®

Check for
updates

Information Extraction and Graph
Representation for the Design
of Formulated Products

Sagar Sunkle! ™) Krati Saxena!, Ashwini Patil', Vinay Kulkarni®,

Deepak Jain?, Rinu Chacko?, and Beena Rai?

! Software, Systems, and Services Group, TCS Research, Pune, India
{sagar.sunkle,krati.saxena,ab.patil2,vinay.vkulkarni}@tcs.com
2 Physical Sciences Group, TCS Research, Pune, India
{deepak.jain3,rinu.chacko,beena.rai}@tcs.com

Abstract. Formulated products like cosmetics, personal and household
care, and pharmaceutical products are ubiquitous in everyday life. The
multi-billion-dollar formulated products industry depends primarily on
experiential knowledge for the design of new products. Vast knowledge of
formulation ingredients and recipes exists in offline and online resources.
Experts often use rudimentary searches over this data to find ingredients
and construct recipes. This state of the art leads to considerable time
to market and cost. We present an approach for formulated product
design that enables extraction, storage, and non-trivial search of details
required for product variant generation. Our contributions are threefold.
First, we show how various information extraction techniques can be used
to extract ingredients and recipe actions from textual sources. Second,
we describe how to store this highly connected information as a graph
database with an extensible domain model. And third, we demonstrate
an aid to experts in putting together a new product based on non-trivial
search. In an ongoing proof of concept, we use 410 formulations of various
cosmetic creams to demonstrate these capabilities with promising results.

Keywords: Formulated products - Design - Ingredients - Recipe -
Information extraction + Conceptual model + Graph database -
Neighbourhood - Creams - Cosmetics

1 Introduction

The formulated products industry is an emerging global market of around 1400bn
Euro focusing on an array of ubiquitous products used in daily life world over.
Despite this scale, the advent of information systems in this sector is still nascent.
State of the art in the design of formulated products relies heavily on experiential
knowledge of the experts who consult various sources of information perfuncto-
rily [8]. Formulations of organic formulated products contain ingredients that
undergo a step-by-step procedure with actions such as heating, cooling, stirring,
© Springer Nature Switzerland AG 2020

S. Dustdar et al. (Eds.): CAiSE 2020, LNCS 12127, pp. 433-448, 2020.
https://doi.org/10.1007/978-3-030-49435-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49435-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-49435-3_27

434 S. Sunkle et al.

mixing, and so on to obtain specific target properties, both physical and chemi-
cal [5,19]. Suppose a cosmetic company decides to introduce a new face cream.
A team of experts on payroll has a general idea that a face cream requires an
emulsifier and an emollient. An emulsifier is an ingredient that promotes dis-
persion of immiscible liquids while forming the cream, and an emollient imparts
skin-soothing effect in the end product. The team would proceed by finding sim-
ilar formulations for a face cream, choose ingredients that are representative of
the said functionalities, and put together a recipe using appropriate actions.

This seemingly straightforward process takes months because the informa-
tion sources are often not well organized and scattered over offline and online
media such as handbooks, articles, journals, and websites, respectively. A vast
number of ingredients exists representing multiple functionalities, possessing dif-
ferent names depending on different nomenclatures. Similar formulations show
the composition of these ingredients, as well as numerous actions performed on
them. Still, the synonyms/other names of the ingredients or their functionalities,
reside in different sources and must be consulted separately.

There are necessarily two requirements for solving this problem one, the
gathering of information from multiple sources, and two, enabling non-trivial
searches and analyses of such information for the product design activity. This
problem has been recognized in recent years by the EU Formulation Network!
and the American Chemical Society?, both of which have come up with roadmaps
and offerings featuring more organized information sources.

We propose to cater to the above-stated requirements using specialized
information extraction techniques and graph representation, respectively. The
research in formulated products, as well as information systems in the chemical
sector, often assumes a database of all/majority of the constituents of formula-
tions under consideration as we will discuss in the next section. In comparison,
our approach provides the method and tools to create such a database to aid
the expert in designing new products.

We demonstrate our approach using 410 cream formulations obtained from
the Volumes 1 to 8 of the book cosmetic and toiletry formulations by Flick [6].
The formulated product design activity requires informed access to ingredients
and their other names, their weight ranges, their functionalities, knowledge of
how to combine them and actions performed on them with specific conditions.
Considering this, our specific contributions are as follows:

1. Extraction. In Sect.3, we propose to use state of the art open informa-
tion extraction (Open IE) as well as dependency parsing techniques aug-
mented with dictionaries and stacking to obtain what we refer to as action-
mixture/ingredient-condition (A-M-C) structures from the recipe texts of
formulations. We extract product name, ingredients, and their weights using
regular expressions. For information such as other names for given ingredients
and their functionalities, we extract the information from relevant websites
as shown in Fig. 1.

! EU Formulation Network https://formulation-network.cu/.
2 Formulus by American Chemical Society https://www.cas.org/products/formulus.

https://formulation-network.eu/
https://www.cas.org/products/formulus

Formulated Products Information System 435

Ingredient
Synonyms

Websites Ingredients

Ingredient

Actions + Weights
Functionality Formulation
—— PDF _/ﬂ Names
Alternate Texts

Text

Open Information
Z ——> Extraction/
Dependency Parsing

; = \,/
Textbook(s) S =
Formulatlon Texts & I\
Aided Product Graph- based DB
Collection of Verbs Design Queryable via relations
representing “\ using underlying graph

actions in query language

formulations

Fig. 1. Extraction, storage, and retrieval of formulations

2. Storage. We present a conceptual model for storing the details of each cream
as a node in a graph database in Sect.4. The extensibility offered by graph
database means that not only creams as a kind of cosmetic product, but
details of other formulated products can also be easily accommodated in this
database. As illustrated in Fig. 1, our tool takes the formulation text as input
and generates insertion queries on top of the base graph. We store ingredient
synonyms and ingredient functionalities separately as simple lists.

3. Retrieval and Design Aid. SQL-like queries over the graph database and
the A-M-C structures, along with queries on synonym and functionality lists,
enable finding relatedness of ingredients, functionalities, and products, result-
ing in what we refer to as neighbourhoods. In Sect.5, we show how we use
these neighbourhoods step by step to aid the expert in composing variants
of the intended products.

We begin by presenting the background on formulated products industry and
the use of information systems therein in the next section.

2 Background and Related Work

Formulated Products Industry. We come across many formulated products
in our daily lives in the form of cosmetics, personal care, detergents and other
household and professional care products, foods, adhesives, fuels and fuel addi-
tives, lubricants, paints, inks, dyes, coatings, pesticides, construction materials,
and medicines and pharmaceutical products. Individual ingredients used within
a formulation may be incorporated to provide active functionality and enhanced

436 S. Sunkle et al.

Product Category —_— Product
[} /— Other Names
Product Attributes Product Form Ingredients Property Constraints
Actions \ l l l /—17 Functionality
‘ Heat ‘ I Protect sunburns I Solid ‘ Emulsifier l LCso
‘ Cool ‘ I Low toxicity I \&I Solubility
" P Binde: are
Stir Water proof s parameter

E Good stability \:’

Fig. 2. Information and knowledge required for Formulation Design, adapted from [19]

delivery or as a protective or stabilizing agent. The idea of active or primary
ingredients and other or secondary ingredients leads to the notions of manda-
tory and optional functionality in the design of formulated products as we will
discuss in Sect. 5.

Design of Formulated Products. In the search for a new formulation, an
expert must refer to the already existing recipes to make rational judgments
when choosing the ingredients, their respective quantities and the procedure to
follow to get a stable formulation that has the desired chemical functions. Several
approaches have been proposed toward optimal design of formulated products
[3-5,7,8,13,18,19]. These approaches suggest using knowledge from experience,
models or databases to choose a product form such as cream; then select func-
tionality of ingredients such as a solvent; generate candidates for each chosen
ingredient functionality and finally combine the ingredients [19]. In most of these
approaches, the assumption is that either a relevant database/ knowledge-base is
available or created manually. State of the art, therefore, relies mainly on experts
finding similar formulations using standard file search and compilation. Without
any knowledge support tools, formulated product development becomes iterative
and time-consuming without a list of acceptable ingredients and actions to be
applied to them [13].

Requisite Information and Sources. Zhang et al. describe the kinds of
knowledge and information that is required in formulated product design [19].
As illustrated in Fig.2, in addition to product attributes, product form, ingre-
dients, and property constraints; functionality of ingredients, actions associated
with ingredients and their other names are also required. The product form and
the product attributes describing functional requirements, indicate the main rea-
son why a consumer may want to buy a product, e.g., a sunscreen lotion must
protect skin from sunburns and skin ageing. On the other hand, the functional-
ity of an ingredient, i.e., whether it is an emulsifier or a thickener, is the crucial
factor when designing the product since other ingredients are chosen based on
it. An important consideration when synthesizing ingredient-functionality list is

Formulated Products Information System 437

ACID-PH OIL-IN-WATER CREAM - B I: Name of the formulation
RAW MATERIALS % By Weight

Oil Phase:

WITCONOL MST (Glyceryl Stearate) 1
WITCONOL APM (PPG-3 Myristyl Ether)

Perfecta Petrolatum

WITCONOL H-35A (PEG-8 Stearate)

WITCAMIDE MAS (Stearamide MEA Stearate)

EMPHOS D70-30C (Sodium Glyceryl Oleate Phosphate)

Cetyl Alcohol

Propylparaben

«——— Ingredients with quantities,
mixtures of ingredients
[phase, part, etc.]

onvowuUrwo
~owocoooco

Water Phase:
EMCOL 4072 (Disodium Hydrogenated Cottonseed Glyceride

Sulfosuccinate) 3.0
Glycerin USP 3.0
Methylparaben 0.15|
Fragrance, Color q.s.
Water q.s. to 100

Recipe/ formulation consisting of
Heat each phase to 70 to 75C and stir until uniform. Add the|

Water Phase to the Oil Phase at 70 to 75C with moderate agita- | ¥ actions and specialization/
tion and maintain agitation and temperature for 15 minutes. Let] - .
cool, with slow stirring; avoid air entrainment during cooling characterization of actions
cycle. Pour at or below 28C.

These creams have a white glossy texture and offer excellentlq—— .
emulsion stability on extended storage. Property of the recipe

Fig. 3. Structure of a formulation from a textual source [6]

that several different names refer to a single ingredient. In such cases, an ingre-
dients dictionary, such as [14] can be used as one source of collating different
names of the same ingredient. Once experts finalize a set of ingredients, then
it is possible to use techniques like mixed-integer programming to incorporate
heuristics and compute possible variants [2,17].

Extraction of Requisite Details. Previous attempts at extracting formulation
constituents have focused on inorganic materials [10,11,15], which are distinct
from organic materials in formulated products like creams, meaning that recipe
actions are not reactions between chemicals. To the best of our knowledge, ours
is the first attempt at applying information extraction techniques to organic
formulated products. In the next section, we elaborate our approach in extracting
formulation constituents.

3 Extraction of Formulation Constituents

An organic chemical formulation text usually contains the name of the formu-
lation, ingredients, mixtures (if any), weights or proportions of ingredients, and
actions to be performed on the ingredients and mixtures, with conditions such
as specific temperatures or states as shown in Fig. 3. We refer to these details as
constituents of a formulation. We first cover the extraction of ingredient details
followed by the processing of recipe text.

3.1 Extraction of Ingredients, Mixtures, and Ingredient Weights

To extract ingredients and ingredient weights, it helps to preserve the layout while
transforming the PDF files to text format, which we achieve using the Apache
PDFBox API. With a preserved layout, the ingredient and its weight occur in a
single line of text. Additionally, the formulation may use the ingredients as a part
of a mixture. To recognize the mixture indicators separately, we prepare a small list
of mixture phrases. The list we use contains indicator phrases like phase a, phase

438 S. Sunkle et al.

b, phase ¢, oil phase, water phase, part a, part b, part ¢, and part d. These indi-
cator phrases appear in a line followed by the list of ingredients that are part of
that mixture, as shown in Fig. 3. To process the ingredients as part of the mixture,
we first identify if a mixture phrase is present. We associate all ingredients with
the current mixture obtained from that line until we encounter the next mixture.
To ensure that we only consider the part of the text that contains the ingredients
for the processing of ingredients, we apply simple sentence (boundary) detection
(SBD)3. As illustrated in Fig. 3, the ingredients occur in the part of the text that
is NOT a set of sentences (whereas the recipe text is).

To recognize the weight fractions of each ingredient, we use a regular expres-
sion. The regular expression is \d+\s*\.\s*\d+|q.s. |as\s*desired in Python.
The \s* flag takes care of multiple white spaces between the integer and the frac-
tion part of an ingredient’s weight represented by the flag \d. The + sign in front
of the flag indicates more than one digits in the integer part of the weight. Words
such as q.s. (indicating the amount which is needed) can be added as more of
such phrases are encountered.

3.2 Extraction of Actions from Recipe Texts

The recipe text describes actions performed a) on the ingredients individually
or b) ingredients as a part of a mixture, and ¢) on the mixtures if the mixtures
are present, as shown in Fig. 3.

The critical problems faced in extracting A-M-C structures are that a) the
recipes contain instructions which are imperative sentences, and b) objects may
be alluded to but could be missing from the sentences [9,15]. Since the sentences
are instructions, they begin with an instructional verb and therefore often lack
a subject (from the typical subject-verb-object structure of a sentence). Addi-
tionally, with the flow of instructions, the previous object acted upon is often
implicitly considered without explicitly mentioning it in the next instruction.

Given that we need to associate actions with ingredients, we choose tech-
niques that return set of subject-verb-object® (SVO*) triples from a given sen-
tence. While other similar attempts in inorganic materials synthesis procedure
extraction have used dependency parsing, we also use open information extrac-
tion or open IE*. An open IE implementation returns a triple of subject-verb-
object*. Specific implementations may return individual triples, replicating the
subject and verb for each object if there are many objects. Open IE models are
often trained by bootstrapping on other open IE models which could have been
trained on manually extracted triples from sentences.

Our observation is that open IE, as well as dependency parsing®, fail for
imperative or instructional sentences returning an incorrect SVO triple. We solve
this problem by prepending “You should” to each instructional sentence. So that

3 Spacy Sentence Boundary Detection https://spacy.io/usage/spacy-101.

4 AllenNLP Open IE https://demo.allennlp.org/open-information-extraction.

5 Spacy Dependency Parser https://spacy.io/usage/linguistic-features/#dependency-
parse.

https://spacy.io/usage/spacy-101
https://demo.allennlp.org/open-information-extraction
https://spacy.io/usage/linguistic-features/#dependency-parse
https://spacy.io/usage/linguistic-features/#dependency-parse

Formulated Products Information System 439

sentence like “Heat each phase to 70 to 75C and stir until uniform.” from Fig. 3
reads as “You should heat each phase to 70 to 75C and stir until uniform”. To
solve the second problem, that of missing objects, we introduce a novel mecha-
nism of using a stack as explained later in this section.

Additionally, we make use of a dictionary of verbs that are representative of
actions performed on ingredients and/or mixtures. We compile the list using the
410 files and applying SBD and open IE to identify the verbs. Some of the exam-
ple verbs are maintain, heat, add, stir, moisturize, cool, extract, demineralize,
mix, disperse, blend, emulsify, select, distil, chelate, and so on. We use a total of
129 lemmatized verbs. As we will demonstrate in Sect. 6, we found that using a
verb list is critical for accurate mapping of actions to ingredients/mixtures.

Figure 4 shows control flows for both open IE and dependency parsing for the
extraction of what we refer to as Action Mixture/Ingredient Condition (hence-
forth A-M-C) structures.

OPEN

STACKING

New sentence = “You INFORMATION
should” + sentence EXTRACTION Only

Adding subject Action(A)

to Imperative sentences A A

Open Information Extraction Condition F
- © For all
Extracting Arguments mixtures
L And Removing “You should” strcture remaining in

stack, A is
converted to
A-M structure

Relation Triples/SVOs returned from OpenlE

Action -> Mixture Action -> Action 11
-> Condition Mixture

New sentence = “You DEPENDENCY

should” + sentence PARSING

T Root s thﬁ Adding subject
action to Imperative sentences
* Branches
| | Dependency Parser | |
contain
mixtlfr.es and ependency tree Tor eac
conditions
. Extract words v
in branches Extract entities from the
and match branches of the dependency

Action(A)-
Mixture(M)
structure
present?

Pop A from stack

For all mixtures remaining
in stack, A-C structure is
converted to
A-M-C structure

Pop A-C structures
from stack
Pop all possible

A-M structures
from stack

Action(A)=
Mixture(M)-
Condition(C)
structure
present?,

Analyze x entities from stack
until Action is encountered

from original tree

sentence to get Extracting Arguments

correct phrase_/ And Remoying “You should”
Possible Entities returned from branches

Action -> Mixture Action -> X
W(Mixture) Action

Dependency Parsing without Stacking

Pop all possible
A-M-C structures
Popping from stack
starts from
Last sentence

Put extracted entities
in a stack starting
from first sentence

. ! Action Mixture/ Condition
Formatted - Ingredients
Recipe Processing
—
e of Results AL ML/ a
A2 M2/13

Collectu?n of Verbs repr.esentlng A3 M3/13 a
Sentence Segmentation actions in formulations . o/ .

Fig. 4. Extraction of A-M-C structures from formulated product recipe text

Using Open IE with Stacking. Open IE model returns multiple (and possi-
bly overlapping) triples of up to 4 values each; first value is the subject of the

440 S. Sunkle et al.

sentence, the second value is the verb of the sentence, the third value is the
first object of the sentence, and the fourth value is the second object of the sen-
tence. We illustrate the complete process of applying open IE to extract A-M-C
structure in Fig. 4. We process each triple to separate actions and ingredients.

Depending on the SVO triple returned, if action and two arguments are present,
then we find all mixtures (from the mixtures dictionary) and ingredients (from ear-
lier processing). If a mixture or an ingredient exists, we push it to a stack, and the
action and the two arguments represent the current A-M-C structure. If a mixture
or an ingredient does not exist, then the two arguments (values apart from the
action verb) contain conditions. In this case, we use all mixtures from the stack
and process output as action, mixture or ingredient, and the two arguments as a
single entry, which now represents an A-M-C. If a triple only contains one argu-
ment, then we use all mixtures from the stack and process output as action, mixture
or ingredient, and single argument to represent the A-M-C.

Using Dependency Parser with Stacking. To recognize the mixtures and
conditions properly using dependency parsing, we convert multi-word mixtures
to a single word using an underscore. In this case, a mixture identifier like phase
a becomes phase_a. Figure4 also illustrates the process of using a dependency
parser. We extract all the branches from the root in the dependency tree and
then process each branch based on the following rules:

— The root is the action (when the root is a verb from the verbs dictionary).

— Branches contain mixtures and conditions.

— If a branch contains two actions, we ignore the root action.

— We extract words in branches and match from original sentence to get the
correct phrase to obtain the condition.

The rule-based extraction returns an Action-Mixture (A-M), an Action- Con-
dition (A-C) or an Action-Mixture-Condition (A-M-C) structure. We push the
structure to a stack starting from the first sentence. Words are popped from the
stack until we encounter an action. If an A-M-C structure is present, then we
pop it as a result. If an A-M structure is present, then we pop the A-M structure.
If an A-C structure is present, then we pop the A-C structure from the stack
and convert it into an A-M-C structure for all the unique mixtures remaining in
the stack. Otherwise, if we encounter only A, then we pop A and convert it to
an A-M structure for all the unique mixtures remaining in the stack.

We carry out the above steps recursively from the last sentence to the first
sentence. The extracted results get rearranged according to their occurrence in
the text, thus maintaining the order of actions.

Constructing Ingredient Dictionary for Synonyms and Functionali-
ties. We observe that there are scarce offline resources to collect synonyms or other
names of an ingredient as well as their functionalities but several online resources
including ingredient entries at Wikipedia and specialized databases like the EU
Cosmetic Ingredient Database®. We apply web scraping to several online resources
to construct ingredient-synonyms and ingredient-functionality dictionaries.

5 EU CosIng https://ec.europa.eu/growth /sectors/cosmetics/cosing_en.

https://ec.europa.eu/growth/sectors/cosmetics/cosing_en

Formulated Products Information System 441

A total of 2633 ingredients exist in 410 formulations, out of which 1086 are
unique, and 333 ingredients repeat more than once. Chemical names are more
prominently available in public datasets as opposed to an ingredient name occur-
ring in a formulation. We were able to find chemical names for 447 ingredients.
We search for sources such as Wikipedia”, PubChem® [12], Chebi?, and Chem-
Spider'® to gather the desired information. The extracted data contains:

— TUPAC (International Union of Pure and Applied Chemistry) name, Syn-
onyms, Chemical formula, Smiles (a representation of the chemical), Pub-
Chem CID, and uses or application section or functionalities from Wikipedia.

— Chemical Formula and PubChem CID from PubChem.

— Link to Chebi and ChemSpider from Wikipedia.

In the following sections, we present the storage and retrieval of the formulation
constituents that we have extracted.

4 Storing Formulations as Graphs

Figure5 shows the graph conceptual/domain model for cosmetic and toiletry
formulations. In Fig. 5, the node FormulationType indicates the high-level formu-
lation category. Since all our formulations are of creams which are of the type
cosmetic and toiletry, for all 410 formulations under consideration, we set the
label name of the FormulationType to cosmetic and toiletry.

Type of formulation FormulationType name: 'Cosmetic and Toiletry'

Category within a type formulation FormulationCategory name: 'Creams'

Name of the formulation Formulation name: ‘'acid ph. oil-in-water cream - b'
Ingredients with quantities, Ingredient name: 'witconol mst (glyceryl stearate)',
mixtures of ingredients [phase, quantity:'1e.0'
part, etc.] (:Mixture (name : 'oil phase'))
Recipe/ formulation consisting RecipeText RecipeActionGraph
of actions and specialization/ RecipeActionGraphStringRepr
cigfacterization ofactions Action name : 'heat', node_id:'1')-[:Uses]->
(:Constituent name : 'each phase')-[:UnderCondition]->
(:Condition name : 'to 70 to 75c'),
Get the formulations containing Get quantity of all ingredients of Get action graph of all “all
‘Cetyl Alcohol’ as one of the the name ‘Cetyl Alcohol’ purpose” creams
ingredients MATCH (f:Formulation)- MATCH (f:Formulation)-
MATCH (f:Formulation)- [:HasIrfgredLent]->(1ngd:Il:|gred1ent) [:HasRecipeStringRepr]-
[:HasIngredient]->(ingd:Ingredient) WHERE ingd.name CONTAINS 'Cetyl >(r:RecipeActionGraphStringRepr)
WHERE ingd.name CONTAINS ‘Cetyl Alcohol WHERE f.name CONTAINS "all purpose”
Alcohol’ RETURN f.name as Formulation, RETURN f.name, r.repr

ingd.name as IngredientName,

RETURN' COUNT(F.name) as ingd.quantity as WeightQT

nnumFormulations, collect(f.name) as
Formulations

Fig. 5. Graph domain model (with formulation details from Fig. 3) and queries

" E.g., cetyl alcohol entry at Wikipedia https://en.wikipedia.org/wiki/Cetyl_alcohol.
8 at PubChem https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexadecanol.

9 at Chebi https://www.ebi.ac.uk/chebi/searchld.do?chebild=16125.

10" at ChemSpider http://www.chemspider.com/Chemical-Structure.2581.html.

https://en.wikipedia.org/wiki/Cetyl_ alcohol
https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexadecanol
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=16125
http://www.chemspider.com/Chemical-Structure.2581.html

442 S. Sunkle et al.

There are two reasons to choose a graph database. First, in contrast to rela-
tional databases, where join-intensive query performance deteriorates as the size
of dataset increases, while a graph database performance tends to remain rela-
tively constant, even as the dataset grows [1,16].

Second, graphs are also naturally additive, implying that we can add new
nodes to represent hierarchies or taxonomies, new kinds of relationships between
nodes, new nodes, and new subgraphs to an existing structure without disturbing
current queries and application functionality [16].

MATCH (a:FormulationCategory) where a.name='Creans'

CREATE (a)-[:HasFormulation]->(f:Formulation {name:'acid-ph oil-in-water cream - b'}),

(f)-[:Source]->(:Source {name:'Voll-1001.txt'}),

(f)-[:HasIngredient]->(:Ingredient {name:'witconol mst (glyceryl stearate)', quantity:'16.6'})-[:Part0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'witconol apm (ppg-3 myristyl ether)', quantity:'3.8'})-[:PartOf]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'perfecta petrolatum’, quantity:'s.e'})-[:Part0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'witconol h-35a (peg-8 stearate)', quantity:'s.8'})-[:Part0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'witcamide m a s (stearamide mea stearate)', quantity:'3.0'} art0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'emphos d70-36c (sodium glyceryl oleate phosphate)’, quantity:'0.5'})-[:Part0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'cetyl alcohol', quantity:'2.6'})-[:Part0f]->(:Mixture (name:'oil phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'propylparaben', quantity:'e.1'})-[:Part0f]->(:Mixture (name:'oil phase')),

(f)-[:HasIngredient]->(:Ingredient {name:'emcol 4672 (disodium hydrogenated cottonseed glyceride sulfosuccinate) glycerin usp', quantity:'3.0'})
~[:Part0Of]->(:Mixture (name:'water phase')),

(f)-[:HasIngredient]->(:Ingredient {name:'methylparaben’, quantity:'e.15'})-[:Part0f]->(:Mixture (name:'water phase')),
(f)-[:HasIngredient]->(:Ingredient {name:'fragrance, color', quantity:'q.s.'})-[:Part0f]->(:Mixture (name:'water phase’)),
(f)-[:HasIngredient]->(:Ingredient {name:'water', quantity:'q.s.'})-[:PartOf]->(:Mixture (name:'water phase')),

(f)-[:HasRecipe]-> (g:RecipeActionGraph) ,

(g)-[:Contains]->(al:Action {name:'heat', node_id:'1'})-[:Uses]->(:Constituent {name:'phase'})-[:UnderCondition]->(:Condition {name:'each to 70 to 75c'}),
(g)-[:HasStartNode] ->(al),

(8)-[:Contains]->(a2:Action {name:'stir', node_id:'2'})-[:Uses]->(:Constituent {name:'phase'})->(:Condition {name:'until uniform'}),
(g)-[:Contains]->(a3:Action {name:'add’, node_id:'3'})-[:Uses]->(:Constituent {name:'water phase+oil phase'})

-[:UnderCondition]->(:Condition {name:'to the oil phase at 76 75c with moderate agitation'}),

(g)-[:Contains]->(a4:Action {name:'maintain’, node_id:'4'})-[:Uses]->(:Constituent {name:'phaseswater phase+oil phase'})
~[:UnderCondition]->(:Condition {name: 'agitation temperature for 15 minutes'}),

(g)-[:Contains]->(a5:Action {name:'let', node_id:'5'})-[:Uses]->(:Constituent {name:'phase+water phase+oil phase'})
-[:UnderCondition]->(:Condition {name:'with siow stirring'}),

(g)-[:Contains]->(a6:Action {name:'avoid', node_id:'6'})-[: Uses] >(:Constituent {name:'phase+water phase+oil phase'})
~[:UnderCondition]->(:Condition {name:'air entrainment during cooling cycle'}),

(g)-[:Contains]->(ag:Action {name:'pour', node_id:'8'})-[:Uses]->(:Constituent {name:'phaseswater phasesoil phase'})
-[:UnderCondition]->(:Condition {name:'at or below 28c'}),

RETURN f.name

Fig. 6. Generated query for formulation in Fig. 3

In case we were storing the details of a non-cosmetic and toiletry formula-
tion, we would begin by adding a node of type FormulationType and setting the
name property appropriately. Next, the node FormulationCategory captures the
specific type of cosmetic and toiletry formulation, in our case, creams (or cream).
Typically, for other cosmetic and toiletry formulations like antiperspirants and
deodorants, we would set the name accordingly.

We generate and execute the combined MATCH and CREATE query'! parts
as shown in Fig. 6 for each formulation, such that we process a formulation text,
generate a query and execute it to add a specific formulation to the graph.

This graph structure lends itself to intuitive queries. We show some example
queries at the bottom of Fig.5. Note the queries to find all the formulations
containing the ingredient Cetyl Alcohol, and the weights of Cetyl Alcohol in
those formulations. Another query shown in Fig.5 retrieves ingredients of all
creams of the specific kind such as all purpose or skin whitening.

In theory, having built a database of formulations of a specific type (with
FormulationType nodes and the specific instances thereof), it is possible to query
the details of similar FormulationCategory nodes and their constituents. This kind
of query ability paves the way to the first step of intelligent design of formulated
products as we show next.

' Cypher Query Language for Neo4j Graph Database https://neo4j.com/developer/
cypher-query-language/.

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/

Formulated Products Information System 443

5 Aiding Experts in Design of Formulated Products

Now that we have a database (and in effect a method to create such a database),
it is possible to start planning the creation of a design variant as follows:

1. Given a specific kind of FormulationCategory, query the functionalities it
usually contains.

For each functionality, query all the Ingredient instances associated with it.
Query the weight ranges of the ingredients via the quantity attribute.
Finalize the set of ingredients and/or mixtures.

Query the actions generally performed on each ingredient as a standalone
or as a part of a mixture from the A-M-C structures stored as RecipeAction-
Graph instances.

6. Order the actions suitably to arrive at a complete formulation variant.

G Lo

We prepare the following set of neighbourhoods as an aid to the expert:

— ingredients that never occur together, as well as those that occur together

— bidirectional neighbourhoods for functionality-ingredient and ingredient-
actions, enabling to query functionality and actions of an ingredient and vice
versa

It is possible to further cluster or rank the neighbourhoods of ingredients in
terms of their functionalities, ingredients in terms of actions performed on them,
and actions in terms of ingredients to which they apply.

6 Validation and Discussion

We describe validation of extraction, storage, and aided product design below.

Validating the Extraction of A-M-C Structures. To validate the extraction
of A-M-C structures from the formulation recipes, we manually label recipes from
175 out of 410 formulation texts in terms of A-M-C structures. Figure 7 shows
the F1 scores and score bins for both open IE and dependency parsing with and
without a verb list and the stacking mechanism. The techniques, when combined,
produce the best scores, as seen in Fig. 7.

For string similarity computation, we use an implementation of Levenshtein
distance in Python!?.

We compute a similarity score and consider the prediction correct when the
score is above a threshold of 75%. This threshold enables accommodating any
small differences in the prediction and truth strings. If the predicted result con-
tains more actions than truth, then we count them as false positives. If an action
is missing from the predicted result, we count it as a false negative.

If we do not use the verb list, both open IE and dependency parser tag all
possible verbs as actions. If we do not use the stacking mechanism, then the
specific implementation misses out on mixtures or ingredients in most recipes,

12 Pugzzywuzzy String Matching https://github.com /seatgeek /fuzzywuzzy.

https://github.com/seatgeek/fuzzywuzzy

444 S. Sunkle et al.

% of data having % of data having
F1>= 80 40<=F1<80

F1 Scores for all methods

F1 _Scores
e o o
[P

o
N

S
-

=g
=3

se

Specific method represented as same color
bar on the left

se

b)
(no_stack)

apenie
(no_stack)
openie
(stack)
(no_verb)
(verb)
(stack)

(no_verb)

(no_verb)
openie

(no_stack)
dep_parse
(no_stack)
dep_pal

(no_ve
dep_pal
Combined

Fig. 7. F1 scores and score bins of extraction methods

where they are not explicitly mentioned. Consequently, when we use both the
verb list and the stacking mechanism on top of open IE and dependency parser,
we get better F1 scores.

In the combined approach, we use both open IE and dependency parsing
with the verb list and the stacking mechanism. Based on observations, we use
two rules: a) choose actions from the method that gives more number of actions,
and b) for each action, we choose the more descriptive mixture and condition,
so that we don’t miss out any information that may have been lost when using
the specific extraction technique.

The score bins show that the combined method achieves more than 80% F1
score for three fourth of the set of 175 formulations.

Validating Neighbourhood Computation. The top of Fig.8 shows the
ingredients that never occur together, as well as those that occur together, esp.
in the same phase or mixture. Such neighbourhoods or clusters of ingredients
are useful because using the membership within a specific ingredient-ingredient
neighbourhood, the choice of other ingredients can be informed.

At the bottom of Fig.8, the results already explicate useful insights that
tend to be implicit knowledge even if well understood. Functionalities such as
emollients and viscosity controlling dominate due to formulations being creams of
various kinds. Water, Propylene Glycol, Fragrance, Triethanolamine, and Cetyl
Alcohol are the most common ingredients and Heat, Add, and Cool are some of
the most frequently occurring actions.

On top of such neighbourhoods, we can also relate functionalities of ingre-
dients to specific kinds of formulations and thereby to formulation categories.
For instance, massage cream instances tend to contain ingredients with anti-
static, binding, buffering, and denaturant functionalities, among others. Similarly,

Formulated Products Information System 445

Mineral Oil Glycerol Isopropyl Stearate ABIL Wax 9801 Isopropyl Myristate OCtyl Palmitate

Mineral Oil 0 -8 o o 0 4
Glycerol -8 o o o o o
Isopropyl Stearate 0) 0 1 0 0
ABIL Wax 9801 o 0 1 0 3 o
Isopropyl Myristate 0 0 0 3 0 0
OCtyl Palmitate 4 o o o o o
0 = Never occur together
>0 = Occur together in same phase
<0 = Occur together in same formulation but different phases
Top 10 Functionalities with Top 10 Ingredients with Max Actions Top 10 Actions applied to
Max Ingredients Max Ingredients
TR 287 water 89 heat 678
enulsifying 254 propylene glycol 65 add 553
viscosity 282 fragrance 57 cool 453
controlling B ——— e
skin triethanolamine . 257
conditioning 2 S
cetyl alcohol 48 i
solvent 233 continue 342
mineral oil 46
humectant 151 mix 279
deilonized water 46
opacifyin 139 stirrin 276
P ying preservative 45 9
antistatic 165 . melt 266
glycerin 43
binding i isopropyl myristate |42 mixing 241
emulsion
stabilising = cooled ‘163

Fig.8. (Top) Ingredient-ingredient neighbourhood (Bottom) Statistics from
functionality-ingredient, ingredient-actions and actions-ingredients neighbourhoods

chamomile cream instances tend to contain functionalities such as bulking, humec-
tant, and plasticizer among others.

Validating Product Variant Generation Aid. We show an example of an
aided variant generation process in Fig.9 using a tool based on our approach.
Our tool aids the formulator (expert) in making rational decisions regarding
ingredient choices and helps him/her arrive at a possible recipe to be followed
using the actions generally associated with the chosen ingredient.

For example, if a user wanted to design a variant of a face cream then the
tool takes face cream as input product type and returns the count of face cream
recipes in the database (11, in this case) along with the various ingredient func-
tionalities associated with the face cream recipes. The user then has the option
to specify the functionality to be explored, say emollient. Based on the function-
ality chosen, the tool returns 33 possible ingredient choices for this functional-
ity from 11 face cream formulations. Given the possible emollient choices, the
user then selects one or more ingredients based on experience such as Isopropyl
Myristate based on the knowledge that it is a liquid of low viscosity, absorbs
quickly and also acts as a permeation enhancer. After selection of the emollient
Isopropyl Myristate, the tool outputs 10 ingredients which occurred together
with this ingredient and their respective functionalities. The user can opt to
choose optional functionality like anti-ageing similarly. We check the novelty of
the combination by ensuring that this combination does not occur in any of the
410 cream recipes.

446 S. Sunkle et al.

@ List of Cosmetics and @ Selection of desired @
Toiletry Product Types product type

List of functionalities typically
occurring in face creams

'I;Iace creams e.g.: Face creams ¢—| Emoliients
oistening creams s—| Emulsifiers
Lipsticks Domain Expert Thickeners

List of Emollients

Isopropyl Myristate

Selection of desired 4_<5> Selection of desired
Emollient functionality
e.g.: Isopropyl Myritol 318

O '
f‘\ Myristate Vaseline /7 e9. Emollients
Domain Expert Domain Expert

List of ingredients typically found e Selection of other mandatory N N . "
to occur with functionalities ingredients ‘ Selection of optional ingredients

Cutina BW [Viscosity controlling] O e.g.: Cutina BW

Liquid Paraffin [Antioxidant, Emulsifying] M Emulgataor E2155
Emulgator E2155 [Emulsifying] mugatacr

Domain Expert

Cutina BW [stir (until the cream), heat (to 70C)]
Emulgator E2155 [heat (to 70C), cool(to 30C)]
Isopropyl Myristate [heat (to 70C), cool(to 30C)]

Action-Condition list for each
ingredient

Fig. 9. Product design variant generation example

Once the formulator chooses all required ingredients, the tool outputs a list
of A-M-C structures associated with each ingredient. The common A-M-C struc-
tures across all the chosen ingredients direct the formulator to the overall recipe
steps. A possible recipe obtained as illustrated in Fig. 9 is as below:

Phase A: Isopropyl Myristate 10-35%, Cutina BW 0.1-2%,
Emulgator E2155 2-67,

Phase B: Water 55-75%, Collagen CLR 1-10%

Procedure: Heat Phase A and Phase B to about 70c.

Add Phase A to Phase B.

Continue stirring until the cream is emulsified.

Cool down to approximately 30c.

In the following, we briefly touch upon the limitations of our approach.

Extraction Limitations. Both open IE and dependency parsing incorrectly
process a) gerund verb forms such as mizing in “disperse ... using high-speed
mixing”, and b) passive sentences, resulting in inaccurate triples and therefore,
incorrect results. Similarly, if a sentence contains multiple actions as in “melt A
and bring to about 70C”, the processing fails to separate melting and bringing
about as two different actions. We are currently extending annotated data by
first creating A-M-C structures with our techniques and then manually correcting
them. We plan to use machine learning techniques to overcome these limitations
to some extent.

Formulated Products Information System 447

Data Availability Limitations. In spite of these aids, it is not possible to
predict the final properties of the designed variant as in how adding or removing
an ingredient affects the properties of the formulated product. Additionally, the
sequence of recipe steps to be followed cannot be ascertained independently with
just the A-M-C structures for the ingredients. We are currently compiling a set
of heuristics to tackle these limitations.

7 Conclusion

Formulated products industry presents considerable opportunities for informa-
tion systems such as one that we have detailed and demonstrated. Although it is
tough to obtain and store details of every ingredient, its functionality, and kinds
of products where it is useful, our approach provides a step in that direction,
mainly if the user focuses on a specific product type like a cream or a coating.

References

1. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
(CSUR) 40(1), 1 (2008)

2. Arrieta-Escobar, J.A., Bernardo, F.P.; Orjuela, A., Camargo, M., Morel, L.: Incor-
poration of heuristic knowledge in the optimal design of formulated products: appli-
cation to a cosmetic emulsion. Comput. Chem. Eng. 122, 265-274 (2019)

3. Bernardo, F.P., Saraiva, P.M.: A conceptual model for chemical product design.
AIChE J. 61(3), 802-815 (2015)

4. Conte, E., Gani, R., Ng, K.M.: Design of formulated products: a systematic
methodology. AIChE J. 57(9), 2431-2449 (2011)

5. Dionisio, K.L., et al.: The chemical and products database, a resource for exposure-
relevant data on chemicals in consumer products. Sci. Data 5, 180125 (2018)

6. Flick, E.W.: Cosmetic and Toiletry Formulations, vol. 1-8. Elsevier (1989-2014)

7. Gani, R., Ng, K.M.: Product design-molecules, devices, functional products, and
formulated products. Comput. Chem. Eng. 81, 70-79 (2015)

8. Hill, M.: Chemical product engineering—the third paradigm. Comput. Chem. Eng.
33(5), 947-953 (2009)

9. Kiddon, C., Ponnuraj, G.T., Zettlemoyer, L., Choi, Y.: Mise en place: unsupervised
interpretation of instructional recipes. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 982-992 (2015)

10. Kim, E., Huang, K., Jegelka, S., Olivetti, E.: Virtual screening of inorganic materi-
als synthesis parameters with deep learning. NPJ Comput. Mater. 3(1), 1-9 (2017)

11. Kim, E., Huang, K., Saunders, A., McCallum, A., Ceder, G., Olivetti, E.: Mate-
rials synthesis insights from scientific literature via text extraction and machine
learning. Chem. Mater. 29(21), 9436-9444 (2017)

12. Kim, S., et al.: Pubchem substance and compound databases. Nucleic Acids Res.
44(D1), D1202-D1213 (2016)

13. Lee, C., Choy, K.L., Chan, Y.: A knowledge-based ingredient formulation system
for chemical product development in the personal care industry. Comput. Chem.
Eng. 65, 40-53 (2014)

14. Michalun, M.V., DiNardo, J.C.: Skin Care and Cosmetic Ingredients Dictionary.
Cengage Learning, Boston (2014)

448 S. Sunkle et al.

15. Mysore, S., et al.: Automatically extracting action graphs from materials science
synthesis procedures. arXiv preprint arXiv:1711.06872 (2017)

16. Robinson, 1., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Inc., New-
ton (2013)

17. Wibowo, C., Ng, K.M.: Product-centered processing: manufacture of chemical-
based consumer products. AIChE J. 48(6), 1212-1230 (2002)

18. Zhang, L., Fung, K.Y., Wibowo, C., Gani, R.: Advances in chemical product design.
Rev. Chem. Eng. 34(3), 319-340 (2018)

19. Zhang, L., Fung, K.Y., Zhang, X., Fung, H.K., Ng, K.M.: An integrated framework
for designing formulated products. Comput. Chem. Eng. 107, 61-76 (2017)

http://arxiv.org/abs/1711.06872

	Information Extraction and Graph Representation for the Design of Formulated Products
	1 Introduction
	2 Background and Related Work
	3 Extraction of Formulation Constituents
	3.1 Extraction of Ingredients, Mixtures, and Ingredient Weights
	3.2 Extraction of Actions from Recipe Texts

	4 Storing Formulations as Graphs
	5 Aiding Experts in Design of Formulated Products
	6 Validation and Discussion
	7 Conclusion
	References

