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INTRODUCTION 
 

Chronic obstructive pulmonary disease (COPD) is a 

complicated and heterogeneous respiratory condition 

with a high morbidity and mortality over three million 

people died from this disease worldwide per year, which 
causes a huge burden to medical and financial systems 

globally [1, 2]. Although previous studies reported that 

the main risks for COPD are long-term exposure to 

cigarette smoke or air pollution and genetic factors, the 

aging process is also important in the pathogenesis of 

COPD [3–6]. A recent study indicated that the prevalence 

of COPD increases with age (5.1% in 35–54 year-olds, 

13.3% in 55–64 year-olds, and 21.7% in those older than 

65) [7] and patients older than 65 year-old had a five-fold 

increase at risk of COPD process compared to patients 

younger than 40 [8]. Investigation of the relationship 

between aging associated genes and progression of 

COPD may provide new biomarkers for diagnosis and 

personalized therapy of this disease. 
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ABSTRACT 
 

Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disorder. One of the major risk 
factors for COPD progression is aging. Therefore, we investigated aging-related genes in COPD using 
bioinformatic analyses. Firstly, the Aging Atlas database containing 500 aging-related genes and the Gene 
Expression Omnibus database (GSE38974) were utilized to screen candidates. A total of 24 candidate genes 
were identified related to both COPD and aging. Using gene ontology and Kyoto Encyclopedia of Genes and 
Genomes enrichment analyses, we found that this list of 24 genes was enriched in genes associated with 
cytokine activity, cell apoptosis, NF-κB and IL-17 signaling. Four of these genes (CDKN1A, HIF1A, MXD1 and 
SOD2) were determined to be significantly upregulated in clinical COPD samples and in cigarette smoke 
extract-exposed Beas-2B cells in vitro, and their expression was negatively correlated with predicted forced 
expiratory volume and forced vital capacity. In addition, the combination of expression levels of these four 
genes had a good discriminative ability for COPD patients (AUC = 0.794, 95% CI 0.743–0.845). All four were 
identified as target genes of hsa-miR-519d-3p, which was significantly down-regulated in COPD patients. The 
results from this study proposed that regulatory network of hsa-miR-519d-3p/CDKN1A, HIF1A, MXD1, and 
SOD2 closely associated with the progression of COPD, which provides a theoretical basis to link aging effectors 
with COPD progression, and may suggest new diagnostic and therapeutic targets of this disease. 
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Aging is the important physiological and 

pathophysiological processes in human life, which 

involves inflammation, oxidative stress, mitochondrial 

dysfunction, epigenetic alterations, cell senescence and 

death, and regulates COPD development. Dysregulation 

of aging-related genes, such as SIRT1 and SIRT6, were 

recently demonstrated to be associated with COPD  

[9–14]. Previous studies showed that the reduction of 

SIRT1 and SIRT6 expression could exacerbate the 

response to oxidative stress, premature senescence and 

chronic inflammation, which further accelerate the aging 

process in the lung [11–13]. The activity of SIRT1 may 

be partially enhanced by treatment with the anti-

inflammatory molecule Resveratrol to reverse the 

progression of CSE-induced COPD [14]. Li et al. found 

that Klotho, an anti-aging protein, could inhibit the 

expression of inflammatory mediators such as MMP-9, 

TNF-α, and IL-6 via the NF-κB pathway in COPD [15]. 

Another study demonstrated that Klotho down-regulation 

in COPD was associated with accelerated lung aging in 

COPD development and increased oxidative stress, 

inflammation, and apoptosis of airway epithelial cells 

[16]. However, the roles of aging-related genes during 

COPD development remain largely unknown. 

 
MicroRNAs (miRNAs) are small non-coding RNA 18–

22 nucleotides in length that block protein translation 

through miRNA-mRNA interactions, or increase mRNA 

degradation [17]. Abnormal miRNA expression is 

important in cancer and other human diseases due to their 

importance in pathophysiological processes and several 

miRNA-based therapeutics have applied to clinical 

testing, such as miR-34 mimic reached phase I clinical 

trials for cancer treatment and miR-122 antagonist 

reached phase II trials for hepatitis treatment [18, 19]. 

The roles of miRNA in COPD have been examined over 

the past few years [20, 21]. Several studies highlighted 

that miR-34a was up-regulated in patients with severe 

COPD and involved in the pathogenesis of COPD  

by affecting the HIF-1α-dependent lung structure 

maintenance program [22], regulating the apoptosis of 

human pulmonary microvascular endothelial cells by 

directly targeting Notch1 [23], and orchestrating the 

oxidative stress response by regulating the expression of 

SIRT1 and SIRT6 [24]. Another study indicated that 

elevated miR-125a-5p facilitated the senescence of lung 

epithelial cells to participate in the pathogenesis of 

smoking-induced COPD [25]. 

 
The development and application of high-throughput 

sequencing technology and multiple public databases 

have facilitated for screening new disease-related 

biomarkers using enrichment analyses of gene 

expression profiles from the gene expression omnibus 

(GEO) database [26]. In this study, we used gene 

expression profiles of COPD, aging related databases, 

bioinformatic analyses and validation tests to screen 

aging-related genes as biomarkers of COPD 

development, and to investigate the effects of miRNAs 

on these candidate aging-related genes. A workflow of 

this study is shown in Figure 1. 
 

RESULTS 
 

Screening candidate aging-related genes in COPD 

 

The Aging Atlas database and GSE38974 data set 

which contained lung tissues of 9 normal and 23 COPD 

patients were used to screen candidate genes. Firstly, a 

total of 434 differentially expressed genes (DEGs; 205 

upregulated and 229 downregulated) were identified 

between COPD and normal samples in the GSE38974 

dataset, using |log2FC| > 1 and adjusted P < 0.05 as 

cutoff values (Figure 2A). Secondly, these 434 DEGs 

were compared with 500 aging-related genes from the 

Aging Atlas database, and identified 24 genes which 

were present in both (Figure 2B, 2C). Among these 24 

genes, 20 were upregulated (ATM, BAX, BCL2A1, 

CCL19, CCL20, CDKN1A, EMD, GDF15, H2AFX, 

HIF1A, HK3, IL1B, IL6, LMNB1, MMP1, MXD1, 
PTPN1, S100B, SOD2, and TNFRSF1A), and 4 were 

downregulated (CLU, CREB3L4, CTGF, and MMP14; 

Figure 3). 

 

Functional annotation of candidate aging-related 

genes in COPD 

 

To explore the potential biological functions of these 

aging-related genes in COPD, gene ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses were performed (Supplementary 

Tables 1, 2). Five most significantly enriched GO terms 

are shown in Figure 4A. The enriched biological 

processes were cellular response to organic substance, 

chemical stimulus, stress, and intrinsic apoptotic 

signaling pathway. The enriched molecular functions 

were signaling receptor binding, cytokine activity, 

receptor ligand activity, receptor regulator activity, and 

BH domain binding. And the enriched cellular 

components were mitochondrion, extracellular region, 

extracellular matrix, and extracellular space. KEGG 

enrichment analysis identified apoptosis, cytokine-

cytokine receptor interaction, human cytomegalovirus 

infection, and insulin resistance as over-represented 

processes, and TNF, NF-κB, IL-17, and HIF-1 as mainly 

representative signaling pathways (Figure 4B). 

 

Validation of the candidate aging-related genes in 

COPD 

 

To validate the 24 candidate genes, their expression 

profiles were checked in another COPD  transcriptomics 
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dataset (GSE57148) containing 91 normal and 98 COPD 

lung tissue samples. Expression changes of the 24 genes 

in GSE38974 and GSE57148 are listed in Table 1 and 

Figure 5. Expression of ATM, CDKN1A, CREB3L4, 

HIF1A, MXD1, PTPN1, and SOD2 were consistently 

altered in both datasets. In order to investigate  

the expression of above genes in blood of COPD 

patients, we further enrolled 60 COPD patients and  

36 normal controls and collecting peripheral blood  

for validation. The demographic and clinical 

characteristics of the subjects are summarized in  

Table 2. The qRT-PCR analysis was confirmed that 

CDKN1A, HIF1A, MXD1, and SOD2 were significantly 

upregulated in peripheral blood mononuclear cells 

(PBMCs) of COPD patients compared with normal 

controls (Figure 6). 

 

The expression levels of CDKN1A, HIF1A, MXD1, and 

SOD2 were also investigated in Beas-2B cells exposed 

to cigarette smoke extract (CSE). Firstly, Beas-2B cells 

were treated with different concentrations of CSE (0, 1, 

2, 4 and 6%) and cell viability was measured at 0, 6, 12, 

24, and 36 hours. Cell viability was significantly 

decreased after treatment with 2%, 4%, and 6% CSE for 

24 hours, with a dose-dependent effect (Figure 7A, 7B). 

Therefore, 2% and 4% CSE for 24 hours were used for 

the qRT-PCR experiments. Expression of CDKN1A, 

HIF1A, MXD1, and SOD2 were significantly increased 

after CSE exposure (Figure 7C). 

 

Diagnostic value and correlation analysis for aging-

related genes in COPD 

 

The ability of the expression of these genes to 

distinguish COPD subjects from normal controls was 

investigated by receiver operating characteristic (ROC) 

curve analysis (Figure 8). The area under the curve  

(AUC) values for CDKN1A, HIF1A, MXD1, and SOD2 

 

 
 

Figure 1. The work-flow of this study. 
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were 0.729 (95% CI 0.673–0.785), 0.725 (95% CI 

0.668–0.782), 0.763 (95% CI 0.708–0.818) and 0.730 

(95% CI 0.672–0.787), respectively. Combining the 

expression levels of four genes gave an AUC of 0.794 

(95% CI 0.743-0.845), suggesting that the diagnostic 

value of the combination is slightly better than that of 

the four individual genes for distinguishing COPD 

patients from normal subjects. We also investigated the 

correlation between the expression of each candidate 

gene and pulmonary function. Expression levels of 

CDKN1A, HIF1A, MXD1, and SOD2 were negatively 

correlated with FEV1/FVC% and FEV1% predicted 

(Figure 9). 

 

Identification of miRNA upstream of CDKN1A, 

HIF1A, MXD1 and SOD2 

 

Upstream miRNAs for CDKN1A, HIF1A, MXD1, and 

SOD2 were predicted using the StarBase3.0 software, 

and miRNA candidates that were identified by at least 

 

 
 

Figure 2. Aging-related differentially expressed genes (DEG) between COPD subjects and normal controls. (A) Volcano plot of 

the DEGs from GSE38974 with adjusted P <0.05 and |log2 FC| >1 as threshold values. Red and blue dots indicate significantly upregulated 

and downregulated genes, respectively. (B) Venn diagram of COPD differentially expressed genes and aging-related genes. (C) Heatmap of 
the expression of 24 aging- and COPD-related genes. 
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four different target-predicting programs were 

considered hits. The predicted miRNAs are shown in 

Supplementary Table 3. There were 29, 28, 59 and 7 

miRNAs predicted to target CDKN1A, HIF1A, MXD1, 

and SOD2, respectively. hsa-miR-519d-3p was the only 

miRNA predicted to target all four genes (Figure 10A) 

with 3, 1, 2, and 3 potential interaction sites on the 

CDKN1A, HIF1A, MXD1, and SOD2 mRNA sequences, 

respectively. The seeding matched sequences are  

shown in Figure 10B. Subsequently, the expression  

of hsa-miR-519d-3p in PBMCs from COPD and  

normal groups was quantified by qRT-PCR, with  

hsa-miR-519d-3p expression significantly decreased in 

COPD patients, compared with the normal controls 

(Figure 10C). Furthermore, overexpression of hsa-miR-

519d-3p in Beas-2B cell using a mimic (Figure 10D) 

significantly decreased the expression of CDKN1A, 

HIF1A, MXD1, and SOD2 (Figure 10E). Luciferase 

reporter assays were used to investigate the interaction 

of hsa-miR-519d-3p with the four genes. As shown in 

Figure 11A, the luciferase activities of psiCHECK2 

vectors harboring wild-type 3’UTR sequences for 

these four genes were all reduced after co-transfection 

with the hsa-miR-519d-3p mimic, and the CDKN1A 

considerably more reduced than the other three genes. 

The luciferase activity of psiCHECK2 vectors 

harboring mutational 3’UTR sequences of CDKN1A 

was also measured, while the luciferase activity not 

 

 
 

Figure 3. Boxplot of 24 aging-related genes in COPD and normal subjects. Data obtained from GSE38974 and presented as probe 

intensity. 
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significantly different in the presence of hsa-miR-

519d-3p after mutating all predicted interaction sites 

(Figure 11B). This suggests that hsa-miR-519d-3p  

can bind to 3’-UTR position of the CDKN1A transcript 

to inhibit expression. Finally, overexpression of 

has-miR-519d-3p decreased the expression of p21  

(the protein encoded by CDKN1A) in Beas-2B cells 

(Figure 11C). 

 

 
 

Figure 4. Functional enrichment analysis of 24 aging- and COPD-related genes. (A) GO enrichment analysis; the top 5 significantly 
enriched biological processes (P < 0.05), molecular functions, and cellular components are listed. (B) KEGG analysis; the top 20 significant 
signaling pathways (P < 0.05) are listed. 
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Table 1. The analysis of 24 aging- and COPD-related genes in GSE38974 and GSE57148 
datasets. 

Gene 
GSE38974 GSE57148 

Log2FC P value Type Log2FC P value Type 

ATM 1.319 0.000 Up 1.195 0.000 Up 

BAX 1.388 0.000 Up -9.594 0.000 Down 

BCL2A1 1.059 0.001 Up -1.350 0.734 Down 

CCL19 1.598 0.002 Up -8.104 0.145 Down 

CCL20 1.308 0.040 Up 5.466 0.645 Up 

CDKN1A 1.239 0.003 Up 32.441 0.010 Up 

CLU -1.059 0.000 Down 12.903 0.235 Up 

CREB3L4 -1.023 0.000 Down -0.620 0.001 Down 

CTGF -1.108 0.006 Down -2.401 0.859 Down 

EMD 1.003 0.000 Up -2.772 0.001 Down 

GDF15 1.077 0.013 Up -1.323 0.765 Down 

H2AFX 1.231 0.000 Up -0.350 0.624 Down 

HIF1A 1.356 0.000 Up 8.993 0.014 Up 

HK3 1.115 0.000 Up -2.646 0.017 Down 

IL1B 1.371 0.032 Up 7.645 0.060 Up 

IL6 2.280 0.013 Up 24.521 0.507 Up 

LMNB1 2.596 0.000 Up 0.850 0.412 Up 

MMP1 1.456 0.038 Up 1.151 0.201 Up 

MMP14 -1.358 0.000 Down 0.837 0.725 Up 

MXD1 1.092 0.001 Up 5.142 0.000 Up 

PTPN1 1.294 0.000 Up 5.714 0.000 Up 

S100B 1.109 0.004 Up -0.285 0.570 Down 

SOD2 1.220 0.004 Up 86.434 0.000 Up 

TNFRSF1A 1.720 0.000 Up 1.763 0.256 Up 

 

DISCUSSION 
 

The incidence of COPD is increasing worldwide. 

Importantly, most elderly patients suffering from 

COPD show age-related changes of the lung [27–29] 

accompanied with other chronic diseases such as 

cardiovascular disease, hypertension, metabolic disorder, 

cognitive impairment, and gastrointestinal conditions. All 

of these co-morbidities are linked to aging-associated 

pathological mechanisms [9, 10, 30, 31]. Although, the 

underlying mechanisms of COPD are a topic of active 

research, current therapeutics for COPD are mostly 

borrowed pharmacological therapy from the treatment of 

asthma [21], effective therapies are still absent for this 

irreversible disease, especially for older patients. It is 

therefore crucial to identify novel therapeutic targets 

specifically for COPD. 

In this study 24 aging- and COPD-correlated genes 

were identified using a variety of bioinformatic 

approaches. These 24 genes principally involved in 

TNF, NF-κB, IL-17, HIF-1 signaling pathways, which 

were associated with COPD pathophysiology, such as 

aging, inflammation, and oxidative stress [32–34]. The 

genes identified in this study (CDKN1A, HIF1A, MXD1, 

and SOD2) were significantly upregulated in lung 

tissues in two different clinical COPD transcriptomics 

datasets, and had the potential to develop as 

therapeutics targets of COPD. Although the lung is the 

principal target organ in COPD, the blood biomarkers 

are increasingly applied to in diagnosis and prognosis of 
conditions due to the collection and dynamic 

monitoring easily. Hence, we validated the above four 

genes in blood samples from a new third cohort, and 

have found that the trend of the relative expression of 
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these genes are consistent in blood and lung tissue. 

Furthermore, the expression of these genes was 

negatively correlated with pulmonary function in our 

validated cohorts. 

 

Several studies have already demonstrated that 

dysregulation of CDKN1A, HIF1A and SOD2 are 

associated with the aging phenotype in COPD patients 

[35–41]. For example, CDKN1A (which encodes  

the p21 protein) is an important cyclin-dependent  

kinase inhibitor, which can potentiate the inflammatory  

response and cellular senescence, and is reported to be 

significantly upregulated in COPD [35, 36]. Decreasing 

the expression of CDKN1A can attenuate multiple 

 

 
 

Figure 5. Validation of 24 aging- and COPD-related genes in GSE57148. (A) The comparative analysis of 24 aging- and COPD-related 

genes in GSE38974 and GSE57148 datasets; “&” means the genes with consistent relative expression trend in both GSE38974 and GSE57148 
datasets. (B) Boxplot of the expression of 7 aging- and COPD-related genes (ATM, CDKN1A, CREB3L4, HIF1A, MXD1, PTPN1, and SOD2) in 
GSE57148. Data presented as probe intensity. *P <0.05; **P <0.01. 
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Table 2. Clinicopathological characteristics of recruited subjects in this study. 

 Normal(n=36) COPD(n=60) P Value 

Gender(female/male) 15/21 4/56 0.000 

Age(years) 61.889±7.058 62.883±5.396 0.439 

BMI 23.638±2.989 21.727±3.360 0.006 

Current/ex-smokers 12/20 18/51 0.243 

Pulmonary function    

FEV1 % predicted 101.947±24.852 38.136±10.363 0.000 

FEV1/FVC % 81.824±6.598 47.839±10.623 0.000 

 

pro-inflammatory stimuli-mediated lung oxidative and 

inflammatory responses and plays a critical role in 

cigarette smoke induced senescence of lung cells during 

COPD pathogenesis [36]. Zhang et al. identified 40 

potential autophagy-related genes which were 

differentially expressed in COPD, including CDKN1A 

and HIF1A, and suggested that overexpression of 

CDKN1A and HIF1A might be implicated in the 

 

 
 

Figure 6. Expression of 7 aging-related gene candidates in COPD and normal PBMCs. (A) Expression analysis of ATM, CDKN1A, 

CREB3L4, HIF1A, MXD1, PTPN1 and SOD2 in blood samples by qRT-PCR; data are present as 2(-ΔCт) relative to GAPDH. (B) Expression analysis 
of HIF1A, CDKN1A, MXD1 and SOD2 at different GOLD stages of COPD. *P <0.05; **P <0.01. 
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pathogenesis of COPD by regulating autophagy [37]. In 

addition, HIF1A expression was increased in the airway 

epithelial cells of COPD patients and serves as an 

important transcriptional regulator to promote the cellular 

response to inflammatory and oxidative stress [38, 39]. 

SOD2, an antioxidant-related gene, is found significantly 

increased in alveolar macrophages after exposure to  

fine atmospheric particulate matter [40]. Another  

study indicates that the expression of SOD2 protein  

is increased in bronchial epithelial cells from  

COPD donors following infection with rhinovirus [41]. 

MXD1 is a transcription factor that belongs to the 

MYC/MXD/MAX family, and is implicated in the 

pathophysiology of avian influenza virus infections 

[42], intracerebral hemorrhage [43], and various cancers 

such as osteosarcoma, lung adenocarcinoma and  

B cell lymphoma [44–46]. MXD1 can antagonize the 

transcriptional activation of c-Myc, serving as a 

transcription repressor [47, 48]. It can also be regulated 

by miRNAs to form a potential tumor-suppressing 

positive feedback loop [49]. However, MXD1 has not 

been studied in COPD. Future functional research is 

required to investigate the contribution of MXD1 to 

COPD development. 

 

The severity of COPD is largely related to symptoms, 

exacerbations and comorbidities, while underdiagnosis 

of COPD is a common problem worldwide. The current 

diagnosis of COPD is depending on spirometry  

and patients’ demographic characteristics that could 

 

 
 

Figure 7. Expression of 7 aging- and COPD-related genes in CSE-stimulated Beas-2B cells. (A) Effects of different concentrations of 

CSE on the cell viability of Beas-2B at 24 hours. (B) Beas-2B cells were treated with 2% CSE, and the cell viability was measured at different 
time points. (C) Expression analysis of the 7 aging- and COPD-related genes in CSE-stimulated Beas-2B cells; data are presented as 2(-ΔΔCт) 
relative to GAPDH. *P <0.05, **P <0.01 (0% vs. 2% and 4 %); #P <0.05, ##P <0.01 (2% vs. 4%). 
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Figure 8. Performance characteristics of aging- and COPD-related genes in ROC curve analysis. ROC curve analysis of CDKN1A, 

HIF1A, MXD1, and SOD2 alone and in combination. 

 

 
 

Figure 9. The relationship between 4 aging- and COPD-related genes and lung function by Spearman rank correlation 
analysis. (A) Correlation between candidate genes and FEV1/FVC%. (B) Correlation between candidate genes and FEV1% predicted. 
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contributed to overdiagnosis or misdiagnosis 

aperiodically [50]. Diagnostic tests based on biomarker 

combinations are often evaluated by the area under the 

ROC curve analysis to discriminate individuals who 

have disease and individuals who are disease-free to 

assisting the clinical diagnosis [51]. In this study, the 

AUC values of CDKN1A, HIF1A, MXD1, and SOD2 

were all greater than 0.7, and the combination of the 

four genes showed a better discrimination (AUC = 

0.794). This suggested that CDKN1A, HIF1A, MXD1, 

 

 
 

Figure 10. Prediction of miRNAs that could regulate HIF1A, CDKN1A, MXD1 and SOD2. (A) Venn diagram of miRNAs predicted to 

target CDKN1A, HIF1A, MXD1 and SOD2. (B) The predicted interactions of hsa-miR-519d-3p with CDKN1A, HIF1A, MXD1 and SOD2. (C) qRT-
PCR expression analysis of hsa-miR-519d-3p in PBMCs from COPD and healthy volunteers; data are presented as 2(-ΔCт) relative to U6.  
(D) Expression analysis of hsa-miR-519d-3p in Beas-2B cell following transfection with hsa-miR-519d-3p mimic. (E) Expression of CDKN1A, 
HIF1A, MXD1 and SOD2 in Beas-2B cell following transfecting with hsa-miR-519d-3p mimic; data are presented as 2(-ΔΔCт) relative to GAPDH. 
*P <0.05; **P <0.01. 
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and SOD2 had excellent discriminate ability between 

COPD patients and health subjects. However, whether 

these candidate genes can be applied to clinical 

practice for prevention of and intervention into COPD 

development is currently unclear, further studies are 

required to explore the molecular mechanisms of 

COPD in vivo and in vitro. 

 

Previous studies have identified miRNA-based 

therapeutics, applied to clinical testing, and dysregulated 

miRNAs in COPD, such as miR-195 and miR-181c, 

which have potential promise in alleviating COPD in 

vivo, and may serve as therapeutic targets for COPD in 

the near future [18, 20, 21]. Therefore, we identified 

miRNAs potentially upstream of CDKN1A, HIF1A, 

MXD1, and SOD2 expression changes. hsa-miR-519d-3p 

was predicted to target CDKN1A, HIF1A, MXD1,  

and SOD2, and its expression was significantly down-

regulated in COPD. Previous studies have reported that 

hsa-miR-519d-3p is involved in tumorigenesis  

in gastric cancer, pancreatic cancer, and lung cancer  

[52–54], and correlates with cell proliferation and 

migration in trophoblastic cell lines [55]. The biological 

function of hsa-miR-519d-3p in COPD is unknown. In 

this study, hsa-miR-519d-3p was shown to directly bind 

to CDKN1A, expression of which was associated with the 

aging phenotype in COPD patients. Further in-depth 

study of hsa-miR-519d-3p may provide a new biomarker 

for COPD. 

 

In conclusion, this study identified hsa-miR-519d-3p 

and four aging- and COPD-related genes (HIF1A, 
CDKN1A, MXD1, and SOD2) that may influence the 

development of COPD. Further study of these new 

targets may lead to new insight into the pathogenesis, 

diagnosis, and treatment of COPD. 

 

 
 

Figure 11. Regulatory interactions between hsa-miR-519d-3p and CDKN1A, HIF1A, MXD1 and SOD2. (A) Luciferase reporter 

assay for detection of the interaction of hsa-miR-519d-3p with 4 candidate genes. (B) Results of luciferase reporter assay demonstrate that 
hsa-miR-519d-3p directly binds to CDKN1A. (C) Western blot analysis of the effect of hsa-miR-519d-3p on CSE-induced aging-related proteins. 
*P <0.05; **P <0.01. 
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MATERIALS AND METHODS 
 

Aging-related genes and mRNA expression in COPD 

 

A total of 500 aging-related genes were obtained from  

the Aging Atlas database (https://ngdc.cncb.ac.cn/ 

aging/index). Lung gene expression data from a study 

of 9 normal and 23 COPD patients (GSE38974),  

and a study of 91 normal and 98 COPD patients 

(GSE57148) were obtained from the GEO database 

(http://www.ncbi.nlm.nih.gov/geo/). 

 

Selection of aging- and COPD-correlated genes 

 

 

Differentially expressed genes were identified in the 

GSE38974 dataset using the DESeq2 R package. 

Adjusted P < 0.05 and |log2 fold change (FC)| > 1 were 

used as a threshold for significantly differential 

expression. Aging-related genes in this set of COPD 

differentially expressed genes were identified using the 

500 genes from the Aging Atlas database. 

 

Biological function and signaling pathway 

enrichment analysis 

 

A webserver (https://www.omicshare.com/) was used to 

functionally annotate the genes that were associated 

with aging and COPD. GO enrichment analysis was used 

to identify enriched molecular functions, cellular 

components, and biological processes. KEGG enrichment 

analysis was used to identify signaling pathways enriched 

in the list of aging- and COPD-related genes. 

 

Enrolment of subjects and collection of samples 

 

A total of 60 COPD patients and 36 aging-matched 

healthy controls were enrolled from the first affiliated 

hospital of Wenzhou medical university from December 

2017 to December 2019. All participants were asked to 

read a document approved by the Human Medical 

Ethics Committee of the First Affiliated Hospital of 

Wenzhou Medical University (approval no.: 2016131) 

and written informed consent was provided by all 

participants. All participants were aged 40–80 years old 

and COPD patients suffered from respiratory symptoms, 

and fitted the GOLD diagnostic criteria. Patients with 

other complications such as cancer, cardiac conditions, 

and other respiratory diseases (e.g., bronchiectasis, 

bronchial asthma pulmonary fibrosis and/or active 

tuberculosis) were excluded. Peripheral blood samples 

were collected, and peripheral blood mononuclear cells 

(PBMCs) were isolated from 10 mL blood samples 

using human lymphocyte separation medium (Solarbio, 

China). All PBMCs samples were immediately stored at 

-80° C. 

Preparation of cigarette smoke extract (CSE) and 

cell cultures 

 

Two unfiltered cigarettes (0.8 mg of nicotine and  

9 mg of tar per cigarette) were used to bubble  

smoke into 10 mL Dulbecco’s modified Eagle’s 

medium (DMEM; Gibco, USA) at a speed of  

2 minutes per cigarette. The medium was sterilized 

using a 0.22 μm filter. This solution was considered  

as a 100% CSE solution to apply in subsequent 

experiments. 

 

Human bronchial epithelial cells (Beas-2B) were 

cultured in DMEM supplemented with 10% fetal bovine 

serum (FBS; Gibco, USA) and under a humidified 

atmosphere of 5% CO2 at 37° C. The cells were grown 

to approximately 90% confluence before experiments 

using CSE or transfection with 40 nM hsa-miR-519d-3p 

mimic or negative control (NC) oligoribonucleotides 

(Sangon Biotech, China) using Lipofectamine™ 3000 

(Invitrogen, USA) according to the manufacturer’s 

instructions. 

 

Cell viability assay 

 

Beas-2B cells were seeded into 96-well plates at a 

density of 5 × 103 cells/well and incubated overnight, 

then treated with CSE at 0, 1, 2, 4 and 6%. Cell viability 

was measured at different times (0, 6, 12, 24, and 36 

hours) using cell counting kit-8 (CCK-8) reagent 

(YEASEN, China) according to the manufacturer’s 

instructions. After an incubation with CCK-8 reagent 

for 2 hours, the optical density was measured at 450 nm 

using a microplate reader (Bio-Rad Laboratories, USA). 

Cell viability was calculated by the following formula: 

(absorbance of treatment group/absorbance of control 

group) × 100%. 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA was extracted from PBMCs or cultured 

cells using M5 Hiper Universal Plus RNA Mini Kit 

(Mei5 Biotechnology, China). cDNA was synthesized 

using the cDNA synthesis kit or Mir-X miRNA First-

Strand Synthesis Kit (both TaKaRa, Japan). Primers 

for qRT-PCR were designed via a public resource 

named PrimerBank (https://pga.mgh.harvard.edu/ 

primerbank/) and synthesized by Sangon Biotech, 

which are listed in Table 3. qRT-PCR amplification 

was performed using SYBR Green PCR Premix Ex 

Taq™ II reagents (TaKaRa, Japan) with the Quant 

Studio 6 FlexI real-time PCR system (Applied 

Biosystems, USA), following the protocols from the 
commercial kits. Expression levels of tested genes 

were determined with the 2-ΔCt or 2-ΔΔCt method based 

on the endogenous control (GAPDH or U6). 

https://ngdc.cncb.ac.cn/aging/index
https://ngdc.cncb.ac.cn/aging/index
http://www.ncbi.nlm.nih.gov/geo/
https://www.omicshare.com/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
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Table 3. Primer sequences for validating gene candidates. 

Gene name 
Primer sequence (5’-3’) 

Forward primer  Reverse primer 

HIF1A ATCCATGTGACCATGAGGAAATG TCGGCTAGTTAGGGTACACTTC 

CDKN1A TGTCCGTCAGAACCCATGC AAAGTCGAAGTTCCATCGCTC 

ATM GGCTATTCAGTGTGCGAGACA TGGCTCCTTTCGGATGATGGA 

CREB3L4 CAGACGCTAATTGCTCAAACTTC CCACTTGGGTCTCCAGATTTTCT 

MXD1 CGTGGAGAGCACGGACTATC CCAAGACACGCCTTGTGACT 

PTPN1 TCCCTTTGACCATAGTCGGAT GTGACCGCATGTGTTAGGCA 

SOD2 TTTCAATAAGGAACGGGGACAC GTGCTCCCACACATCAATCC 

GAPDH  CAATGACCCCTTCATTGACC TTGATTTTGGAGGGATCTCG 

hsa-miR-519d-3p CAAAGTGCCTCCCTTTAGAGTG  

 

Prediction of upstream miRNAs 

 

StarBase3.0 (http://starbase.sysu.edu.cn/), which includes 

seven miRNA target prediction programs (PITA, 

RNA22, miRmap, DIANA-microT, miRanda, PicTar 

and TargetScan) was used to predict the miRNAs that 

may regulate the genes we identified. Hits were chosen 

which appeared in at least 4 of the 7 prediction 

programs. The interactions between miRNA and mRNA 

were visualized using Miranda software. 

 

Luciferase activity assay 

 

The psiCHECK2 luciferase reporter vectors (Promega, 

USA) harboring wild-type (WT) or mutated (MUT) 

3’UTR sequences were co-transfected with hsa-miR-

519d-3p mimic or the corresponding negative control 

(NC) into human embryonic kidney (HEK) 293T cells. 

After a 48-hour incubation, cells were lysed and 

luciferase activity was measured using a dual-luciferase 

reporter assay system (Promega, USA), according to the 

manufacturer’s protocol. 

 

Western blot 

 

Total proteins were extracted from Beas-2B cells by 

using radio-immunoprecipitation assay (RIPA) buffer 

with protease inhibitor (Roche Applied Science, USA), 

then the protein concentration was measured using a 

BCA kit (Thermo, USA). Protein samples were separated 

on 12% SDS-PAGE gels at 80 V for 120 minutes and 

transferred onto a nitrocellulose membrane (Millipore 

Co, USA) at 300 mA for 1 hour using a wet transfer 

method. The membranes were incubated with primary 

antibody against p21 (10355-1-AP; Proteintech, USA), 

p53 (#2524; Cell Signaling Technology, USA) and β-

actin (#3700; Cell Signaling Technology, USA) at 4° C 

overnight. Horseradish peroxidase (HRP)-conjugated 

secondary antibodies (A0208 and A0216; Beyotime, 

China) were incubated at room temperature for 1 hour, 

and visualized using an enhanced chemiluminescence kit 

and Image Lab (Bio-Rad, USA). 

 

Statistical analysis 

 

GraphPad Prism 6.0 (GraphPad Software Inc., San 

Diego, CA, USA) and SPSS 21.0 were used for 

statistical analysis. Student's t-test or Mann-Whitney U-

test was applied for analyzing the data between two 

groups based on the normality of data. Spearman’s rank 

correlation coefficient was used to investigate the 

correlation between gene expression and pulmonary 

function of COPD patients. The area under the curve 

(AUC) of the receiver operating characteristics curve 

(ROC) was evaluated to assess effectiveness in 

discriminating patients with COPD from healthy 

participants. P <0.05 was considered statistically 

significant. 

 

Availability of data and material 

 

The data used to support the findings of this study are 

available from the corresponding author upon request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 3. 

 

Supplementary Table 1. Gene ontology enrichment analysis. 

Supplementary Table 2. KEGG analysis. 

ID Description Class Up Down num qvalue 

ko04668 TNF signaling pathway Environmental Information Processing 4 2 6 0.000054 

ko05166 HTLV-I infection Human Diseases 5 1 6 0.001050 

ko05163 Human cytomegalovirus infection Human Diseases 5 1 6 0.001050 

ko04210 Apoptosis Cellular Processes 5 0 5 0.001050 

ko04064 NF-kappa B signaling pathway Environmental Information Processing 5 0 5 0.001880 

ko05020 Prion diseases Human Diseases 3 0 3 0.001880 

ko04060 Cytokine-cytokine receptor interaction Environmental Information Processing 6 0 6 0.001880 

ko04657 IL-17 signaling pathway Organismal Systems 4 0 4 0.001880 

ko05167 
Kaposi sarcoma-associated herpesvirus 

infection 
Human Diseases 5 0 5 0.001880 

ko04061 
Viral protein interaction with cytokine 

and cytokine receptor 
Environmental Information Processing 4 0 4 0.001880 

ko04931 Insulin resistance Human Diseases 3 1 4 0.002730 

ko04066 HIF-1 signaling pathway Environmental Information Processing 4 0 4 0.003150 

ko05131 Shigellosis Human Diseases 5 0 5 0.004580 

ko04068 FoxO signaling pathway Environmental Information Processing 4 0 4 0.004580 

ko05202 Transcriptional misregulation in cancers Human Diseases 5 0 5 0.005560 

ko04932 
Non-alcoholic fatty liver disease 

(NAFLD) 
Human Diseases 4 0 4 0.006410 

ko04115 p53 signaling pathway Cellular Processes 3 0 3 0.006410 

ko04217 Necroptosis Cellular Processes 4 0 4 0.006410 

ko05161 Hepatitis B Human Diseases 3 1 4 0.006410 

ko05323 Rheumatoid arthritis Human Diseases 4 0 4 0.006410 

ko01524 Platinum drug resistance Human Diseases 3 0 3 0.006770 

ko05164 Influenza A Human Diseases 4 0 4 0.007550 

ko05165 Human papillomavirus infection Human Diseases 4 1 5 0.011500 

ko04211 Longevity regulating pathway - mammal Organismal Systems 2 1 3 0.011700 

ko04933 
AGE-RAGE signaling pathway in 

diabetic complications 
Human Diseases 3 0 3 0.014200 

ko05132 Salmonella infection Human Diseases 4 0 4 0.014600 

ko04928 
Parathyroid hormone synthesis, 

secretion and action 
Organismal Systems 1 2 3 0.014900 

ko05142 
Chagas disease (American 

trypanosomiasis) 
Human Diseases 3 0 3 0.014900 

ko01523 Antifolate resistance Human Diseases 2 0 2 0.015100 

ko04659 Th17 cell differentiation Organismal Systems 3 0 3 0.015400 

ko04215 Apoptosis - multiple species Cellular Processes 2 0 2 0.016000 

ko05332 Graft-versus-host disease Human Diseases 2 0 2 0.018500 

ko05152 Tuberculosis Human Diseases 4 0 4 0.018900 

ko05216 Thyroid cancer Human Diseases 2 0 2 0.019300 

ko05219 Bladder cancer Human Diseases 2 0 2 0.022800 

ko05130 Pathogenic Escherichia coli infection Human Diseases 4 0 4 0.025000 

ko05162 Measles Human Diseases 3 0 3 0.027600 

ko05160 Hepatitis C Human Diseases 3 0 3 0.033800 

ko04218 Cellular senescence Cellular Processes 3 0 3 0.033800 
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ko05144 Malaria Human Diseases 2 0 2 0.033800 

ko05014 Amyotrophic lateral sclerosis (ALS) Human Diseases 2 0 2 0.035600 

ko05134 Legionellosis Human Diseases 2 0 2 0.035600 

ko05213 Endometrial cancer Human Diseases 2 0 2 0.040200 

ko04623 Cytosolic DNA-sensing pathway Organismal Systems 2 0 2 0.040200 

ko05217 Basal cell carcinoma Human Diseases 2 0 2 0.040200 

ko05200 Pathways in cancer Human Diseases 5 0 5 0.041500 

ko00524 
Neomycin, kanamycin and gentamicin 

biosynthesis 
Metabolism 1 0 1 0.041500 

ko05223 Non-small cell lung cancer Human Diseases 2 0 2 0.043800 

ko05321 Inflammatory bowel disease (IBD) Human Diseases 2 0 2 0.043800 

ko05230 Central carbon metabolism in cancer Human Diseases 2 0 2 0.047400 

ko05211 Renal cell carcinoma Human Diseases 2 0 2 0.047400 

ko05218 Melanoma Human Diseases 2 0 2 0.047400 

ko05203 Viral carcinogenesis Human Diseases 2 1 3 0.047400 

ko05133 Pertussis Human Diseases 2 0 2 0.048100 

ko05214 Glioma Human Diseases 2 0 2 0.048100 

ko05220 Chronic myeloid leukemia Human Diseases 2 0 2 0.048100 

ko05212 Pancreatic cancer Human Diseases 2 0 2 0.049600 

 

Supplementary Table 3. miRNA prediction. 


