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ABSTRACT

To date, only some cancer patients can benefit from
chemotherapy and targeted therapy. Drug resistance
continues to be a major and challenging problem
facing current cancer research. Rapidly accumulated
patient-derived clinical transcriptomic data with can-
cer drug response bring opportunities for explor-
ing molecular determinants of drug response, but
meanwhile pose challenges for data management,
integration, and reuse. Here we present the Cancer
Treatment Response gene signature DataBase (CTR-
DB, http://ctrdb.ncpsb.org.cn/), a unique database
for basic and clinical researchers to access, inte-
grate, and reuse clinical transcriptomes with can-
cer drug response. CTR-DB has collected and uni-
formly reprocessed 83 patient-derived pre-treatment
transcriptomic source datasets with manually cu-
rated cancer drug response information, involving
28 histological cancer types, 123 drugs, and 5139
patient samples. These data are browsable, search-
able, and downloadable. Moreover, CTR-DB sup-
ports single-dataset exploration (including differen-
tial gene expression, receiver operating character-
istic curve, functional enrichment, sensitizing drug
search, and tumor microenvironment analyses), and
multiple-dataset combination and comparison, as
well as biomarker validation function, which provide

insights into the drug resistance mechanism, predic-
tive biomarker discovery and validation, drug combi-
nation, and resistance mechanism heterogeneity.

INTRODUCTION

Because of cancer heterogeneity, at present both for
chemotherapy and targeted therapy, the treatment response
rate of patients is still far below 100%. For example, a meta-
analysis of phase II single-agent clinical studies (570 studies;
32 149 patients) has shown that the median response rate of
chemotherapy is only 11.9%, and even for personalized tar-
geted therapy, this rate is only 30% (1). Cancer drug resis-
tance continues to be a major and challenging problem fac-
ing current cancer research (2). The key to solve this prob-
lem is to understand the underlying drug resistance mech-
anism, to identify predictive biomarkers for precise patient
stratification, and even to develop combinational drugs for
overcoming the drug resistance.

In the era of precision medicine, rapidly accumulated
patient-derived clinical transcriptomic data with cancer
drug response bring opportunities for solving the prob-
lem, but meanwhile propose computational needs for the
data management, integration, and (re-) use. Previous stud-
ies have proved that patient-derived clinical transcriptomes
with therapy response can help reveal drug resistance mech-
anism (3,4), and baseline (i.e. pre-treatment) transcriptomic
signals of patients are promising biomarker candidates for
predicting drug response (5,6). However, these data are al-
ways scattered and often mixed with various other types of
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data (such as cell line level data), and meanwhile they often
use different terminologies, use inconsistent data process-
ing pipelines, have non-uniform data formats, and usually
have poor machine-readable metadata, which greatly hin-
ders their access, integration, and reuse.

Great efforts have been devoted to integrating and
reusing the transcriptomic data with cancer drug response,
such as CellMinerCDB (7), GDA (8), Xeva (9), Borisov et
al.’s work (10), ROCplot.org (11–13) and CDRgator (14).
Both CellMinerCDB and GDA aim to integrate molecu-
lar and drug sensitivity data of cancer cell lines. Mer et
al. developed Xeva, an open source software package, for
integrative analysis of pharmacogenomics data of patient-
derived xenografts (PDX) (9). Borisov et al. compiled a list
of 26 clinical transcriptomic datasets with drug response,
involving nine drugs and eight cancer types (available in the
supplementary file of their paper) (10). ROCplot.org is a
bioinformatics analysis tool used to validate candidate pre-
dictive biomarkers using patient-derived microarray data of
four cancer types. CDRgator provides a resource of can-
cer drug resistance signatures (i.e. differentially expressed
genes) extracted from transcriptomes of cancer cell lines
and melanoma patient samples. All these resources have
contributed greatly to the cancer drug resistance research,
however, a database devoted to collecting the abundant and
valuable patient-derived clinical transcriptomes with drug
response covering multiple cancer types is still lacking.

Here, we present the Cancer Treatment Response gene
signature DataBase (CTR-DB), which is a web-based, user-
friendly, and interactive database, specially designed to
comprehensively collect and uniformly reprocess patient-
derived clinical transcriptomic data with cancer drug re-
sponse information, and meanwhile to provide various data
analysis functions facilitating the integration and reuse of
these data. CTR-DB has collected 83 patient-derived base-
line microarray or RNA-seq source datasets with manu-
ally curated cancer drug response information, involving
28 histological cancer types, 275 therapeutic regimens, 123
drugs (covering chemotherapy, targeted therapy, and im-
munotherapy), and 5139 patient samples. Moreover, CTR-
DB supports single-dataset exploration (including differen-
tial gene expression analysis, receiver operating character-
istic curve analysis, functional enrichment analysis, sensi-
tizing drug discovery, and tumor microenvironment analy-
sis), multiple-dataset combination and comparison, and the
function of biomarker validation. In ‘Results’ section we in-
troduced these functions in detail. Besides, we also provided
a use case (in ‘Use case’ part) to demonstrate the usage and
value of all these functions, aided by CTR-DB datasets re-
lated to anti-PD1/PD-L1 therapy resistance.

MATERIALS AND METHODS

Data collection and curation

We collected and curated patient-derived clinical transcrip-
tomic datasets with cancer drug treatment response from
GEO (until 20201014) (15), ArrayExpress (until 20201214)
(16), and TCGA (17).

Specifically, for GEO and ArrayExpress, firstly the po-
tentially related datasets were identified by retrieval with

the cancer-related keywords such as ‘cancer’, ‘carcinoma’,
‘tumor’, ‘neoplasm’ or ‘malignancy’, the drug-related key-
words such as ‘treatment’, ‘therapy’ or ‘drug’, and the
patient sample-related keywords such as ‘clinical’, ‘pa-
tient’ or ‘sample’ as well as by further filtering with
‘Homo sapiens’. Then among ∼15 000 potentially related
datasets, according to the inclusion criteria described be-
low, we manually collected qualified datasets. For the
qualified dataset, we downloaded the expression data di-
rectly from the GEO/ArrayExpress website for the mi-
croarray data and from SRA (18) for the RNA-seq data,
and manually curated the corresponding metadata from
GEO/ArrayExpress records or the original references. The
collected metadata mainly included sample ID, cancer sub-
type (of the minimum granularity), childhood cancer or
not, therapeutic regimen, drug response status annotated by
original authors, response status definitions (if necessary),
data type, platform, source etc.

For TCGA data, firstly we downloaded the TCGA
patient clinical information with the help of ‘TC-
GAbiolinks’ R package (19). Then according to
the inclusion criteria described below, we manually
picked qualified patients together with the corre-
sponding drug response information, mainly based on
‘days to drug therapy start’, ‘days to drug therapy end’,
‘days to sample procurement’, ‘drug name’ and ‘mea-
sure of response’ fields. We manually recorded metadata
of each qualified patient, with data fields the same as
those of GEO/ArrayExpress data above. We downloaded
expression profiles (count data) of qualified patients from
UCSC Xena browser (20). For a patient with multiple
sample expression profiles, the expression profile with
sample ID containing ‘01A’ was preferred.

Dataset inclusion criteria

1) Baseline (i.e. pre-treatment) expression profiles.
2) For GEO/ArrayExpress, source datasets with less than

10 samples were excluded.
3) In order to achieve the uniform expression data re-

processing, for GEO and ArrayExpress, only datasets
providing CEL files (for microarray data) or FASTQ files
(for RNA-seq data) were collected.

4) For microarray data, we only collected datasets
produced from GPL96 [HG-U133A], GPL570 [HG-
U133 Plus 2] and GPL571 [HG-U133A 2] platforms,
because these three platforms are widely used and use
the same probes to measure the same genes (11).

5) For TCGA samples, we only considered the first-round
drug usage after the sample was obtained, together with
its corresponding drug response. For the usage of multi-
ple drugs in the same time period, we recorded them as a
drug combination. And we deleted samples using com-
binational drugs with inconsistent drug response infor-
mation.

Overall, CTR-DB has collected 83 patient-derived base-
line microarray or RNA-seq source datasets with cancer
drug response information (for TCGA, a TCGA Project,
such as ‘TCGA-BRCA’, corresponds to a source dataset),
involving 5139 patient samples.
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Unified gene expression data reprocessing

To facilitate data integration and reuse, for each collected
source dataset, gene expression data were reprocessed by a
unified pipeline established by us, starting from CEL files
for microarray data and FASTQ files for RNA-seq data.

Microarray data processing pipeline. Starting from raw
CEL files, microarray data preprocessing was implemented
with the help of the ‘rma’ function of the ‘affy’ R pack-
age (21). And the processing steps mainly included back-
ground correction, normalization, pm correction, summary
expression value computation. After ‘rma’ processing, the
expression data have already been log2 transformed. The
probes were converted into gene symbols according to the
platform-specific probe annotation file using the functions
‘annPkgName’ and ‘aafSymbol’ of the ‘affy’ R package
(21). When multiple probes were mapped to a single gene
symbol, the maximum expression value was used.

GEO/ArrayExpress RNA-seq data processing pipeline. All
RNA-seq data were obtained in FASTQ format. FASTQ
files were first processed through Trim Galore! (ver-
sion: 0.6.6) (https://www.bioinformatics.babraham.ac.uk/
projects/trim galore/), which is a Perl wrapper around the
two tools FastQC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and Cutadapt (22), mainly used to
trim off low-quality bases, then find and remove adapter se-
quences from the 3′ end of reads, and remove reads with
sequence length shorter than 20 bp. Then STAR (version:
2.7.6a) (2-pass mode) was used for alignment to generate
BAM files (23). After that, we used HTSeq (version: 0.12.4)
to count the reads mapped to each gene (24). Read counts
were normalized using the ‘Fragments per Kilobase of tran-
script per Million mapped reads’ (FPKM) method.

TCGA RNA-seq data processing pipeline. Because
GEO/ArrayExpress RNA-seq data preprocessing
described above used the pipeline consistent with
that of TCGA (https://docs.gdc.cancer.gov/Data/
Bioinformatics Pipelines/Expression mRNA Pipeline/),
we directly downloaded log2(count + 1) data provided
by UCSC Xena (20) (https://xenabrowser.net/datapages/
?hub=https://gdc.xenahubs.net:443). These data were
reverted into original counts. Read count normalization
used the same way as stated above.

Batch effect removal. For microarray data, batch effect
removal was done by the ‘ComBat’ function of the ‘sva’
R package (25); For RNA-seq data, by the ‘ComBat seq’
function of the ‘sva’ R package (26).

‘CTR-DB dataset’ definition

The processed source datasets were further divided into
‘CTR-DB datasets’, each of which was composed of sam-
ples with the same therapeutic regimen and cancer subtype
(of the minimum granularity). Overall, 83 source datasets
were divided into 626 CTR-DB datasets. Further, a CTR-
DB dataset was subdivided into subsets, each of which was
composed of samples with the same original drug response
state annotated by original authors (e.g. complete response

or stable disease). These CTR-DB sub-datasets were pre-
pared to be used for the ‘Combine’ function of CTR-DB.

Predefined response and non-response grouping

For each CTR-DB dataset, we divided samples into re-
sponse and non-response groups, so that we can perform
various pre-analyses on the dataset under this predefined
grouping.

Generally, if original authors annotated the response sta-
tus of samples with four groups (complete response, CR;
partial response, PR; stable disease, SD; progressive disease,
PD), we divided the samples with CR and PR into the re-
sponse group, and those with SD and PD into the non-
response group. In some cases, original authors classified
the samples into three or five groups, and then we further di-
vided them into response and non-response groups using a
criterion imitating the 4-group classification principle stated
above. If the source reference annotated the samples with
only two drug response groups, our grouping was consis-
tent with the original reference. The grouping standard for
each CTR-DB dataset together with the corresponding defi-
nitions of the original response states curated from the orig-
inal reference is provided on the detailed annotation page of
the CTR-DB dataset. Users can change the response/non-
response grouping standard by themselves to re-analyze the
CTR-DB datasets, by ‘Combine’ function of CTR-DB.

Terminology standardization

Drugs were harmonized by the IDs and names of Drug-
Bank (27), ChEMBL (28) and PubChem (29). Cancers
were manually harmonized based on the Disease Ontol-
ogy (version: March 2021) (30) and the WHO Classifica-
tion of Tumours Online (https://tumourclassification.iarc.
who.int/) (accessed from January to April 2021). Genes were
harmonized by the Entrez Gene IDs (31) and HGNC gene
symbols (32).

Annotation information integration

In CTR-DB, we also integrated various annotations for
drugs, cancers and genes from external databases. For
drugs, target annotations were from DrugBank (version:
20201004), and drug types (chemotherapy, targeted ther-
apy and immunotherapy) were from TCGA clinical infor-
mation annotations or were manually curated. For can-
cers, annotations were from Disease Ontology (version:
March 2021). For genes, gene set annotations (including
KEGG pathway (33), Reactome pathway (34), WikiPath-
ways (35), hallmark gene set (36), microRNA target and
transcription factor target) were from the Molecular Signa-
tures Database (MSigDB, v7.4) (36). Gene functional cate-
gories (including G protein-coupled receptor, GPCR; tran-
scription factor, TF; kinase; ion channel; transporter; nu-
clear hormone receptor; and whether the gene contains sig-
nal peptides or transmembrane regions), Enzyme Commis-
sion (EC) number, subcellular location, interacting genes
etc. were from POPPIT (http://poppit.ncpsb.org.cn/). Data
on drugs/compounds that can inhibit the target genes were
from DrugBank (version: 20201004) and DGIdb (version:
2021-January) (37).

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Differential gene expression analysis

In order to reveal drug resistance-related molecules and dis-
cover candidate predictive biomarkers for drug response,
CTR-DB supports differential gene expression analysis and
receiver operating characteristic (ROC) curve analysis (38)
between non-responders and responders. The obtained dif-
ferentially expressed genes (DEG) constitute the drug re-
sistance signature. The differential gene expression analysis
was implemented by ‘limma’ R package (39) for microarray
data and by ‘DESeq2’ R package (40) for RNA-seq data.
The ROC AUC was calculated by ‘pROC’ R package (41)
and we used one sample t test to examine its statistic dif-
ference from 0.5. Adjusted P-values were computed based
on Benjamini-Hochberg (BH) multiple testing correction
method (42).

Functional enrichment analysis

To describe the functional characteristics of a drug re-
sistance signature, CTR-DB supports over-representation
analysis (ORA) and gene set enrichment analysis (GSEA)
(43). Here both ORA and GSEA support six classes of
gene sets, including 186 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, 50 hallmark gene sets, 1604
Reactome pathways, 615 WikiPathways, target sets for 2598
microRNAs, and target sets for 1133 transcription factors
from MSigDB (v7.4). ORA was performed based on sta-
tistically significantly DEGs (satisfying some |log FC| and
adjusted P-value cutoffs). GSEA was performed based on
all genes ranked by log FCs. In ORA, enrichment ratio was
computed as the ratio of the proportion of gene set member
genes among significantly DEGs to that among the whole
genome, measuring the enrichment degree of a gene set.
In GSEA, the enrichment score (ES) measures the degree
to which a gene set is over-represented at the top or bot-
tom of the ranked genes, and the normalized enrichment
score (NES) further considers differences of gene set size
(43). Here ORA and GSEA as well as the result visualiza-
tion were implemented with the help of ‘clusterProfiler’ R
package (44). Adjusted P-values were obtained based on
BH multiple testing correction method.

L1000CDS2 analysis

L1000CDS2 analysis was used to search candidate drugs
that can reverse the drug resistance signature. This func-
tion was implemented with the help of the API of the
L1000CDS2 search engine (45). When up-regulated and
down-regulated genes are submitted, the search engine
compares them to the differentially expressed genes com-
puted from the LINCS L1000 small-molecule disturbance
profiles (on a certain cell line, with a certain drug dose and
sampling time) (46), and the top 50 matched opposite drug
signatures are returned.

Tumor microenvironment analysis

The purpose of this analysis is to explore tumor microen-
vironment (TME) factors correlated to the drug resistance.
Firstly, based on the sample gene expression profile, we used

‘Estimation of STromal and Immune cells in MAlignant Tu-
mours using Expression data’ (ESTIMATE) method to in-
fer the fraction of stromal and immune cells in a patient
sample as well as tumor purity (measured by the ‘ESTI-
MATE score’, a normalized version of the ‘TumorPurity’,
with [0, 1] range) with the help of ‘estimate’ R package
(47), and used Microenvironment Cell Populations-counter
(MCP-counter) method to predict the abundance of 10 cell
populations, including CD3+ T cells, CD8+ T cells, cy-
totoxic lymphocytes, natural killer (NK) cells, B lympho-
cytes, cells originating from monocytes (monocytic lineage),
myeloid dendritic cells, neutrophils, as well as endothelial
cells and fibroblasts, with the help of ‘MCPcounter’ R pack-
age (48). Then we used the two-sided t test and ROC curve
analysis to analyze the difference and search TME indexes
that can discriminate between non-responders and respon-
ders. The adjusted P-value was computed by BH multiple
testing correction method.

Meta-analysis

We used sumz method in the ‘metap’ R package (https:
//CRAN.R-project.org/package=metap) to integrate P-
values of individual CTR-DB datasets into a meta-P-value,
and used BH method to adjust the P-value. Items with small
meta-P-values have strong and consistent associations with
drug resistance across CTR-DB datasets (49).

Database implementation

The bottom of CTR-DB was a MongoDB database (https:
//docs.mongodb.com/). Above this database, the analysis
application was written in R and Python. The web presen-
tation application was implemented in Vue.js (https://vuejs.
org/). The doughnut chart on the homepage was drawn
using Apache ECharts (https://echarts.apache.org/en/index.
html), the volcano plot and barplot using ‘ggplot2’ R pack-
age (50), the heatmap using ‘ComplexHeatmap’ R package
(51), the boxplot using ‘ggpubr’ R package (https://CRAN.
R-project.org/package=ggpubr), and the ROC curve plot
using ‘pROC’ R package.

RESULTS

Overview of CTR-DB

CTR-DB is a user-friendly, interactive, and comprehensive
database for patient-derived gene expression signatures
correlated with cancer drug response (Figure 1). The core
patient-derived clinical transcriptomic datasets and the
corresponding cancer drug response information were man-
ually collected and curated from GEO, ArrayExpress and
TCGA. All transcriptomic data were re-processed using
the uniform data processing pipeline, starting from raw
CEL files for microarray data and FASTQ files for RNA-
seq data. The terminologies of drugs, cancers and genes
were harmonized, respectively. The source datasets were
further divided into CTR-DB datasets, each of which was
composed of samples with the same therapeutic regimen
and cancer subtype (of the minimum granularity). For each
CTR-DB dataset, we performed the uniform data analysis
under a predefined responder and non-responder grouping,

https://CRAN.R-project.org/package=metap
https://docs.mongodb.com/
https://vuejs.org/
https://echarts.apache.org/en/index.html
https://CRAN.R-project.org/package=ggpubr
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Figure 1. Overview of CTR-DB. CTR-DB is a comprehensive database, designed to collect patient-derived clinical transcriptomes with cancer drug re-
sponse and meanwhile to provide various analysis functions to facilitate data integration and (re-) use. ‘Combine’ function is designed for CTR-DB dataset
combination analysis, and ‘Compare’ aims for multiple-dataset comparison.

and the pre-analysis results can be browsed by the detailed
annotation page of the corresponding CTR-DB dataset.
The analysis results mainly include differential gene ex-
pression analysis, receiver operating characteristic (ROC)
curve analysis, over-representation analysis (ORA), gene
set enrichment analysis (GSEA), L1000CDS2 analysis,
and tumor microenvironment (TME) analysis, aiming
to reveal the drug resistance mechanism and to discover
candidate predictive biomarkers and candidate combi-
national drugs that can overcome the drug resistance. In
addition, in CTR-DB we also integrated cancer/drug/gene-
related various annotations from external
databases.

The main functional modules of CTR-DB include
‘Browse’, ‘Combine’, ‘Compare’ and ‘Biomarker valida-
tion’ (Figure 1). ‘Browse’ supports basic database browse,
retrieve and download, by which the detailed annotation
pages of each CTR-DB dataset and each gene can be ac-
cessed, and CTR-DB datasets can also be downloaded.
Other modules are designed to facilitate the data integration
and reuse. ‘Combine’ supports user-customized CTR-DB
dataset combination analysis, typically used for the analy-
sis for a drug class or a cancer type of a coarser granularity.
‘Compare’ facilitates the comparison of analysis results of
multiple datasets and implements the meta-analysis across
CTR-DB datasets. Finally, by ‘Biomarker validation’ users
can validate the interested candidate predictive biomark-
ers using transcriptomes of CTR-DB patient cohorts, which
cover various drugs and cancer types. All analysis results are
visually presented in the form of heatmap, ROC curve plot,

volcano plot, barplot, boxplot etc. and various result tables,
and all of them are downloadable.

Data statistics of CTR-DB

CTR-DB has comprehensively collected 83 patient-derived
baseline transcriptomic datasets with manually curated can-
cer drug response information. These source datasets were
divided into 626 CTR-DB datasets (Figure 2A), each of
which was composed of samples with the same therapeu-
tic regimen and cancer subtype. These CTR-DB datasets
involve 28 histological cancer types, 275 therapeutic regi-
mens (Figure 2B), 123 drugs covering chemotherapy, tar-
geted therapy and immunotherapy (Figure 2C), and 5139
patient samples (Figure 2D). In our data, breast cancer has
the largest sample size (Figure 2D), and breast cancer, skin
cancer, stomach cancer, lung cancer, and colorectal cancer
have relatively more therapeutic regimens and drugs (Figure
2E). From Figure 2F, we see that most CTR-DB datasets
have a relatively small number of samples. These CTR-DB
datasets with small sample size are mainly from TCGA. In
TCGA data, among patients with the same cancer subtype
(of minimum granularity), on average, only three patients
shared the same therapeutic regimen, while 29 and 24 for
GEO-derived and ArrayExpress-derived data, respectively.
There are 76 CTR-DB datasets that have at least five respon-
ders and five non-responders with total sample size greater
than 10, covering 3628 samples, 17 histological cancer types,
58 therapeutic regimens, and 48 drugs. However, the CTR-
DB datasets with small sample size are also valuable, such
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Figure 2. Data statistics of CTR-DB. (A) CTR-DB dataset distributions across data types (the inner ring), sources (the middle ring), and histological
cancer types (the outer ring). (B) Therapeutic regimen distribution on monotherapy and drug combination. (C) Drug type distribution on chemotherapy,
targeted therapy, and immunotherapy. (D) Sample distributions across data types (the inner ring), sources (the middle ring), and cancer types (the outer
ring). (E) The number of therapeutic regimens/drugs of different cancer types. (F) The sample size statistics of CTR-DB datasets. (G) The number statistics
of histological cancer types treated by therapeutic regimens/drugs.

as used to be merged with other datasets into a larger com-
bined dataset for a certain cancer (sub-) type or a certain
drug class of a coarser particle size. Finally, in our data we
also see that most drugs/therapeutic regimens are applied
to only one histological cancer type, and drugs/therapeutic
regimens used in multiple cancer types are in the minority
(Figure 2G).

CTR-DB browse

By the ‘Browse’ of CTR-DB, users can browse and re-
trieve CTR-DB datasets, drugs, cancers, and genes, and fur-
ther access the detailed annotation pages of each CTR-DB
dataset and each gene. Moreover CTR-DB datasets can also
be downloaded here (Figure 3).

On the dataset browse page (Figure 3A), all CTR-DB
datasets together with their simplified metadata are shown
in the table on the right. Users can use dataset filtering
function on the left to identify the interested ones, accord-
ing to drug type (chemotherapy, targeted therapy, and im-
munotherapy), drug name, cancer type, dataset sample size,
and data type (microarray and RNA-seq). Clicking on the
CTR-DB ID in the table will lead to the detailed annota-
tion page of the CTR-DB dataset (Figure 3B), on which
besides the detailed annotations about the dataset (Fig-

ure 3B(i)), the pre-analysis results of the CTR-DB dataset
under the default responder and non-responder grouping
will also be presented (Figure 3B(ii)) (see ‘Single CTR-DB
dataset exploration’ section below). The detailed annota-
tions for a CTR-DB dataset mainly include cancer subtype,
pediatric cancer or not, drug and drug annotations, source,
data type, platform, sample number, responder number,
non-responder number, the default response/non-response
grouping standard etc. In the dataset browse table, users can
select one or multiple CTR-DB dataset(s) and then use the
‘Download selected files’ button to download the uniformly
reprocessed expression matrix (log2 expression value for mi-
croarray data and count for RNA-seq data) and clinical in-
formation files, or download all CTR-DB datasets in the
table by the ‘Download All’ button (Figure 3A).

On the drug browse page (Figure 3C), drugs are classi-
fied into three types (chemotherapy, targeted therapy, and
immunotherapy); and on the cancer browse page (Figure
3D), cancer types and subtypes are organized into a hierar-
chy tree of six levels. Drugs and cancer (sub-) types can be
searched by name. Once a drug or a cancer (sub-) type is se-
lected, its related annotations will be presented in the report
table on the right, including drug type, cross-references, tar-
gets as well as the number of CTR-DB datasets related to
the drug or the cancer type etc. Clicking on the ‘Dataset
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Figure 3. ‘Browse’ module of CTR-DB. (A) CTR-DB dataset browse page. Clicking on the CTR-DB dataset ID will lead to the detailed annotation page
of the dataset. (B) The detailed annotation page of a CTR-DB dataset, on which besides the detailed annotations (i), the pre-analysis results of the dataset
(ii) will also be presented. (C) Drug browse page. (D) Cancer browse page. (E) Gene browse page. Clicking on the interested gene line in the gene browse
table will lead to the detailed annotation page of the gene. (F) The detailed annotation page of a gene, on which the detailed gene annotations (i) and the
‘biomarker validation’ results of the gene (ii) are shown. (G) The doughnut of data statistics on the homepage, by which CTR-DB datasets can also be
browsed through clicking on each sector on the graph.
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number’ in the table will lead to the dataset browse page
presenting the related CTR-DB datasets.

On the gene browse page (Figure 3E), genes can be
searched by gene symbol. Clicking on the interested gene
line in the gene browse table will lead to the detailed an-
notation page of the gene (Figure 3F), on which we will
give the detailed annotations of the gene (Figure 3F(i)) as
well as the analysis results of ‘Biomarker validation’ func-
tion of the gene (Figure 3F(ii)) (see ‘Biomarker valida-
tion’ section below). The gene annotations mainly include
functional categories (including TF, GPCR, kinase, trans-
porter, ion channel, whether the gene contains signal pep-
tides or transmembrane regions etc.), subcellular location,
interacting proteins, gene set annotations (including KEGG
pathway, Reactome pathway, hallmark gene set, WikiPath-
ways, microRNA target and TF target) etc., as well as
drugs/compounds that can inhibit the gene.

In addition, users can also browse CTR-DB datasets
through the doughnut of data statistics on the CTR-DB
homepage (Figure 3G). The outer ring of the doughnut
shows histological cancer types, the middle ring shows drug
types, and the inner ring shows data types. Sectorial area
is proportional to the number of CTR-DB datasets related
to the item. Clicking on each area will lead to the dataset
browse page presenting the related CTR-DB datasets.

Single CTR-DB dataset exploration

For each CTR-DB dataset, we performed the uniform data
analysis under a predefined responder and non-responder
grouping, and the analysis results can be browsed on the
detailed annotation page of the corresponding CTR-DB
dataset. The analyses include two sections: resistance sig-
nature analysis and tumor microenvironment analysis. All
result figures and tables can be downloaded.

Resistance signature analysis. The drug resistance signa-
ture is referred to as the significantly differentially expressed
genes (DEG) between non-responders and responders in a
dataset. The resistance signature analysis, including ‘DEG’,
‘GSEA’, ‘ORA’ and ‘L1000CDS2 analysis’, may help reveal
drug resistance mechanism, discover predictive biomarkers,
and even discover sensitizing drugs. The significantly DEGs
are defined as those with the absolute values of ‘log2(fold
change)’ (i.e. |log FC|) larger than a certain cutoff and mean-
while the adjusted P-values smaller than a certain cutoff.
Users can change the cutoffs on the resistance signature
analysis result page (Figure 4A). Once the cutoffs are up-
dated, the DEG, ORA and L1000CDS2 analysis results will
be correspondingly updated.

The DEG tab gives the analysis results of DEGs, includ-
ing a volcano plot, a heatmap, and a detailed result table
of significantly DEGs together with a boxplot and a ROC
curve plot for each DEG (Figure 4A). These results help
reveal drug resistance-related molecules and candidate pre-
dictive biomarkers. The volcano plot visualizes the log FCs
and adjusted P-values of all genes, highlighting the signif-
icantly DEGs. The heatmap is drawn based on top 10 sig-
nificantly up-regulated genes and top 10 significantly down-
regulated genes, according to the order of log FCs, present-
ing the gene expression levels of these genes across resistant

and sensitive samples in the dataset. In the result table, for
each gene, the presented results include log FC, P-value, and
adjusted P-value from the differential gene expression anal-
ysis, and AUC, P-value and adjusted P-value from the ROC
curve analysis. Genes can be re-ranked based on these fields.
The gene with a large |log FC| and a small P-value may play
an important role for drug resistance. ROC AUC can mea-
sure the ability of a gene discriminating between respon-
ders and non-responders, and genes with large AUCs are
potential predictive biomarkers for drug response. Clicking
on ‘>’ before the gene symbol in the table will show the vi-
sualized results of the gene, including a boxplot presenting
the expression level of the gene across resistant and sensi-
tive samples, and a ROC curve plot. Further clicking on the
gene symbol in the table will lead to the detailed annotation
page for the gene, on which known drugs that can inhibit the
gene will be listed (Figure 4B). This inhibitor annotation is
particularly useful for searching drugs that can inhibit the
drug resistance-related significantly up-regulated genes, and
these drugs might be candidates that can help overcome the
drug resistance.

In the ORA tab, over-representation analysis (ORA) re-
sults of significantly DEGs are shown, describing the func-
tional characteristics of the drug resistance signature (Fig-
ure 4C). Here, six classes of functional gene sets are sup-
ported, including KEGG pathway, hallmark gene set, Reac-
tome pathway, WikiPathways, microRNA target, and tran-
scription factor target. This analysis helps discover the can-
didate biological pathways, microRNAs, and TFs that are
important for drug resistance. For each class of gene sets,
a detailed result table and a barplot presenting the top 10
gene sets, according to the increasing order of the adjusted
P-value will be shown. Generally, gene sets with small P-
values are noteworthy, and enrichment ratio larger/smaller
than 1 means that the gene set is enriched/depleted.

The GSEA tab presents the gene set enrichment analy-
sis (GSEA) results based on all genes ranked by log FCs
(Figure 4D). ORA qualitatively considers genes with large
expression differences (i.e. significantly DEGs), but when
for a set of functionally related genes, the expression dif-
ferences are small but their changes are in a coordinated
way, ORA doesn’t work. Many relevant phenotypic differ-
ences are caused by small but consistent changes in a set of
genes. GSEA addresses this limitation (43). Here, six classes
of gene sets (the same as ORA) are supported. For each
class of gene sets, the presented results include a result table
and two barplots showing the top 10 up-regulated gene sets
(NES >1) and the top 10 down-regulated gene sets (NES
<−1), respectively, according to the increasing order of the
adjusted P-value. Generally, gene sets with |NES| >1 and
small P-values are noteworthy.

In the L1000CDS2 analysis tab, top 50 drug signatures
that can reverse the drug resistance signature are listed (Fig-
ure 4E), with the help of L1000CDS2 search engine (45).
The resistance signature that is obtained by comparing ex-
pression profiles between non-responders and responders to
drug A can suggest the reasons of the drug A resistance,
and then we assume that a drug B that can reverse the resis-
tance signature might be able to restore the patient response
to the treatment. That is, drug B is a candidate combina-
tional drug that may sensitize drug A. In fact, this principle
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Figure 4. Single CTR-DB dataset analysis results. Here we use the results for the dataset of CTR RNAseq 197 as the example. The results include
‘Resistance signature analysis’ (A, B, C, D and E) and ‘Tumor microenvironment analysis’ (F). (A) The resistance signature analysis result page and the
results of the DEG tab. On this page, cutoffs to define significantly DEGs can be changed. And once the cutoffs are changed, the resistance signature
analysis results will be updated. In the DEG tab, differential gene expression analysis results include a result table, a volcano plot, and a heatmap. Clicking
on ‘>’ before each gene in the result table will show a boxplot visualizing the differential expression analysis result and a ROC curve plot of the gene
(shown by the embedded figure). Clicking on the gene symbol in the table will lead to the detailed annotation page of the gene, on which drugs/compounds
known to inhibit the gene are given. (B) The inhibitor annotations on the detailed annotation page of gene CD52. (C) The ORA tab. Here shows the
KEGG pathway ORA results, including a result table and a barplot visualizing the results of the top 10 KEGG pathways ranked by adjusted P-values.
(D) The GSEA tab. Here shows the KEGG pathway GSEA results, including a result table and two barplots separately visualizing the results of the top
10 up-regulated (NES >1) and down-regulated (NES <−1) KEGG pathways ranked by adjusted P-values. (E) The L1000CDS2 analysis tab. The result
table presents the drug signatures that can reverse the drug resistance signature. Histone deacetylase inhibitors are highlighted on the graph. (F) Tumor
microenvironment analysis result page, including a heatmap and a result table. Clicking on ‘>’ before each TME index in the result table will show the
visualized result plots of the differential analysis and ROC curve analysis of the TME index (shown by the embedded figure).
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has been proved to be effective to identify possible combi-
national drugs (52). Therefore this function is designed to
discover candidate combinational drugs that can overcome
the drug resistance.

Tumor microenvironment analysis. Increasing evidence in-
dicates that the tumor microenvironment (TME) is a cru-
cial determinant of therapeutic resistance of many drugs, in-
cluding chemotherapy, targeted therapy, and especially im-
munotherapy (53–55). One advantage of patient samples
is that they can reflect the TME to some extent (47,48),
and therefore this analysis is designed to reveal TME fac-
tors potentially associated with the drug resistance. Here
TME indexes are firstly computed based on the gene expres-
sion profile of each sample. These indexes mainly reflect the
abundance/fraction of various non-tumor cells and tumor
purity in a patient sample. Then we perform the differen-
tial analysis of these indexes between non-response and re-
sponse groups, to discover the drug resistance-related TME
factors. The significantly differential TME factors help un-
derstand the mechanism of drug resistance, and even can
be used as candidate predictive biomarkers. The presented
analysis results include a heatmap and a result table (Fig-
ure 4F). The heatmap visualizes the TME indexes across re-
sponsive and non-responsive samples. The result table gives
the log FC, P-value, and adjusted P-value of the differential
analysis and AUC, P-value, and adjusted P-value of ROC
curve analysis for each TME index. Clicking on ‘>’ before
each index will lead to the visualized results of the index,
including a boxplot and a ROC curve plot.

CTR-DB dataset combination analysis

By the ‘Combine’ function of CTR-DB, users can se-
lect and combine existing CTR-DB datasets and specify
the response/non-response grouping to perform the online
analysis. The supported analysis functions are the same as
the single-dataset analysis stated above. The purpose of this
function is typically to allow users to define response and
non-response groups according to their own needs; or to
combine samples with the same treatment regimen and can-
cer subtype from different sources to obtain a larger sample
size; or to merge CTR-DB datasets for a class of drugs (such
as PD1/PD-L1 inhibitors) or a cancer subtype of a coarser
granularity etc.

To achieve the above purpose, each CTR-DB dataset
(with a specific therapeutic regimen, cancer subtype, and
source) was further divided into subsets, each of which was
composed of samples with the same original drug response
state. The original drug response states of samples in each
CTR-DB dataset were provided by original authors. For
example, some CTR-DB datasets have four original drug
response states such as including complete response (CR),
partial response (PR), stable disease (SD), and progressive
disease (PD), some datasets have two states such as includ-
ing pathological complete remission (pCR) and residual
disease (RD), and some datasets have three or five origi-
nal states. On the ‘Combine’ page, all such CTR-DB sub-
datasets together with their key annotations are browsed,
and can be further filtered by the dataset filtering function
on the left. Users can specify which CTR-DB sub-datasets

constitute the response group and which constitute the non-
response group, and perform the further analysis.

During the dataset combination, users need to follow
some rules. RNA-seq and microarray datasets cannot be
combined. In addition, it is required that there is at least one
sample in response group and meanwhile at least one sam-
ple in non-response group, which are from the same source
dataset. Otherwise, we cannot distinguish whether the dif-
ference between responsive and non-responsive samples re-
sults from different batches or from the real biological dif-
ference. CTR-DB will check the submission, and the quali-
fied one can be used for the subsequent analysis. In addition,
users should be conscious that different CTR-DB datasets
may have different definitions of original response states.
Only samples with the same or similar original response
states are suggested to constitute a group. The definitions of
the original response states curated from the original refer-
ence can be checked on the detailed annotation page of each
CTR-DB dataset, which we suggest users to check before
dataset combination. The combination of adult and child
samples (annotated in the ‘Pediatric Oncology’ field) should
also be cautious.

CTR-DB dataset comparative analysis

‘Compare’ module implements the comparison of pre-
analysis results of user-selected multiple CTR-DB datasets
and their meta-analysis, aiming to explore the heterogene-
ity and homogeneity of drug resistance mechanism be-
tween different datasets (i.e. different patient cohorts) and
even discover possible ‘pan-dataset’ (i.e. ‘pan-cancer’ or
‘pan-drug’) shared resistance mechanism and predictive
biomarkers. The pre-analysis results that are supported to
be compared include differential gene expression analysis
(‘Gene logFC’), gene ROC curve analysis (‘Gene AUC’),
TME index differential analysis (‘Tumor microenvironment
logFC’), TME index ROC curve analysis (‘Tumor microen-
vironment AUC’), and KEGG pathway GSEA analysis
(‘KEGG NES’).

On ‘Compare’ page, users can select CTR-DB datasets
to be compared according to different needs. For example,
users can select multiple datasets with the same therapeutic
regimen and cancer type to study the heterogeneity and ho-
mogeneity of resistance mechanism across patient cohorts
from different sources, or can select datasets using the same
therapeutic regimen for different cancer (sub-) types, or se-
lect datasets for a drug class etc. Dataset filtering function
on this page can facilitate the selection. Here we only con-
sider CTR-DB datasets with sample size ≥10, responsive
sample number >1, and meanwhile non-responsive sample
number >1.

The comparative analysis results are shown in five tabs,
including ‘Gene logFC’, ‘Gene AUC’, ‘Tumor microen-
vironment logFC’, ‘Tumor microenvironment AUC’, and
‘KEGG NES’ (Figure 5). Each tab presents a detailed ta-
ble of result comparison together with a heatmap. Taking
‘Gene AUC’ as an example, in the result table, each row is
a gene, giving its ROC curve analysis results (AUCs and P-
values) across user-selected CTR-DB datasets together with
the meta-P-value and the adjusted meta-P-value. Meta-P-
value was obtained by integrating the P-values computed
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Figure 5. The result page of the ‘Compare’ module. Here, we use the comparison of three anti-PD1/PD-L1 therapy-related datasets as the example. (A)
Basic information for the user-selected CTR-DB datasets. Clicking on the CTR-DB ID in the table will lead to the detailed annotation page of the dataset.
(B) Comparative results. The results include five tabs, including ‘Gene AUC’, ‘Gene logFC’, ‘Tumor microenvironment AUC’, ‘Tumor microenvironment
logFC’, and ‘KEGG NES’. In each tab, a heatmap and a result table will be presented. Clicking on the gene symbol in the table will lead to the detailed
annotation page of the gene.

for each dataset, and a small meta-P-value means that the
gene has a strong and consistent association with drug resis-
tance across multiple datasets (49). For ‘Gene AUC’ result,
a gene with a small meta-P-value might be a potential ‘pan-
dataset’ predictive biomarker. For other results, small meta-
P-values suggest potential ‘pan-dataset’ resistance mech-
anism etc. The heatmap presents the AUCs across user-
selected CTR-DB datasets of top 10 genes, in the increasing
order of adjusted meta-P-values.

Biomarker validation

Predictive biomarkers can predict the patient response to a
drug, which are crucial for the cancer precise medicine (56).
‘Biomarker validation’ module mainly serves two purposes.

One is that for the interested candidate predictive biomarker
for a certain drug and a certain cancer type (e.g. supported
by the cell line level evidence), users can validate its predic-
tive ability using corresponding transcriptomes of CTR-DB
patient cohorts. The other is that for the interested gene,
users can check its correlation with drug resistances across
various cancer subtypes and drugs, which can help identify
the functional significance of the gene and design the fol-
lowing experiments.

This function can be accessed directly by ‘Biomarker
validation’ in the navigation bar or by the gene browse
page. Searching and further clicking on the interested gene,
the analysis results for the biomarker validation will be
shown on the detailed annotation page of the gene, in-
cluding a result table and two barplots (Figure 6). The re-
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Figure 6. The result page of the ‘Biomarker validation’ module. Here we use PD-L1 (i.e. CD274) as the example. The result table gives differential expression
analysis and ROC curve analysis results of the gene across CTR-DB datasets. Clicking on ‘>’ before each CTR-DB ID will show the visualized results
of the gene on this CTR-DB dataset, including a boxplot and a ROC curve plot (shown by the embedded figure). And clicking on the CTR-DB ID will
lead to the detailed annotation page of the CTR-DB dataset. Two barplots, respectively, visualize ROC curve analysis results and differential expression
analysis results of the gene against top 10 most significant CTR-DB datasets.

sult table presents both the differential expression analy-
sis results (log FC, P-value, adjusted P-value) and ROC
curve analysis results (AUC, P-value, adjusted P-value) for
the gene across CTR-DB datasets (a row corresponds to
a dataset). Users can identify the interested CTR-DB pa-
tient dataset based on cancer type and therapeutic regi-
men given in the result table. Here the CTR-DB datasets
meeting ‘sample size ≥10, responsive sample size >1, and
meanwhile non-responsive sample size >1’ are considered.
The barplot on the left presents ROC AUCs of the gene
against top 10 CTR-DB datasets, in the decreasing or-
der of AUCs. The right one presents log FCs of the gene
against top 10 CTR-DB datasets, in the decreasing or-
der of log FCs. The two barplots illustrate datasets (i.e.
the drugs and cancer types) whose drug resistances are
the most correlated to the expression of the interested
gene.

Use case

To demonstrate the usage of CTR-DB, we use anti-
PD1/PD-L1 therapy resistance as an example. PD1 is a fa-
mous immune checkpoint protein on T cells, and its binding
to PD-L1 on tumor cells promotes tumor immune escape.
Over the past several years, PD1/PD-L1 blockade therapy
has been used in multiple solid tumors such as non-small-
cell lung cancer (NSCLC) and melanoma, however, only a
small proportion of patients show clinical response (57,58).
Therefore, it is crucial to reveal molecular determinants of
anti-PD1/PD-L1 therapy response.

Resistance mechanism elucidation. The dataset of
CTR RNAseq 197 has 27 NSCLC patients receiv-
ing PD1/PD-L1 blockade therapy, including 19 non-
responders and 8 responders. Firstly by the ‘Resistance
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signature analysis’, we find that in non-responders in this
cohort PD-L1 is significantly down-regulated (i.e. CD274,
log FC = −1.15, P-value = 0.02) (Figure 4A), together with
its upstream JAK-STAT signaling pathway (NES = −1.49,
P-value = 2.31e−04) (Figure 4D) and its further upstream
INF-γ (i.e. IFNG, log FC = −1.82, P-value = 0.03). And
antigen processing and presentation pathway (NES =
−2.55, P-value = 2.10e−10) is also significantly down-
regulated. On the other hand, ‘Tumor microenvironment
analysis’ results indicate that in non-responsive samples
the fraction of immune cells (‘ImmuneScore’, log FC
= −0.64, P-value = 0.10), especially the abundance of
CD8+ T cells (log FC = −1.32, P-value = 0.05) is appar-
ently lower (Figure 4F). These two aspects of results are
consistent with each other, because in antitumor immunity,
CD8+ T cells are key sources of IFN-γ production (59).
These results suggest that low immune cell infiltration
especially low CD8+ T-cell infiltration in TME as well
as PD-L1 low expression induced by the down-regulated
INF-γ -JAK-STAT cascade may be the mechanism of the
anti-PD1/PD-L1 therapy resistance. These findings are
consistent with previous studies (57).

Sensitizing drug discovery. To further discover candi-
date drugs that can sensitize anti-PD1/PD-L1 therapy, on
CTR RNAseq 197, we used ‘Resistance signature analysis
→ L1000CDS2 analysis’ to search drugs that can reverse the
resistance signature (|log FC| ≥1, adjusted P-value ≤0.05).
In result, we find that 15 of the returned top 50 drug sig-
natures are histone deacetylase (HDAC) inhibitors (Fig-
ure 4E), strongly suggesting HDAC inhibitors are promis-
ing sensitizing drug candidates for anti-PD1/PD-L1 ther-
apy resistance when immune infiltration degree is low and
PD-L1 is lowly expressed. In fact, previous studies have in-
dicated that on the one hand, HDAC inhibitors can en-
hance antigen presentation and CD8+ T cell and NK cell
infiltration (60–62), but on the other hand, HDAC in-
hibitors can also stimulate PD-L1 expression, dampening
subsequent T-cell activation (63). Therefore the combina-
tion of HDAC inhibitors and PD1/PD-L1 blockade can
achieve the treatment sensitivity by recruiting immune cells
and meanwhile avoiding immune escape. Indeed, we find
‘HDAC inhibitor + PD1/PD-L1 blockade’ combination
has already been in the clinical trials for NSCLC (64).

Dataset combination analysis. To confirm the above find-
ings in a larger patient population, by CTR-DB dataset
‘Combine’ function, we combined all 143 samples receiving
anti-PD1/PD-L1 therapy in CTR-DB, including 47 respon-
ders and 96 non-responders. On this larger merged dataset,
we obtained consistent results (Supplementary Figure S1).
For example, the low infiltration level of immune cells (‘Im-
muneScore’, log FC = −1.08, P-value = 3.17e−03), espe-
cially CD8+ T cells (log FC = −1.13, P-value = 3.88e−03)
in non-responders is more significant on the merged popu-
lation that is larger than the previous single dataset (Sup-
plementary Figure S1D).

Dataset comparative analysis. By ‘Compare’ function,
we further compared the CTR-DB patient sets receiv-
ing PD1/PD-L1 blockade therapy but from different

sources. There are three related CTR-DB datasets with
sample size ≥10, including CTR RNA 197 for NSCLC,
CTR RNAseq 11 for melanoma and CTR RNAseq 179
for metastatic melanoma. By comparison, we find that
drug resistance mechanism shows high heterogeneity in dif-
ferent patient cohorts. For example, compared to respon-
ders, the non-responsive metastatic melanoma patients in
CTR RNAseq 179 have slightly higher immune cell in-
filtration tendency (‘ImmuneScore’, log FC = 0.11, P-
value = 0.76; CD8+ T cell, log FC = 0.99, P-value = 0.36),
slightly up-regulated JAK-STAT pathway (NES = 0.9,
P-value = 0.71) induced slightly higher PD-L1 expres-
sion (log FC = 0.23, P-value = 0.69), up-regulated NK
cell mediated cytotoxicity pathway (NES = 1.24, P-
value = 0.08) etc., suggesting that these non-responders in
CTR RNAseq 179 have an apparently different resistance
mechanism from CTR RNAseq 197 patients stated above.
Indeed, due to high tumor heterogeneity, drug resistance
mechanism has been found to be of high heterogeneity and
complexity (57).

Biomarker validation. PD-L1 has been clinically widely
used as a biomarker for identifying potential responders
of anti-PD1/PD-L1 therapy (57). Here we also validated
its predictive ability using transcriptomic data of CTR-
DB patients. We find that for all patients receiving anti-
PD1/PD-L1 therapy in CTR-DB, PD-L1 expression in-
deed has some predictive power (ROC AUC = 0.64, P-
value = 5.33e−03, Supplementary Figure S1A). However,
further by ‘biomarker validation’ function we see that only
on CTR RNAseq 197 it can effectively predict treatment
response (ROC AUC = 0.78, P-value = 3.60e−03), while on
both CTR RNAseq 11 and CTR RNAseq 179 it has little
predictive power (Figure 6). This result verifies the previous
knowledge that the predictive accuracy of PD-L1 expres-
sion is insufficient. PD-L1 positive patients are not always
responders and negative patients are not necessarily non-
responsive (57). More effective combinational biomarkers
are needed.

In summary, this use case shows the power of CTR-
DB on generating and validating hypotheses on drug resis-
tance mechanism, discovering sensitizing drugs, biomarker
validation, and resistance mechanism heterogeneity explo-
ration.

DISCUSSION

To date, only some cancer patients can benefit from drug
treatment due to cancer heterogeneity. Drug resistance of
cancer patients is one of the most important and challeng-
ing problems in the era of precision medicine (65). Rapidly
accumulated patient-derived clinical transcriptomes with
cancer drug response bring unprecedented opportunities
for studying this issue, and moreover their integration and
reuse may provide new insights. However, there is still
no database systematically collecting and helping integrate
and reuse these data. Therefore, we have developed CTR-
DB. CTR-DB, as the first database for patient-derived
gene expression signatures correlated with cancer drug re-
sponse, has several advantages: (i) comprehensive patient-
derived clinical transcriptomes with cancer drug response,
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covering abundant drugs and cancer types; (ii) uniformly re-
processed transcriptomic data; (iii) manually-curated and
standardized drug response information; (iv) multiple data
analysis functions for a single dataset, multiple-dataset
combination and comparison, and biomarker validation
function to facilitate data mining, integration, and reuse; (v)
and the user-friendly and interactive interface. All of these
features enable CTR-DB to be a valuable resource, satisfy-
ing multiple needs from both basic and clinical cancer re-
searchers.

In future, on the data aspect, we will regularly add new
datasets into CTR-DB. And meanwhile we plan to ex-
pand data scope, such as including acquired resistance-
related clinical transcriptomes, which can also inform the
resistance mechanism and combinational drugs. On the
database function aspect, we will support data submis-
sion, to enable the crowdsourcing data collection and cu-
ration. Other improvements include supporting combina-
tional biomarker discovery, drug response prediction and
clinical drug recommendation based on transcriptomic sig-
nals of patients, and online data analysis for users’ own
datasets etc.

DATA AVAILABILITY

CTR-DB can be accessed at http://ctrdb.ncpsb.org.cn/, and
is compatible with Chrome, Firefox, and Opera browsers
for Windows; and Safari, Chrome, Firefox, and Opera
browsers for the Mac operating system.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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