the total number (the number of such links
is 𝐾
𝑖
(𝐾
𝑖
− 1)/2, where 𝐾

𝑖
is the degree of node “𝑖”) of all

possible links between these nearest neighbours. It is given
by 𝐶
𝑖
= 2𝑒

𝑖
/𝐾
𝑖
(𝐾
𝑖
− 1). Also nodes with less than two

neighbors are assumed to have a clustering coefficient of 0.
It takes values as 0 ≤ 𝐶

𝑖
≤ 1. The clustering coefficient of the

whole network is the average of all individual 𝐶
𝑖
. The higher

clustering coefficient of a node represents strong relationship
between neighbouring nodes. That is, the higher value of the
clustering coefficients of a node represents more number of
connections among its neighbours. In Table 3 we have shown
clustering coefficients of all the amino acids.

Fromhere it is clear that clustering coefficient of an amino
acid depends upon degree of the amino acids as well as num-
ber of direct connections between two neighbouring amino
acids. Here we observe that the very large hydrophobic amino
acid W (volume 227.8 A3) as well as high molecular weight
(204.23) amino acid has high clustering coefficient. Again the
clustering coefficient of whole amino acids network is 0.464
(G). That is, very small hydrophobic amino acid (volume
60.1 A3) as well as very small molecular weight (75.07) amino
acid represents clustering coefficient of the whole network.
Since clustering coefficient is higher with higher number
of connections among the neighbours, therefore the higher
values of clustering coefficients of a network give large effect
on the nodes of the network and slow down the information
spread. Therefore from here it is clear that the information
can be sent faster in amino acid network.
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Table 3: Clustering coefficient of the amino acids.

G A V L I M P F W Y N Q S T C D E K R H
0.464 0.476 0.392 0.422 0.472 0.571 0.571 0.6 0.8 0.466 0.428 0.533 0.348 0.5 0.6 0.428 0.466 0.476 0.409 0.428

Table 4: Degree of distribution of amino acids.

G A V L I M P F W Y N Q S T C D E K R H
0.15 0.4 0.15 0.05 0.05 0.4 0.4 0.2 0.05 0.2 0.4 0.2 0.1 0.15 0.4 0.4 0.2 0.4 0.1 0.4

Next, it is of interest to investigate the nature of the node
of the distribution of degrees of nodes for both patterns. The
spread in the number of links a node has is characterized by a
distribution function 𝑃(𝑘). The degree distribution 𝑃(𝑘) of a
network is defined to be the fraction of nodes in the network
with degree 𝑘. If there are 𝑛 nodes in total in a network and
𝑛
𝑘
of them have degree 𝑘, we have 𝑃(𝑘) = 𝑛

𝑘
/𝑛. Generally the

degree distributions value of a node represents the probability
that a selected node will have exactly 𝑘 links. In Table 4, we
have shown degree of distribution values of different amino
acids.

Also another well-known parameter is skewness. Skew-
ness is a measure of the symmetry or asymmetry of the
distribution of a variable. The measuring skewness was first
suggested byKarl Pearson in 1895.There are variousmeasures
of skewness. In this paper we have used only Pearson’s coeffi-
cient of skewness.In normal curve themean, themedian, and
themode all coincide and there is perfect balance between the
right and the left sides of the curve.The situation of skewness
which means lack of symmetry occurs in a curve when the
mean, median, and mode of the curve are not coincident.
Skewness describes the shape of the distribution. Symmetry
means that the variables are equidistance from the central
value on either side. Again the term asymmetrical means
either positively skewed or negatively skewed. Skewness is
denoted in mathematical notation by 𝑆

𝑘
. Based on the values

and relative position of the mode, mean and median there
are two types of skewness that appear in the distribution,
namely, positive skewness and negative skewness. If mean is
maximum and mode is least and the median lies in between
the two then it is called positive skewed distribution. Again
if mode is maximum and the mean is least and the median
lies in between the two then it is called negative skewed
distribution.There are various relative measures of skewness.
In this study we have discussed Karl Pearson’s coefficient of
skewness, which is given by the following formula:

𝑆
𝑘
=
3 (Mean −Median)
Standard deviation

. (6)

The value of themeasure of the skewness lies within the range
of –3 to +3.

If 𝑆
𝑘
= 0, then the distribution is symmetrical, that is,

normal.
If 𝑆
𝑘
> 0, then the distribution is positively skewed.

If 𝑆
𝑘
< 0, then the distribution is negatively skewed.

Here we assume the degree of distribution as variable (𝑋) and
number of the amino acids which contains the same value

Table 5: Calculation of Pearson’s coefficient of skewness.

𝑋 𝑓 𝑑
𝑥
= 𝑋 − 0.15 𝑓𝑑

𝑥
𝑓𝑑
𝑥

2

0.05 3 −0.1 −0.3 0.03
0.1 2 −0.05 −0.1 0.005
0.15 3 0 0 0
0.2 4 0.05 0.2 0.01
0.4 8 0.25 2 0.5

of the distribution as frequency (𝑓). Then we have Table 5,
where 0.15 is considered as assumed mean.

From Table 5, we have that mode is 0.4 (because of the
highest frequency, i.e., 8) and median is 0.294. Also the
standard deviation is 0.137. Therefore Pearson’s coefficient
of skewness is −1.18 < 0. From here we concluded that
the degrees of distribution of the amino acids are negatively
skewed distribution.

5. Conclusion

In this paper we have equipped the amino acids with
graph structure by defining compatibility relation based on
mutation. We have observed that the graph is connected. We
have discussed different centrality measures and we observed
that the high hydrophilicity amino acid R (Arginine) and
least hydrophilicity amino acid S (Serine) have the highest
centrality values irrespective of the centrality measures. Both
the amino acids are hydrophilic with the same number of
codons, that is, six. The degree of centrality assigns the
top score to the amino acids S and R and second top
score to the amino acid L, followed by the amino acid I
and then the amino acids G, V, and T (fourth score); A,
C, D, P, M, K, N, and H (fifth score); E, F, Y, and Q
(sixth score); and finally W (seventh score). The only other
measure that operates such distinction is closeness centrality.
Neither the betweenness centrality nor eigenvector centrality
has such distinction. Also we have observed that first base
and/or second base mutation has relative importance in all
the centrality measures. Next we have found correlation
coefficients of the various centrality measures of amino acids
and it was observed that all the centrality measures are
highly correlated. Hence we can conclude that in amino
acid network based on mutation all centrality measures give
same ranking to the amino acids. Also we have observed
that large hydrophobic amino acid W (Tryptophan) has high
clustering coefficient, and small hydrophobic amino acid G
(Glycine) has average clustering coefficient of the network.
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Finally we have observed that the degree of distribution
is negatively skewed. Then using Kolmogorov-Smirnov test
we observed that the degree of distribution follows three
parameter Weibull distribution patterns. Since our graph is
based on the mutation of codon, the network show generated
gives a general picture of the evolution of the amino acid. An
Amino acid 𝛼 hasmore affinity to evolve from another amino
acid say 𝛽 if they are linked than other wise.
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