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Background: Although many cardiovascular disease studies have focused on the

microRNAs of circulating exosomes, the profile and the potential clinical diagnostic

value of plasma exosomal long RNAs (exoLRs) are unknown for acute myocardial

infarction (AMI).

Methods: In this study, the exoLR profile of 10 AMI patients, eight stable coronary artery

disease (CAD) patients, and 10 healthy individuals was assessed by RNA sequencing.

Bioinformatic approaches were used to investigate the characteristics and potential

clinical value of exoLRs.

Results: Exosomal mRNAs comprised the majority of total exoLRs. Immune cell types

analyzed by CIBERSORT showed that neutrophils and monocytes were significantly

enriched in AMI patients, consistent with clinical baseline values. Biological process

enrichment analysis and co-expression network analysis demonstrated neutrophil

activation processes to be enriched in AMI patients. Furthermore, two exosomal mRNAs,

ALPL and CXCR2, were identified as AMI biomarkers that may be useful for evaluation

of the acute inflammatory response mediated by neutrophils.

Conclusions: ExoLRs were assessed in AMI patients and found to be associated with

the acute inflammatory response mediated by neutrophils. Exosomal mRNAs, ALPL and

CXCR2, were identified as potentially useful biomarkers for the study of AMI.

Keywords: acute myocardial infarction, exosomes, mRNAs, acute inflammatory response, neutrophil, WCGNA

INTRODUCTION

Exosomes secreted by most cell types are a class of lipid membrane-enclosed extracellular vesicles
ranging in size from 40 to 100 nm (1, 2). These small vesicles not only contain proteins, lipids,
RNAs, and metabolites of the source cell but also maintain the stability of vesicle constituents
(3). Exosomes are considered crucial mediators of cell–cell communication and are promising
biomarkers for disease diagnosis (4, 5).

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.712061
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.712061&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:651792209@qq.com
mailto:3418989350@qq.com
https://doi.org/10.3389/fcvm.2021.712061
https://www.frontiersin.org/articles/10.3389/fcvm.2021.712061/full


He et al. Exosomal mRNAs in Acute Myocardial Infarction

To date, most studies have focused on examination of
microRNAs in circulating exosomes with emphasis on the
characterization of exosomal microRNAs associated with
cardiovascular disease (4, 6, 7). However, those studies have
been limited by the small quantity and specificity of available
exosomal microRNAs (8).

Circular RNA (circRNA), long noncoding RNAs (lncRNA),
and messenger RNA (mRNA) are long RNAs present and
stabilized in exosomes (9). These exosomal RNAs may
have potential functional and clinical applications (10). For
example, CCL2 exosomal mRNAs derived from tubular
epithelial cells and macrophages are crucial for albumin-
induced tubulointerstitial inflammation (11). Indeed, two
serum exosomal mRNAs, KRTAP5-4, and MAGEA3, may be
potential biomarkers for the detection of colorectal cancer (12).
However, very few studies have assessed the characteristics
of exosomal long RNAs (exoLRs) in cardiovascular disease,
e.g., AMI, which has the associated health consequences
of mortality, morbidity, and monetary costs to society
(13). And the profile of circulating exoLRs in AMI patients
is unknown.

In this study, we explored the plasma exoLRs profiles
of individuals with AMI and stable coronary artery disease
(CAD), as well as healthy individuals. This was accomplished
by RNA sequencing analysis, which was used to investigate
the characteristics and potential clinical diagnostic value
of such profiles. Plasma exoLRs profiles may not only
reflect the circulating immune cell types but also distinguish
patients with AMI and CAD from healthy individuals. In
this manner we have identified potential biomarkers for AMI
diagnosis, which may provide insight into the intrinsic basis
for AMI.

MATERIALS AND METHODS

Patients
This is a case-control study. Ten AMI, eight CAD
patients, and 10 healthy individuals were recruited at the
Guangdong Provincial People’s Hospital from December
2018 to January 2019. The AMI and CAD patients were
diagnosed by laboratory tests and coronary angiography
based on the European Society of Cardiology guidelines
(14, 15). Participants were 18–75 years of age and included
both genders.

The healthy individuals’ recruitment inclusion criteria
included: normal renal and liver function; and no history of
smoking, malignancy, recent cardiovascular or cerebrovascular
events, rheumatologic disorders, chronic heart failure,
diabetes, acute or chronic infectious disease, aortic dissection,
pulmonary embolism, myocarditis, pericarditis, or congenital
heart disease.

Ethical approval of human sample collection was obtained
from the Ethics Committee of Guangdong Provincial
People’s Hospital (No. 2018160A). All patients provided
informed consent.

Extraction of Exosomal RNAs From Serum
and Library Construction, Sequencing, and
Data Analysis
Two milliliters of venous blood were collected into ethylene
diamine tetraacetic acid (EDTA) routine blood tubes immediately
at admission before coronary angiography. Plasma was separated
by centrifugation at 2,000 × g for 10min at 4◦C and stored
in cryogenic vials at −80◦C. The exoRNeasy Serum/Plasma kit
(Qiagen) was used to extract exosomal total RNA based on the
manufacturer’s instructions. Exosomal RNA was extracted from
1mL of plasma. SMART technology (Clontech) was used to
construct the RNA-seq libraries. RNA sequencing was performed
using a illumine Nova-Seq 6000 System with the technical
support of the Guangzhou Epibiotek Co., Ltd. HISAT2 was
used to align sequencing reads (16). The GENCODE database
was used to annotate mRNAs and lncRNAs. CircRNAs from
unmapped reads were identified with the Accurate CircRNA
Finder Suite (17).

Measurement and Characterization of
Exosomes
Exosome morphological characteristics were assessed by
transmission electron microscopy (TEM). Size and distribution
were measured using NanoSight NS500 (NanoSight Ltd.,
Amesbury, United Kingdom). Exosomal protein markers CD9
and CD63 were detected by western blot.

Immune Cells Landscape Analysis
The abundance of immune cells in serum of study groups
were quantified using CIBERSOFT algorithm. The standardized
gene expression data of the cells was uploaded to a publicly
available online database (https://cibersort.stanford.edu/index.
php). Overall, we characterized the serum distribution of 22
human immune cells based on 547 marker genes (18).

Identification of ExoLRs and Functional
Enrichment Analysis
NetworkAnalyst (http://www.networkanalyst.ca), a visual
analytics platform for comprehensive gene expression profiling
(19), was used to identify exoLRs that differed between AMI,
CAD, and normal samples. The platform has three steps: data
filtering, normalization, and difference analysis. First, exoLRs
with low expression were filtered from the dataset. Variance
percentile rank lower than 15% was filtered and the minimum
criterion for retaining an RNA was at least 4 counts per million.
Following data filtering, counts were then normalized using the
trimmed mean of M-values normalization method. These steps
reduce the influence of batch effect on experimental results.
Then the “DESeq2” package was applied for differential analysis
of count data in order to estimate variance-mean dependence in
count data from high-throughput sequencing assays. Differential
expression was based on a model using the negative binomial
distribution. Subsequently, the data (i.e., P-value, fold changes,
or effect sizes) were extracted. Based on this overall evidence, we
identified RNAs that were significantly different in expression.
RNAs with P < 0.01 and log2 fold change ≥ |1| were considered
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significantly different exoLRs. The “ClusterProfiler” package
was used to investigate Gene Ontology (GO) enrichment
analysis including biological processes, cellular components, and
molecular functions (20). P < 0.05 was selected as the cut-off
value for enriched function.

Co-expression Networks of Exosomal
mRNAs
Exosomal mRNAs were initially filtered if expression values were
<1 fragment per kilobase per million (FPKM) in at least 90%
of the samples. The remaining mRNAs with standard deviations
>0.2 were fed into an R package for weighted correlation
network analysis (21).

Appropriate soft-threshold power was selected to ensure
the co-expression network based on scale-free topology. The
weighted adjacencies and correlations were transformed into
a topological overlap matrix (TOM), followed by calculation
of the corresponding dissimilarity (1-TOM). Next, 1-TOM, as
the distance measure, was applied to a hierarchical clustering
analysis of genes. A dynamic tree cut algorithm was used to
identify modules. Based on module eigengene and clinical trait
correlations, significant modules were identified with P < 0.05.
The top 50 exosomal mRNA connections, based on topological
overlap in significant modules, were used to construct a network
diagram using Cytoscape (22). Exosomal mRNAs with eigengene
connectivity > 0.8, within the module, were related to clinical
traits and considered candidate hub genes (23).

Statistical Analysis
RNA expression levels are shown as means of FPKM.
Comparative Venn diagrams were constructed using Venny 2.1.0
(https://bioinfogp.cnb.csic.es/tools/venny/index.html). Principal
component analysis (PCA) was applied to evaluate variables
within the three groups. Data were transformed into log2 scale
and plotted using the plotPCA function in R v.3.5.2. Continuous
variables that were normally distributed are displayed as means
with standard deviation. One-way ANOVA followed by post-test
least significant difference was performed to assess the difference
among multiple groups. P < 0.05 was considered statistically
significant. Pearson’s correlation coefficient was calculated to
test statistical correlation and r > 0.5 or r < −0.5 with a P
< 0.05 was considered statistically significant. The area under
the curve (AUC) of receiver operating characteristic (ROC) was
applied to evaluate the specificity and sensitivity of exosomal
mRNA for AMI diagnosis with 95% confidence interval (95%
CI) calculated. Due to the relatively small sample size for ROC
analysis, statistical power was calculated using PASS (version
15.0) with the following conditions: α = 0.05, AUC = 0.5, and
n = 30. P < 0.05 was considered statistically significant. PASW
Statistics 18.0 software was used for all statistical analyses.

RESULTS

Clinical Baseline Characteristics of
Patients
The clinical characteristics of the three groups (10 AMI, 8
CAD, and 10 controls) are presented in Table 1. Of the 10

TABLE 1 | Clinical baseline characteristics of patients.

AMI CAD CONTROL

n = 10 n = 8 n = 10

Gender

Male 8 7 2

Female 2 1 8

Age (years) 62.80 ± 10.04a 53.88 ± 9.52 47.00 ± 14.02

Diabetes 4 3 0

Hypertension

Grade 1 1 0 0

Grade 2 1 2 0

Grade 3 2 4 0

Current smoking 3 0 0

Current drinking 2 0 0

MONO 1.01 ± 0.36a,c 0.55 ± 0.26 0.44 ± 0.09

MONO% 8.46 ± 3.70 8.29 ± 2.42 7.24 ± 0.78

NEUT 10.27 ± 3.62b,d 4.03 ± 1.80 3.96 ± 1.90

NEUT% 78.00 ± 12.72b,d 59.88 ± 8.01 59.58 ± 11.48

CK-MB (U/L) 235.47 ± 302.70b,d 11.80 ± 2.21 10.4 ± 0.64

HBDH (U/L) 699.00 ± 670.98b,d 89.00 ± 12.29 97.30 ± 13.21

Results are presented as the mean ± SD. The AMI group compared to control group,
aP < 0.05, bP < 0.01; the AMI group compared to CAD group, cP < 0.05, dP <

0.01; MONO, absolute monocyte count; MONO%, the percentage of monocyte; NEUT,

absolute neutrophil count; NEUT%, the percentage of neutrophil; CK-MB, creatine kinase,

MB Form; HBDH, hydroxybutyrate-dehydrogenase.

AMI patients, nine presented with ST-elevated myocardial
infarction and one with non-ST-elevated myocardial
infarction. The CAD group and control groups had similar
acute inflammation levels, whereas the AMI group had
significantly higher levels at study entry. MB isoenzyme of
creatine kinase (CKMB) and hydroxybutyrate-dehydrogenase
(HBDH) were also higher in AMI patients than in the
other subjects.

Brief Workflow for Plasma ExoLRs-Seq for
Group Characterization
Reliable exoLRs-seq data were obtained by plasma isolation,
purification of exosomes, exosome RNA extraction, and RNA-
seq library construction (Figure 1A). TEM results showed
membrane-enclosed exosome structures without similar size
or uniform distribution (Figure 1B). The average diameter
of the isolated exosomes was 75.83 nm measured with a
NanoSight instrument (Figure 1C). Membrane markers of
exosomes, CD9 and CD63, were demonstrated by Western
blot (Figure 1D). mRNA constituted 58.46% of total mapped
reads. Pseudogenes and circRNAs accounted for 12.80 and
11.73%, respectively, whereas lncRNAs and antisense RNAs
were 7.94 and 7.55%, respectively (Figure 1E). The number of
mRNAs, circRNAs, lncRNAs, and pseudogenes for the AMI
group were all significantly higher than the control group
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FIGURE 1 | A brief view of the workflow of human plasma exosomal long RNA-seq and its characteristics in each group. (A) Work flow of exosomal long RNA-seq of

human plasma. (B) Electron microscopy image of isolated exosomes. (C) Size distribution measurements of isolated exosomes. (D) Western blot analysis of

exosomal markers (M, marker; A, acute myocardial infarction; C, coronary artery disease; H, healthy individuals). (E) Distribution of mapped reads to the genes with

annotation and identified circRNA. (F) The number of exoLRs for each group displayed by scatterplot. Results are described as the mean ± SD (*P < 0.05, **P <

0.01, and ***P < 0.001; Exo RNA, exosomal RNA; exoLRs, exosomal long RNAs).
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FIGURE 2 | The Exosomal long RNA reflected relative fractions of different immune cell types. (A) Relative fraction of twenty-two types of immunocyte assessed from

exosomal long RNA-seq data by CIBERSORT. (B) Violin plot of the fraction of four types of immune cells. Results are presented as the mean ± SD (*P < 0.05, **P <

0.01, and ***P < 0.001). (C) The PCA of all types of immune cells.

(Figure 1F). Compared with the CAD group, the AMI group had
a significantly higher number of mRNAs (Figure 1F).

ExoLRs May Reflect Immune Cell Types
Twenty-two types of immune cells were assessed using the
exosomal sequencing data with an established computational
resource (CIBERSORT) (Figure 2A). PCA of the immunological

profiles showed a non-uniform distribution (Figure 2C).
Memory B cells were least in the CAD group, whereas naïve
B cells of the CAD group were the highest. Neutrophils and
monocytes were significantly enriched in the AMI group, which
is consistent with clinical baseline characteristics (Figure 2B).
Results suggest that circulating exoLRs may reflect the circulating
immune cell profile.
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TABLE 2 | The top 15 upregulated and top 15 downregulated exosomal mRNAs in AMI group compared with the control group.

EntrezID Gene symbol log Fold-change P-value Regulation

79689 STEAP4 6.2843 8.06E-07 Upregulation

249 ALPL 6.149 4.10E-06 Upregulation

353511 PKD1P6 6.0439 6.16E-07 Upregulation

25984 KRT23 5.8028 2.45E-05 Upregulation

63926 ANKEF1 5.678 2.10E-06 Upregulation

64386 MMP25 5.6302 0.00016164 Upregulation

4286 MITF 5.603 1.43E-06 Upregulation

8653 DDX3Y 5.517 0.0095227 Upregulation

23569 PADI4 5.3678 0.00012088 Upregulation

79989 TTC26 5.2975 2.71E-05 Upregulation

4318 MMP9 5.2402 2.30E-05 Upregulation

27063 ANKRD1 5.2237 0.00038505 Upregulation

147991 DPY19L3 5.2229 0.00010934 Upregulation

84984 CEP19 5.2098 5.76E-05 Upregulation

6283 S100A12 5.1814 4.62E-05 Upregulation

642587 MIR205HG −2.4655 0.0017053 Downregulation

387845 EEF1A1P16 −2.5355 0.00062653 Downregulation

400818 NBPF9 −2.6385 0.0069863 Downregulation

100270832 RPL5P9 −2.6572 0.0023581 Downregulation

101930105 FAM239A −2.9793 0.0030962 Downregulation

23213 SULF1 −3.025 0.0078059 Downregulation

91695 RRP7BP −3.2061 0.0075741 Downregulation

246 ALOX15 −3.908 0.0062638 Downregulation

253980 KCTD13 −4.0274 0.0042585 Downregulation

22982 DIP2C −4.0735 0.0014424 Downregulation

7841 MOGS −4.2465 0.0066529 Downregulation

27334 P2RY10 −4.2611 0.0047896 Downregulation

2582 GALE −4.4729 0.0014293 Downregulation

7517 XRCC3 −4.5753 0.0046839 Downregulation

10518 CIB2 −4.6129 0.0005229 Downregulation

Comparative ExoLR Identification and
Functional Enrichment Analysis of AMI and
Control Groups
Compared with the control group, 296 different exosomal
mRNAs, consisting of 254 up- and 42 down-regulated
(Supplementary Table 1), were identified for the AMI
group. The top 15 up and top 15 down regulated exosomal
mRNAs are shown in Table 2. Only 16 different circRNAs
or lncRNAs were identified (Figures 3A,B). ClusterProfiler
was used to analyze and visualize functional profiles
(Gene Ontology) of the 296 different exosomal mRNAs
with identification of enrichment maps of biological
processes by https://www.networkanalyst.ca. Results of
the functional profile analysis (Supplementary Table 2)
are shown as a bar plot (Figure 3C) and the enrichment
map of biological processes as a network (Figure 3D).
Among the top 10 biological processes in Figures 3C,D,
neutrophil degranulation, neutrophil activation, and
neutrophil activation involved in immune response were
significantly enriched. The enrichment map (Figure 3D)

showed that the inflammatory response may be the core
biological process.

By comparison of AMI and control exoLRs, we found that
circulating AMI exosomal mRNAs may play a crucial role in the
acute inflammation response mediated by neutrophils.

Comparative Exosomal mRNA Analysis of
AMI and CAD Groups
When compared with the CAD group, 230 different exosomal
mRNAs (Supplementary Table 3), consisting of 120 up- and
110 down-regulated, were identified for the AMI group
(Figures 4A,B). Functional profile analysis (Figure 4C and
Supplementary Table 4) found neutrophil activation to play
a leading role in associated biological processes. To further
investigate the relationship between AMI and CAD, intersections
of differently up- or down-regulated exosomal mRNAs for the
AMI, CAD, and control groups are depicted in Figures 4A,B.
There were 35 different exosomal mRNAs (31 up- and 4 down-
regulated) that overlapped between the AMI and control groups
and AMI and CAD (Supplementary Table 5). GO analysis of
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these 35 different exosomal mRNAs (Supplementary Table 6)
found that myeloid leukocyte activation was mainly enriched
(Figure 4D). ALPL mRNA is especially worth noting in that it
was the only up-regulated exosomal mRNA among the three
groups (Figure 4A) and may serve as a potential biomarker for
AMI diagnosis.

Co-expression Network Analysis of AMI
Exosomal mRNAs
Weighted gene co-expression network analysis was used
to identify key modules and highly correlated exosomal
mRNAs associated with AMI. Forty-three exosomal mRNAs
modules were identified by hierarchical clustering dendrogram
(Figure 5A). The association of the 43 co-expression modules
was analyzed by topological overlap matrix plot that consisted
of the modules and the corresponding hierarchical clustering
dendrogram (Figure 5B). For module-trait analyses, only
the light-yellow module containing 175 exosomal mRNAs
(Supplementary Table 7) was related to AMI (Figure 5C).
Although there was no significantly enriched Kyoto Encyclopedia
of Genes and Genomes (KEGG) biological pathways in the light-
yellow module, the results of GO enrichment analysis indicated
that the light-yellow module was involved in inflammation
mediated by neutrophils, i.e., neutrophil aggregation and
chemokine production (Figure 5D). The association between the
light-yellow module and AMI was also supported by enrichment
analyses of different exosomal mRNAs between AMI (Figure 3C)
and control or between AMI and CAD (Figure 4D). To further
analyze the core mRNA of the light-yellow module, the top
50 exosomal mRNAs of the topological overlap matrix of this
module were used to construct a network diagram (Figure 5E).
In this network, exosomal mRNAs (with eigengene connectivity
> 0.8) in the light-yellow module were considered core mRNAs
and labeled with yellow (Figure 5E). Six mRNAs includingALPL,
CXCR2, ELL2, EMC9, FAM129A, and DBF4B were identified as
core mRNAs.

Potential Clinical Value of Exosomal ALPL
and CXCR2
To estimate the potential clinical value of the six core exosomal
mRNAs, ROC curve analysis was applied (Figure 6A). AUC
indicated that there were two mRNAs with excellent predictive
accuracy ALPL (AUC: 0.99, 95%CI, 0.9484–1.000, P =

0.0002, power = 0.99754) and CXCR2 (AUC: 0.98, 95%CI,
0.8478–1.000, P = 0.0005, power = 0.68124)]. Correlational
analysis of these two exosomal mRNAs and clinical baseline
characteristics (Figure 6B) indicated that ALPL and CXCR2
are associated with neutrophil count (R = 0.52 and 0.51,
respectively). Statistical analysis suggested expression of
exosomal mRNA ALPL and CXCR2, derived from AMI
plasma, to be significantly higher than that found in the
other groups (Figures 6C,D). Exosomal ALPL in the CAD
group was also significantly higher than the control group.
These results suggest that circulating exosomal ALPL may

increase with the progression of coronary plaque to acute
myocardial infarction.

Since this analysis found AMI exosomal mRNAs to be
associated with acute inflammation mediated by neutrophils,
we applied PCA to the neutrophil count and neutrophil
ratio for the three groups. PCA of the neutrophil count
and neutrophil ratio showed that although the AMI group
could be separate from the other groups, there was much
overlap between the CAD and control groups (Figure 6E).
However, when we applied PCA to the expression of ALPL
and CXCR2, the three groups could be separated (Figure 6F).
In summary, exosomal ALPL and CXCR2 have the predictive
potential to provide greater accuracy and identification of
cardiac disease.

DISCUSSION

Interestingly, when exosomes were initially discovered, they were
considered to be waste cargo (24). However, when RNA was
detected in exosomes, they were considered as promising tools
for the treatment and diagnosis of diseases especially cancer (25).
Long RNA species (mRNA, lncRNA, and circRNA) are found in
human blood exosomes with potential clinical usefulness (26).
These exosomes could serve as diagnostic markers but could also
play a significant role in cell-to-cell communication by activating
biological signaling pathways (27). Such exosomal RNAs could
reflect and affect the progression of disease.

Exosomal microRNAs have been extensively evaluated with
relation to cardiovascular disease but very few studies have
assessed the features and potential clinical value of exosomal
mRNAs. In this study, we found that plasma exoLRs largely
consist of mRNAs. In AMI patients, alterations in these mRNAs
could indicate neutrophilic inflammation of the circulatory
system. Among these mRNAs, we found ALPL and CXCR2 to
have good predictive accuracy and may be potential biomarkers
for AMI diagnosis.

The exoLRs sequencing data from this study demonstrate
plasma exoLRs to be primarily mRNAs. It is not surprising
that exosomal circRNAs are expressed in low abundance since
they have specific spatiotemporal expression patterns (28–30).
A relatively high number of long RNAs were identified in
AMI samples and it is worth noting that the AMI samples in
this study were from relatively aged patients. Previous studies
have demonstrated aging to impact circulating extracellular
vesicle concentration, size, and cargo (31, 32). Furthermore,
stressors such as hypoxia, inflammation, and injury can induce
cardiomyocytes or other cells to secret exosomes (33).

To provide a better understanding of exosomal mRNAs in
AMI patients, we used a bioinformatic approach to compare
AMI and CAD patients to healthy individuals. We also used
co-expression network analysis to investigate the exosomal
mRNAs of AMI patients. Results demonstrated the acute
inflammatory response mediated by neutrophils to be the
core biological process in AMI patients. These findings are
consistent with current AMI studies. Since the cardiomyocyte
is extremely sensitive to ischemic injury, reduced blood supply
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FIGURE 3 | Identification of different exosomal long RNAs and functional enrichment analysis between the AMI and the control. (A) Heatmap of significantly circRNA

between AMI and control. (B) Heatmap of significantly lncRNA between AMI and control. (C,D) Functional enrichment analysis of significantly different exosomal

mRNA.
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FIGURE 4 | Identification of different exosomal long RNAs and functional enrichment analysis between AMI and CAD. (A,B) Comparation of differently up- or

down-regulated exosomal mRNAs between AMI and control, AMI and CAD, and CAD and control. These three comparison sets were intersected with each other. (C)

Functional enrichment analysis of significantly different exosomal mRNA between AMI and CAD. (D) Gene ontology analysis result of 35 different exosomal mRNAs

between the comparison of AMI and control and comparison of AMI and CAD.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 August 2021 | Volume 8 | Article 712061

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


He et al. Exosomal mRNAs in Acute Myocardial Infarction

FIGURE 5 | Co-expression network analysis of exosomal mRNAs in AMI. (A) Cluster diagram showing co-expression modules identified by WGCNA. (B) The heat

map plot showed the topological overlap matrix (TOM) among all mRNAs. Light color shows low overlap, and red color indicates a higher overlap. The left side and

the top side show the gene dendrogram and module assignment. (C) Heatmap of modules-trait relationship. (D) GO enrichment analysis of light-yellow modules. (E)

Network visualization of the top 50 exosomal mRNAs of the topological overlap matrix in light-yellow modules. The exosomal mRNA with eigengene connectivity >

0.8 were highlighted in yellow color.
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FIGURE 6 | Potential clinical value of ALPL and CXCR2. (A) The ROC curve analysis of six core exosomal mRNAs. (B) The correlation analysis between these two

exosomal mRNAs and clinical baseline characteristics. (C,D) The statistical analysis of expression of ALPL and CXCR2 among AMI, CAD, and control group. Results

are presented as the mean ± SD (*P < 0.05, **P < 0.01, and ***P < 0.001). (E) PCA of neutrophil count and neutrophil ratio. (F) PCA of the expression of ALPL and

CXCR2.
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to the myocardium could initially cause injury and lead to an
intense inflammatory response once AMI had occurred (34, 35).
Furthermore, neutrophil extracellular traps have been identified
as crucial triggers and structural contributors to various forms
of thrombosis (36). Furthermore, neutrophilic inflammation was
found to influence infarct size, healing, and cardiac function after
myocardial infarction (37). Although the exact physiological role
of exosome in AMI is still poorly understood, inflammation-
related alterations in exosomal RNAs are associated with the
biological process of AMI.

Since miscellaneous immune cells take part in cardiac repair
during phases of cardiovascular disease (38), neutrophils have
been traditional biomarkers (39). Although the diagnosis of acute
myocardial infarction is dependent on an elevation of the serum
levels of cardiac-specific troponin I, troponin T, or themyocardial
band isoenzyme of creatine kinase (CK–MB), there is still a lack
of biomarkers that evaluate the inflammatory response mediated
by neutrophils. In this study, we found two potential biomarkers,
exosomal mRNAs ALPL and CXCR2, to be specifically enriched
in circulating neutrophils. Results confirmed with the Human
Protein Atlas (http://www.proteinatlas.org) (40).

ALPL has been shown to regulate cardiac fibrosis during
myocardial infarction through TGF-β1/Smads and P53 signaling
pathways (41). Similarly, an ALPL inhibitor was found
to be a potential treatment for cardiovascular disease by
attenuating arterial calcification in a non-chronic kidney disease
context (42). The expression level of exosomal mRNA ALPL
in the AMI groups was the greatest, followed by CAD
group, with healthy individuals having the lowest. Whether
exosomal mRNA ALPL increases during the progression
of coronary plaque to acute myocardial infarction requires
further study.

CXCR2 is an intriguing biomolecule that has cardio-protective
effects and the capacity to reduce myocardial damage after
myocardial ischemia-reperfusion injury (43, 44). Furthermore,
CXCR2 may play a crucial cardio-protective role in myocardial
infarction through enhanced myeloid progenitor production
and upregulation of cardiac adhesion molecules (37, 45).
One recent study reported a process of temporal neutrophil
polarization in the ischemic heart, with N1 polarized pro-
inflammatory neutrophils infiltrating the heart early after
AMI, while the proportion of N2 polarized anti-inflammatory
neutrophils increased (46). Another interestingly recent single-
cell transcriptomics study investigating temporal neutrophil
diversity in the blood and heart after murine myocardial
infarction indicated that all neutrophils highly expressed
CXCR2, and its surface level was slightly increased in SiglecFhi

vs. SiglecFlow neutrophils at day 3 (47). Therefore, it is
essential to investigate the involvement of biomarkers related
to neutrophils. Our data show circulating exosomal mRNA
CXCR2 to be a potential biomarker for AMI with high
diagnostic efficiency and constituted a resource for further
investigation of the functional implications of neutrophils
in myocardial infarction. Further studies are required to
understand the mechanistic basis for secretion of exosomal
mRNA CXCR2.

Circulating plasma exosomes are known to interact with a
variety of cell types and tissue. However, the exact physiological
or purpose of plasma exosomal mRNAs is poorly understood.
The functionality of exosomal mRNAs depends upon whether
they are intact or in fragments. In fact, some exosomal mRNAs
have been found to be full length and functional (48).

Multiple limitations of the present study should be
acknowledged. First, the sample size of this study was relatively
small. Further studies are required that assess a larger sample
size in a validated and prospective clinical trial. Second, due
to the small number of patients, the effect of confounding
factors, especially patients’ age and gender were difficult to
exclude. Third, blood samples were collected immediately
at admission before coronary angiography, however, the
occurred time of AMI might varied from patient to patient.
This could influence the results because the composition of
exosomal exoLRs would change remarkablely after AMI in a
time-dependent manner. Fourth, although the result of average
diameter (Figure 1C) showed that the extracellular vesicles
extracted from plasma were mainly composed of exosomes,
other extracellular vesicles was still contaminated during the
isolation of exosomes.

In conclusion, our study explored exoLRs in AMI
patients and found an association with the acute
inflammatory response mediated by neutrophils.
Moreover, we found that exosomal mRNAs, ALPL and
CXCR2, may serve as potential useful biomarkers of the
acute inflammatory response mediated by neutrophils
in AMI.
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