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Abstract Synaptic connections in many brain circuits fluctuate, exhibiting substantial turnover

and remodelling over hours to days. Surprisingly, experiments show that most of this flux in

connectivity persists in the absence of learning or known plasticity signals. How can neural circuits

retain learned information despite a large proportion of ongoing and potentially disruptive synaptic

changes? We address this question from first principles by analysing how much compensatory

plasticity would be required to optimally counteract ongoing fluctuations, regardless of whether

fluctuations are random or systematic. Remarkably, we find that the answer is largely independent

of plasticity mechanisms and circuit architectures: compensatory plasticity should be at most equal

in magnitude to fluctuations, and often less, in direct agreement with previously unexplained

experimental observations. Moreover, our analysis shows that a high proportion of learning-

independent synaptic change is consistent with plasticity mechanisms that accurately compute

error gradients.

Introduction
Learning depends upon systematic changes to the connectivity and strengths of synapses in neural

circuits. This has been shown across experimental systems (Moczulska et al., 2013; Lai et al., 2012;

Hayashi-Takagi et al., 2015) and is assumed by most theories of learning (Hebb, 1949;

Bienenstock et al., 1982; Gerstner et al., 1996).

Neural circuits are required not only to learn, but also to retain previously learned information.

One might therefore expect synaptic stability in the absence of an explicit learning signal. However,

many recent experiments in multiple brain areas have documented substantial ongoing synaptic

modification in the absence of any obvious learning or change in behaviour (Attardo et al., 2015;

Pfeiffer et al., 2018; Holtmaat et al., 2005; Loewenstein et al., 2015; Yasumatsu et al., 2008;

Loewenstein et al., 2011).

This ongoing synaptic flux is heterogeneous in its magnitude and form. For instance, the

expected lifetime of dendritic spines in mouse CA1 hippocampus has been estimated as 1–2 weeks

(Attardo et al., 2015). Elsewhere in the brain, over 70% of spines in mouse barrel cortex are found

to persist for 18 months (Zuo et al., 2005), although these persistent spines exhibited large devia-

tions in size over the imaging period (on average, a >25% deviation in spine head diameter).

The sources of these ongoing changes remain unaccounted for, but are hypothesised to fall into

systematic changes associated with learning, development and homeostatic maintenance, and

unsystematic changes due to random turnover (Rule et al., 2019; Mongillo et al., 2017; Ziv and

Brenner, 2018). A number of experimental studies have attempted to disambiguate and quantify

the contributions of different biological processes to overall synaptic changes, either by directly

interfering with synaptic plasticity, or by correlating changes to circuit-wide measurements of ongo-

ing physiological activity (Nagaoka et al., 2016; Quinn et al., 2019; Yasumatsu et al., 2008;

Minerbi et al., 2009; Dvorkin and Ziv, 2016). Consistently, these studies find that the total rate of
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ongoing synaptic change is reduced by only 50% or less in the absence of neural activity or when

plasticity pathways are blocked.

Thus, the bulk of steady-state synaptic changes seem to arise from fluctuations that are indepen-

dent of activity patterns at pre/post synaptic neurons or known plasticity induction pathways. As

such, it seems unlikely that their source is some external learning signal or internal reconsolidation

mechanism. This is surprising, because maintenance of neural circuit properties and learned behav-

iour would intuitively require changes across synapses to be highly co-ordinated. To our knowledge,

there is no theoretical account or model prediction that explains these observations.

One way of reconciling stable circuit function with unstable synapses is to assume that ongoing

synaptic changes are localised to ‘unimportant’ synapses, which do not affect circuit function. While

this may hold in particular circuits and contexts (Mongillo et al., 2017), at least some of the ongoing

synaptic changes are likely associated with ongoing learning, which must somehow affect overall cir-

cuit function to be effective (Rule et al., 2020). Furthermore, this model does not account for the

dominant contribution of fluctuations among those synapses that do not remain stable over time.

In this work we explore another, non-mutually exclusive hypothesis that active plasticity mecha-

nisms continually maintain the overall function of a neural circuit by compensating changes that

degrade memories and learned task performance. This fits within the broad framework of memory

maintenance via internal replay and reconsolidation, a widely hypothesised class of mechanisms for

which there is widespread evidence (Carr et al., 2011; Foster, 2017; Nader and Einarsson, 2010;

Tronson and Taylor, 2007).

Compensatory plasticity can be induced by external reinforcement signals (Kappel et al., 2018),

interactions between different brain areas and circuits (Acker et al., 2018), or spontaneous, net-

work-level reactivation events (Fauth and van Rossum, 2019). Either way, we can conceptually

divide plasticity processes into two types: those that degrade previously learned information, and

those that protect against such degradation. We will typically refer to memory-degrading processes

as ‘fluctuations’. While these may be stochastic in origin, for example due to intrinsic molecular noise

in synapses, we do not demand that this is the case. Fluctuations will therefore account for any syn-

aptic change, random or systematic, that disrupts stored information.

The central question we address in this work is how compensatory plasticity should act in order

to optimally maintain stored information at the circuit level, in the presence of ongoing synaptic fluc-

tuations. To do this, we develop a general modelling framework and conduct a first-principles math-

ematical analysis that is independent of specific plasticity mechanism and circuit architectures. We

find that the rate of compensatory plasticity should not exceed that of the synaptic fluctuations, in

direct agreement with experimental measurements. Moreover, fluctuations should dominate as the

precision of compensatory plasticity mechanisms increases, where ‘precision’ is defined as the qual-

ity of approximation of an error gradient. This provides a potential means of accounting for differen-

ces in relative magnitudes of fluctuations in different neural circuits. We validate our theoretical

predictions through simulation. Together, our results explain a number of consistent but puzzling

experimental findings by developing the hypothesis that synaptic plasticity is optimised for dynamic

maintenance of learned information.

Results

Review of key experimental findings
To motivate the main analysis in this paper we begin with a brief survey of quantitative, experimental

measurements of ongoing synaptic dynamics. These studies, summarised in Table 1, provide quanti-

fications of the rates of systematic/activity-dependent plasticity relative to ongoing synaptic

fluctuations.

We focused on studies that measured ‘baseline’ synaptic changes that occur outside of any

behavioural learning paradigm, and which controlled for stimuli that may induce widespread

changes in synaptic strength. The approaches fall into two categories:

1. Those that chemically suppress neural activity, and/or block known synaptic plasticity path-
ways, quantifying consequent changes in the rate of synaptic dynamics, in vitro
(Yasumatsu et al., 2008; Minerbi et al., 2009; Quinn et al., 2019) and in vivo
(Nagaoka et al., 2016). The latter study included a challenging experiment in which neural
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activity was pharmacologically suppressed in the visual cortex of mice raised in visually
enriched conditions.

2. Those that compare ‘redundant’ synapses sharing pre and post-synaptic neurons, and quantify
the proportion of synaptic strength changes attributable to spontaneous processes indepen-
dent of their shared activity history. These included in vitro studies that involved precise longi-
tudinal imaging of dendritic spines in cultured cortical neurons (Dvorkin and Ziv, 2016). They
also included in vivo studies, that used electron microscopy to reconstruct and compare the
sizes of redundant synapses (Kasthuri et al., 2015) post mortem.

The studies in Table 1 consistently report that the the main component (more than 50%) of base-

line synaptic dynamics is due to synaptic fluctuations that are independent of neural activity and/or

easily identifiable plasticity signals. This is surprising because such a large contribution of fluctuations

might be expected to disrupt circuit function. A key question that we address in this study is whether

such a large relative magnitude of fluctuations can be accounted for from first principles, assuming

that neural circuits need to protect overall function against perturbations.

The hypothesis we assumed is that some active plasticity mechanism compensates for the degra-

dation of a learned memory trace or circuit function caused by ongoing synaptic fluctuations. We

will thus express overall plasticity as a combination of synaptic fluctuations (task-independent

Table 1. Synaptic plasticity rates across experimental models, and the effect of activity suppression.

Reference Experimental system Total baseline synaptic change

% synaptic change that is
activity / learning-
independent

Pfeiffer et al., 2018 Adult mouse hippocampus 40% turnover over 4 days NA

Loewenstein et al.,
2011

Adult mouse auditory cortex >70% of spines changed size by >50% over 20 days NA

Zuo et al., 2005 Adult mouse (barrel, primary motor,
frontal) cortex

3–5% turnover over 2 weeks for all regions. 73.9 ± 2.8% of
spines stable over 18 months (barrel cortex)

NA

Nagaoka et al.,
2016

Adult mouse visual cortex 8% turnover per 2 days in visually deprived environment.
15% in visually enriched environment. 7–8% in both
environments under pharmacological suppression of
spiking.

» 50% (turnover)

Quinn et al., 2019 Glutamatergic synapses, dissociated
rat hippocampal culture

28 ± 3.7% of synapses formed over 24 hr period. 28.6 ±

2.3% eliminated. Activity suppression through tetanus
neurotoxin -light chain. Plasticity rate unmeasured.

» 75% (turnover)

Yasumatsu et al.,
2008

CA1 pyramidal neurons, primary
culture, rat hippocampus

Measured rates of synaptic turnover and spine-head
volume change. Baseline conditions vs activity
suppression (NMDAR inhibitors). Turnover rates: 32.8 ±

3.7% generation/elimination per day (control) vs 22.0 ±

3.6% (NMDAR inhibitor). Rate of spine-head volume
change:

» 67� 17% (turnover). Size-
dependent, but consistently
>50% (spine-head volume)

Dvorkin and Ziv,
2016

Glutamatergic synapses in cultured
networks of mouse cortical neurons

Partitioned commonly innervated (CI) synapses sharing
same axon and dendrite, and non-CI synapses. Quantified
covariance in fluorescence change for CI vs non-CI
synapses to estimate relative contribution of activity
histories to synaptic remodelling

62–64% (plasticity)

Minerbi et al., 2009 Rat cortical neurons in primary culture Created ‘relative synaptic remodeling measure’ (RRM)
based on frequency of changes in the rank ordering of
synapses by fluorescence. Compared baseline RRM to
when neural activity was suppressed by tetrodotoxin
(TTX). RRM: 0.4 (control) vs 0.3 (TTX) after 30 hr.

» 75% (plasticity)

Kasthuri et al.,
2015

Adult mouse neocortex (Three-
dimensional post mortem
reconstruction using electron
microscopy).

Data on 124 pairs of ‘redundant’ synapses sharing a pre/
post-synaptic neuron was analysed in Dvorkin and Ziv,
2016. They calculated the correlation coefficient of spine
volumes and post-synaptic density sizes between
redundant pairs. This should be one if pre/post-synaptic
activity history perfectly explains these variables.

77% (post-synaptic density,
r2 ¼ 0:23).
66% (spine volume, r2 ¼ 0:34)

Ziv and Brenner,
2018

Literature review across multiple
systems

‘Collectively these findings suggest that the contributions
of spontaneous processes and specific activity histories to
synaptic remodeling are of similar magnitudes’

» 50%
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processes that degrade memory quality) and compensatory plasticity, which counteracts this effect.

There are various ways such a compensatory mechanism might access information on the integrity of

overall circuit function, memory quality or ’task performance’. It could use external reinforcement

signals (Kappel et al., 2018; Rule et al., 2020). Alternatively, such information could come from

another brain region, as hypothesised in for example Acker et al., 2018, where cortical memories

are stabilised by hippocampal replay events. Spontaneous, network-level reactivation events internal

to the neural circuit itself could also plausibly induce performance-increasing plasticity (Fauth and

van Rossum, 2019). Regardless, the decomposition of total ongoing plasticity into fluctuations and

systematic plasticity allows us to derive relationships between both that are independent of the

underlying mechanisms, which are not the focus of this study.

We must acknowledge that it is difficult, experimentally, to pin down and control for all physio-

logical factors that regulate synaptic changes, or indeed to measure such changes accurately. How-

ever, even if one does not take the observations in Table 1 – or their interpretation – at face value,

the conceptual question we ask remains relevant for any neural circuit that needs to retain informa-

tion in the face of ongoing synaptic change.

Modelling setup
Suppose a neural circuit is maintaining previously learned information on a task. The circuit is subject

to task-independent synaptic fluctuations which can degrade the quality of learned information.

Meanwhile, some compensatory plasticity mechanism counteracts this degradation. Throughout this

paper, we treat ‘memory’ and ‘task performance’ as interchangeable because our framework analy-

ses the effect of synaptic weight change on overall circuit function. In this context, we ask:

if a network optimally maintains learned task performance, what rate of compensatory plasticity is

required relative to the rate of synaptic fluctuations?

By ‘rate’ we mean magnitude of change in a given time interval. Our setup is depicted in Figure 1.

We make the following assumptions, which are also stated mathematically in Box 1:

1. The neural network has N adaptive elements that we call ‘synaptic weights’ for convenience,
although they could include parameters controlling intrinsic neural excitability. We represent
these elements through a vector wðtÞ, which we call the neural network state. Changes to wðtÞ
correspond to plasticity.

2. Any state wðtÞ is associated with a quantifiable (scalar) level of task error, denoted F½wðtÞ�, and
called the loss function. A higher value of F½wðtÞ� implies greater corruption of previously
learned information.

3. The network state can be varied continuously. Task error varies smoothly with respect to
changes in wðtÞ.

4. At any point of time, we can represent the rate of change (i.e. time-derivative) of the synaptic
weights as

_wðtÞ ¼ _cðtÞþ _�ðtÞ:

as discussed previously, which correspond to compensatory plasticity and synaptic fluctua-
tions, respectively.

The magnitude and direction of plasticity may or may not change continually over time. Corre-

spondingly, we may pick an appropriately small time interval, Dt, (which is not necessarily infinitesi-

mally small) over which the directions of plasticity can be assumed constant, and write

DwðtÞ ¼ DcðtÞþD�ðtÞ; (1)

where for any time-dependent variable xðtÞ, we use the notation DxðtÞ :¼ xðtþDtÞ� xðtÞ. We regard

DcðtÞ and D�ðtÞ as coming from unknown probability distributions, which obey the following

constraints:

. Synaptic fluctuations D�ðtÞ: We want to capture ‘task independent’ plasticity mechanisms. As
such, we demand that the probability of the mechanism increasing or decreasing any particular
synaptic weight over Dt is independent of whether such a change increases or decreases task
error. A trivial example would be white noise, but systematic mechanisms, such as homeostatic
plasticity, could also contribute (O’Leary, 2018; O’Leary and Wyllie, 2011).
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. Compensatory plasticity DcðtÞ: We demand that compensatory plasticity mechanisms change
the network state in a direction of decreasing task error, on average. As such, they cause the
network to preserve previously stored information, though not in general by restoring synaptic
weights to their previous values following a perturbation.

Motivating example
Having described a generic modelling framework, we next uncover a key observation using a simple

simulation.

Figure 1 depicts an abstract, artificial neural network trying to maintain a given input-output

mapping over time, which is analogous to preservation of a memory trace or learned task. At every

timestep, synaptic fluctuations corrupt the weights, and a compensatory plasticity mechanism acts

to reduce any error in the input-output mapping (see Equation (1)). We fix the rate (i.e. magnitude

per timestep) of synaptic fluctuations throughout. We increase the compensatory plasticity rate in

stages, ranging from a level far below the synaptic fluctuation rate, to a level far above it. Each stage

is maintained so that task error can settle to a steady state.

task

error

plasticity

rate

timesteps

synaptic 

fl uctuations (SF)

compensatory

plasticity (CP)

time

CP

SF

task

error

weight

1

weight

2

timesteps

a

b c

Figure 1. Motivating simulation results. (a) We consider a network attempting to retain previously learned information that is subject to ongoing

synaptic changes due to synaptic fluctuations and compensatory plasticity. (b) Simulations performed in this study use an abstract, rate based neural

network (described in section Motivating example). The rate of synaptic fluctuations is constant over time. By iteratively increasing the compensatory

plasticity rate in steps we observe a ‘sweet-spot’ compensatory plasticity rate, which is lower than that of the synaptic fluctuations, and which best

controls task error. (c) A snapshot of the simulation described in b, at the point where the rates of synaptic fluctuations and compensatory plasticity are

matched. Even as task error fluctuates around a mean value, individual weights experience systematic changes.
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Two interesting phenomena emerge. The task error of the network is smallest when the compen-

satory plasticity rate is smaller than the synaptic fluctuation rate (Figure 1b). Meanwhile, individual

weights in the network continually change even as overall task error remains stable due to redun-

dancy in the weight configuration (Figure 1c), (see e.g. Rule et al., 2019 for a review).

In this simple simulation, we made a number of arbitrary and non-biologically motivated choices.

In particular, we used an abstract, rate-based network, and synthesised compensatory plasticity

directions using the biologically questionable backpropagation rule (see Materials and methods for

full simulation details). Nevertheless, Figure 1 highlights a phenomenon that we claim is more

general:

The ‘sweet-spot’ compensatory plasticity rate that leads to optimal, steady-state retention of pre-

viously learned information is at most equal to the rate of synaptic fluctuations, and often less.

In the remainder of the results section, we will build intuition as to when and why this claim holds.

We will also explore factors influence the precise ‘sweet-spot’ compensatory plasticity rate.

The loss landscape
In order to analyse a general learning scenario that can accommodate biologically relevant assump-

tions about synaptic plasticity, we will develop a few general mathematical constructs that will allow

us to draw conclusions about how synaptic weights affect the overall function of a network.

We first describe the ‘loss landscape’: a conceptually useful, geometrical visualisation of task error

F½w� (see also Figure 2). Every point on the landscape corresponds to a different network state w.

Box 1. Mathematical assumptions on plasticity.

To quantify memory quality/task performance we consider a loss function F½wðt�Þ�, which is

twice differentiable in wðtÞ. This loss function is simply an implicit measure of memory quality;

we do not assume that the network explicitly represents F, or has direct access to it. Consider

an infinitesimal weight-change Dw over the infinitesimal time-interval Dt. We apply a second

order Taylor expansion to express the consequent change in task error:

DF ¼ F½wðt�Þ þ Dw� � F½wðt�Þ�:

DF ¼ D�
TrF½wðt�Þ�þDc

TrF½wðt�Þ�

þ
1

2
Dc

Tðr2F½wðt�Þ�ÞDcþ
1

2
D�

Tðr2F½wðt�Þ�ÞD�

þDc
Tðr2F½wðt�Þ�ÞD�þOðkDcþD�k3

2
Þ:

(2)

Here, rF½wðt�Þ� and r2F½wðtÞ� represent the first two derivatives (gradient and hessian) of

F½wðt�Þ�, with respect to a change in the weights wðt�Þ. We assume that Dc and D� are suffi-

ciently small (due to the short time interval) that the third-order term OðkDcþD�k3
2
Þ can be

ignored.

Next, we assume that Dc and D� are generated from unknown probability distributions. We

place some constraints on these distributions. Firstly, synaptic fluctuations should be uncorre-

lated, in expectation, with the derivatives of F½w�, which govern learning. Accordingly,

E½D�TrF½wðt�Þ�%� ¼ 0; (3a)

E½DcTðr2F½wðt�%Þ�ÞD�� ¼ 0: (3b)

Secondly, we require that Dc points in a direction of plasticity that decreases task error, for suf-

ficiently small

kDck
2
Dc

TrF½wðt�Þ�<0: (3c)
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Whereas any point on a standard three-dimensional landscape has two lateral (xy) co-ordinates, any

point on the loss landscape has N co-ordinates representing each synaptic strength. Plasticity

changes w, and thus corresponds to movement on the landscape. Any movement Dw has both a

direction D̂w (where hats denote normalised vectors), and a magnitude kDwk
2
. Meanwhile, the eleva-

tion of a point w on the landscape represents the degree of task error, F½w�. Compensatory plasticity

improves task error, and thus moves downhill, regardless of the underlying plasticity mechanism.

Understanding curvature in the loss landscape
Intuitively, one would expect task-independent synaptic fluctuations to increase task error. This is

true even if fluctuations are unbiased in moving in an uphill or downhill direction on the loss land-

scape (see Equation (3a)) due to the curvature of the landscape (see Figure 2C). For instance, the

slope (mathematically represented by the gradient rF½w�) at the bottom of a valley is zero. However,

every direction is positively curved, and thus moves uphill. More generally, consider a fluctuation

that is unbiased in selecting uphill or downhill directions, at a network state w. The fluctuation will

increase task error in expectation if the total curvature of the upwardly curved directions at w

exceeds that of the downwardly curved directions, as illustrated in Figure 2c. We refer to such a

state as partially trained. If all directions are upwardly curved, such as at/near the bottom of a valley,

we refer to the state as highly trained. Mathematical definitions for these terms are provided in

Box 2.

Comparison of the upward curvature of different plasticity directions plays an important role in

the remainder of the section. Therefore, we introduce the following operator:

Q
w
½v� ¼ v̂

Tr2F½w�v̂:

Q
w
½v� is mathematical shorthand for the degree of curvature in the direction v, at point w on the

loss landscape, and is depicted in Figure 3a. Note that Q
w
½v� depends solely upon the direction, and

not the magnitude, of v.

An expression for the optimal degree of compensatory plasticity during
learning
The rates of compensatory plasticity and synaptic fluctuations, at time t, are _cðtÞ and _�ðtÞ, respec-

tively. These rates may change continually over time. Let’s temporarily assume they are fixed over a

small time interval ½t; t þ Dt�. Thus,

Dc¼ _cðtÞDt D�¼ _�ðtÞDt: (5)

What magnitude of compensatory plasticity, kDck
2
, most decreases task error over Dt? The

answer is

kDck�
2
¼
�Dĉ

TrF̂½w�

Q
w
½Dc�

krF½w�k
2
: (6)

A mathematical derivation is contained in Box 3, with geometric intuition in Figure 3b. Note that

our answer turns out to be independent of the synaptic fluctuation rate _�ðtÞ. Here,

. krF½w�k
2
represents the sensitivity of the task error to changes (i.e. the steepness of the loss

landscape).
. �Dĉ

TrF̂½w� represents the accuracy of the compensatory plasticity direction in conforming to
the steepest downhill direction on the loss landscape (in particular, their normalised
correlation).

. Q
w
½Dc� represents the upward curvature of the compensatory plasticity direction. As shown in

Figure 3b, excessive plasticity in an upwardly curved, but downhill, direction, can eventually
increase task error. Thus, upward curvature limits the ideal magnitude of compensatory plastic-
ity in the direction Dĉ.

For now, Equation (6) is valid only if the compensatory plasticity direction is fixed during Dt. If we

want Equation (6) to also be compatible with continually changing compensatory plasticity direc-

tions, it needs to be valid for an arbitrarily small Dt. However, enacting a non-negligible magnitude
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steady state

errorlearning

error

time

error

error

highlow

weight 1
weight 1

weight 2

weight 2

net change compensatory

plasticity

compensatory

plasticity

synaptic

fluctuations

synaptic

fluctuations

Figure 2. Task error landscape and synaptic weight trajectories. (a) Task error is visualised as the height of a ‘landscape’. Lateral co-ordinates represent

the values of different synaptic strengths (only two are visualisable in 3D). Any point on the landscape defines a network state, and the height of the

point is the associated task error. Both compensatory plasticity and synaptic fluctuations alter network state, and thus task error, by changing synaptic

strengths. Compensatory plasticity reduces task error by moving ‘downwards’ on the landscape. (b) Eventually, an approximate steady state is reached

where the effect of the two competing plasticity sources on task error cancel out. The synaptic weights wander over a rough level set of the landscape.

(c) The effect of synaptic fluctuations on task error depends on local curvature in the landscape. Top: a flat landscape without curvature. Even though

the landscape is sloped, synaptic fluctuations have no effect on task error in expectation: up/downhill directions are equally likely. Bottom: Although

up/downhill synaptic fluctuations are still equally likely, most directions are upwardly curved. Thus, uphill directions increase task error more, and

downhill directions decrease task error less. So in expectation, synaptic fluctuations wander uphill.
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kDck�
2
of plasticity over an arbitrarily small time interval Dt would require an unattainable, ‘infinitely-

fast’ plasticity rate.

In fact, we show in the next section that our expression for kDck�
2
does become compatible with

continuously changing plasticity at the end of learning, when task-error is stable.

Characterising the optimal rate of compensatory plasticity at steady
state
Consider a scenario where task error is approximately stable. In this case, DF » 0 over Dt. In this sce-

nario, Equation (6) simplifies to

kDck�2
2

kD�k2
2

¼
Q

w
½D��

Q
w
½Dc�

; (9a)

as derived in Box 4 and illustrated geometrically in Figure 3c. We see that the magnitude kDck�
2
is

proportional to kD�k
2
, which is itself proportional to Dt from Equation (5), given some fixed rate of

synaptic fluctuations. Thus, kDck�
2
is attainable even as Dt shrinks to zero, and is thus compatible with

continually changing compensatory plasticity directions. In this case, Equation (9) can be rewritten

as

k _cðtÞk�;2
2

k_�ðtÞk2
2

¼
Q

w
½_�ðtÞ�

Q
w
½ _cðtÞ�

: (9b)

Equation (9) is a key result of the paper. It applies regardless of the underlying plasticity mecha-

nisms that induced Dc and D�. It is compatible with continually or occasionally changing directions of

compensatory plasticity (i.e. infinitesimal or non-infinitesimal Dt). It says that the optimal compensa-

tory plasticity rate, relative to the rate of synaptic fluctuations, depends on the relative upward cur-

vature of these two plasticity directions on the loss landscape.

A corollary is that the optimal rate of compensatory plasticity is greater during learning than at

steady state. If we substitute the steady-state requirement: E½DF� ¼ 0, with the condition for learn-

ing: E½DF�<0, in the derivation of Box 4, then we get

Box 2. Curvature and the loss landscape.

Consider a fluctuation Dw at a state w. The change in task error, to second order, can be writ-

ten as

F½wþDw��F½w�»DwTrF½w� þ
1

2
Dw

Tr2F½w�Dw (4)

via a Taylor expansion. Suppose the fluctuation is task-independent. So it is unbiased with

respect to selecting uphill/downhill, and more/less curved directions on the loss landscape. In

this case

E½rF½w�TDw� ¼ 0

In expectation, Equation (4) thus becomes

E½F½wþDw� �F½w�� ¼ kDwk2
2

Trðr2F½w�Þ

2N
:

If Trðr2F½w�Þ>0, then the expected change in task error is positive, and we refer to the net-

work state as ‘partially trained’. If additionally, r2F½w� � 0, that is, DwTr2F½w�Dw� 0 for any

choice of Dw, then we refer to the network as highly trained. The ‘highly trained’ condition

always holds in a neighbourhood of a local minimum of task error.
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kDck�2
2

kD�k2
2

�
Q

w
½D��

Q
w
½Dc�

: (10)

Indeed, the faster the optimal potential learning rate E½DF�, the greater the optimal compensa-

tory plasticity rate. Thus kDck�
2
decreases as learning slows to a halt, eventually reaching the level of

Equation (9b).

u
n
d
e
rshooto

p
tim
al

o
ve
rshoot

optimal rate:

(i)

(ii) (iii)

overshoot undershoot

Figure 3. Quantifying effect of task error lanscape curvature on compensatory plasticity. (a) Geometrical intuition behind the operator Q
w
. The operator

charts the degree to which a (normalised) direction is upwardly curved (i.e. lifts off the tangent plane depicted in grey). The red, shaded areas filling the

region between the tangent plane and the upwardly curved directions are proportional to Q
w
½v1�, and Q

w
½v2�, respectively. (b) Compensatory plasticity

points in a direction of locally decreasing task-error. Excessive plasticity in this direction can be detrimental, due to upward curvature (‘overshoot’). The

optimal magnitude for a given direction is smaller if upward curvature (i.e. the Q-value) is large, as for cases (i) and (ii), and if the initial slope is shallow,

as for case (ii). It is greater if the initial slope is steep, as for case (iii). This intuition underlies Equation (6) for the optimal magnitude of a given

compensatory plasticity direction, which includes as a coefficient the ratio of slope to curvature. (c) Equation (11) depends upon the ratio of the

upward curvatures in the two plasticity directions, Dc, and D�. As illustrated, steep downhill directions often exhibit more upward curvature than

arbitrary directions. In such cases, the optimal magnitude of compensatory plasticity should be outcompeted by synaptic fluctuations.
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Main claim
We now claim that generically, the optimal compensatory plasticity rate should not outcompete the

rate of synaptic fluctuations at steady state error. We will first provide geometric intuition for our

claim, before bolstering with analytical arguments and making precise our notion of ‘generically’.

Box 3. Optimal magnitude of compensatory plasticity.

Let us rewrite Equation (2), using the operator Q and omitting higher order terms, as justified

in Box 1:

DF ¼ D�
TrF½wðt�Þ�þDc

TrF½wðt�Þ�

þ
1

2
kDck2

2
Q

wðt�Þ½Dc� þ
1

2
kD�k2

2
Q

wðt�Þ½D��

þDc
Tðr2F½wðt�Þ�ÞD�:

(7)

We can substitute our assumptions on synaptic fluctuations (Equations (3)) into Equation (7)

to get

E½DF� (8)

Note that the requirement for assumption (3b) can be removed, but the alternative resulting

derivation is more involved (see SI section two for this alternative).

We can differentiate Equation (8) in kDck
2
, to get:

dE½DF�

dkDck
2

¼ Dĉ
TrF½wðt�Þ�þkDck

2
Q

wðt�Þ½Dc�:

The root of this derivative gives a global minimum of the Equation (8) in kDck
2
, as long as

Q
wðt�Þ½Dc� � 0 holds (justified in SI section 2.1). We get Equation (6), which defines the compen-

satory plasticity magnitude that minimises DF, and thus overall task error, at time t� þDt.

Box 4. Optimal compensatory plasticity magnitude at

steady state error.

Let us substitute the special condition E½DF� ¼ 0 (steady-state task error) into Equation (8).

This gives

0¼ Dc
TrF½wðt�Þ�þ

1

2
kDck2

2
Q

wðt�Þ½Dc� þ
1

2
kD�j2

2
Q

wðt�Þ½D��:

Next, we substitute in our optimal reconsolidation magnitude (Equation (6)). This gives

0¼�
1

2
kDck2

2
Q½Dc� þ

1

2
kD�k2

2
Q½D��;

which in turn implies the result (Equation (9)).

Note that Equation (9) is only valid when both the numerator and denominator of the right

hand side are both positive. The converse is unlikely in a partially trained network, and impos-

sible in a highly trained network (see SI section 2.1).
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From Equation (9), our main claim holds if

Q
w
½Dc� �Q

w
½D��; (11)

that is, Dc points in a more upwardly curved direction than D�. When would this be true?

First consider D�. Statistical independence from the task error means it should point in an ‘aver-

agely’ curved direction. Mathematically (see SI secton 2.1), this means

E½Q
w
½D��� ¼

Trðr2F½w�Þ

N
: (12)

Our assumption of ‘average’ curvature fails if synaptic fluctuations are specialised to ‘unimpor-

tant’ synapses whose changes have little effect on task error. In this case Q
w
½D�� would be even

smaller, since D� would be constrained to consistently shallow, less-curved directions. Thus, this pos-

sibility does not interfere with our main claim.

For Equation (11) to hold, Dc should point in directions of ‘more-than-average’ upward curvature.

This follows intuitively because a steep downhill direction, which effectively reduces task error, will

usually have higher upward curvature than an arbitrary direction (see Figure 3c for intuition). It

remains to formalise this argument mathematically, and consider edge cases where it doesn’t hold.

Dependence of the optimal magnitude of steady-state, compensatory
plasticity on the mechanism
Compensatory plasticity is analogous to learning, since it acts to reduce task error. We do not yet

know the algorithms that neural circuits use to learn, although constructing biologically plausible

learning algorithms is an active research area. Nevertheless, all the potential learning algorithms we

are aware of fit into three broad categories. For each category, we shall show why and when our

main claim holds. We will furthermore investigate quantitative differences in the optimal compensa-

tory plasticity rate, across and within categories. A full mathematical justification of all the assertions

we make is found in SI section 1.3.

We first highlight a few general points:

. For any compensatory plasticity mechanism, Q
w
½Dc� depends not only on the algorithm, but

the point w on the landscape. We cannot ever claim that Equation (11) holds for all network
states.

. We calculate the expected value of Q
w
½Dc� for an ‘average’, trained, state w, across classes of

algorithm. This corresponds to a plausible best-case tuning of compensatory plasticity that a
neural circuit might be able to achieve. Any improvement would rely on online calculation of
Q

w
½Dc�, which we do not believe would be plausible biologically.

Learning algorithms attempt to move to the bottom of the loss landscape. But they are blind.

Spying a distant valley equates to ‘magically’ predicting that a very different network state will have

very low task error. How do they find their way downhill? There are three broad strategies

(Raman and O’Leary, 2021):

. 0th order algorithms take small, exploratory steps in random directions. Information from the
change in task error over these steps informs retained changes. For instance, steps that
improve task error are retained. A notable 0-order algorithm is REINFORCE (Williams, 1992).
Many computational models of biological learning in different circuits derive from this algo-
rithm (Seung, 2003; Fee and Goldberg, 2011; Bouvier et al., 2018; Kornfeld et al., 2020).

. 1st order algorithms explicitly approximate/calculate, and then step down the locally steepest
direction (i.e. the gradient rF½w�). The backpropagation algorithm implements perfect

Table 2. Table elements highlighted in teal correspond to scenarios in which our main claim holds, as Equation (11) is satisfied.

Quadratic F½w� Nonlinear F½w�, low steady-state error Nonlinear F½w�, high steady-state error

0th order algorithm Q½Dc� »Q½D�� Q½Dc�»Q½D�� Q½Dc� »Q½D��

0st order algorithm Q½Dc� � Q½D�� Q½Dc� � Q½D�� Q½Dc� »Q½D��

0nd order algorithm Q½Dc� »Q½D�� Q½Dc�»Q½D�� Q½Dc� � Q½D��
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gradient descent. Many approximate gradient descent methods with more biologically plausi-
ble assumptions have been developed in the recent literature (see e.g. Murray, 2019;
Whittington and Bogacz, 2019; Bellec et al., 2020; Lillicrap et al., 2016; Guerguiev et al.,
2017, and Lillicrap et al., 2020 for a review).

. 2nd order algorithms additionally approximate/calculate the hessian r2F½w�, which provides
information on local curvature. They look for descent directions that are both steep, and less
upwardly curved. We doubt it is possible for biologically plausible learning rules to accurately

Figure 4. Geometric intuition for the optimal magnitude of different compensatory plasticity directions. Colours depict level sets of the loss landscape.

Elliptical level sets correspond to a quadratic loss function (which approximates any loss function in the neighbourhood of a local minimum). In c and d,

we depict compensatory plasticity and synaptic fluctuations as sequential, alternating processes for illustrative purposes, although they are modelled as

concurrent throughout the paper. (a) Compensatory plasticity directions locally decrease task error, so point from darker to lighter colours. Optimal

magnitude is reached when the vectors ‘kiss’ a smaller level set, that is, intersect that level set while running parallel to its border. Increasing magnitude

past this past this point increases task error, by moving network state to a higher-error level set. (b) If compensatory plasticity is parallel to the gradient

(i.e. it enacts gradient descent), then it runs perpendicular to the border of the level set on which it lies (i.e. the tangent plane). This is shown explicitly

for the ‘exact gradient’ direction of plasticity. The optimal magnitude of plasticity in this direction is smaller than that of a corrupted gradient descent

direction, even though the former is more effective in reducing task error, because the exact gradient points in a more highly curved direction. (c)

Synaptic fluctuations of a certain magnitude perturb the network state. The optimal magnitude of compensatory plasticity (in the exact gradient

descent direction, for this example) is significantly smaller than that of the synaptic fluctuations, using the geometric heuristic explained in (a). If the

magnitude of compensation increased to match the synaptic fluctuation magnitude there would be overshoot, and task error would converge to a

higher steady state. (d) If compensatory plasticity mechanisms can perfectly calculate both the local gradient and hessian (curvature) of the loss

landscape, then network state will move in the direction of the ‘Newton step’. In the quadratic case (elliptical level sets), this will directly ‘backtrack’ the

synaptic fluctuations. Thus, the optimal magnitude of compensatory plasticity will be equal to that of the synaptic fluctuations. However, time delays in

the sensing of synaptic fluctuations and limited precision of the compensatory plasticity mechanism will preclude this.
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approximate the hessian, which has N2 entries representing the interaction between every pos-
sible pair of synaptic weights.

Table 2 shows the categories for which our main claim holds.

We first consider the simplest case of a quadratic loss function F½w�. Here, directions of curvature

in any direction are constant (mathematically, the hessian r2F½w� does not vary with network state).

Moreover, the gradient obeys a consistent relationship with the hessian:

rF½w� ¼r2F½w��ðw�w
�Þ: (13)

Components of ðw�w
�Þ with high upward curvature are magnified under the transformation

r2F½w��, since they correspond to eigenvectors of r2F½w�� with high eigenvalue. Conversely, compo-

nents with low upward curvature are shrunk. As the gradient rF½w� is the output of such a transfor-

mation from Equation (13), this suggests it is biased towards directions of high upward curvature.

Indeed, we can quantify this bias. Let flig be the eigenvalues of r2F½w��, and fcig the projections of

the corresponding eigenvectors onto w�w
�. Then
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Figure 5. The dependence of steady state task performance in a nonlinear network on the magnitudes of compensatory plasticity and synaptic

fluctuations, and on the learning rule quality. Each ðx; yÞ value on a given graph corresponds to an 8000 timepoint nonlinear neural network simulation

(see ‘Methods’ for details). The y value gives the steady-state task error (average task error of the last 500 timepoints) of the simulation, while the x

value gives the ratio of the magnitudes of the compensatory plasticity and synaptic fluctuations terms. Steady state error is averaged across 8

simulation repeats; shading depicts one standard deviation. Between graphs, we change simulation parameters. Down rows, we increase the

proportionate noise corruption of the compensatory plasticity term (see Materials and methods section for details). Across columns, we increase the

magnitude of synaptic fluctuations.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The dependence of steady state task performance in a linear network on the magnitudes of compensatory plasticity and
synaptic fluctuations, and on the learning rule quality.
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Q
w
½rF½w�� ¼

PN
i¼1

c2i l
3

i
PN

i¼1
c2i l

2

i

: (14)

The value of Equation (14) depends on the values fcig. In the ‘average’ case, where they are

equal, and w�w
� is thus a direction of ‘average’ curvature, Q

w
½rF½w�� �Q

w
½D�� holds. This inequality

gap widens with increasing anisotropy in the curvature of different directions (i.e. with a wider

spread of eigenvalues li, corresponding to more elliptical/less circular level sets in the illustration of

Figure 4b). Indeed, simulation results in Figure 5—figure supplement 1 (top row) show how the

ratio kDck
2
: kD�k

2
that optimises steady-state task error is significantly less than one, in a quadratic

error function where compensatory plasticity accurately follows the gradient, and for different synap-

tic fluctuation rates.

What about the case of a nonlinear loss function? Close to a minimum w
�, the relationship of

Equation (13) approximately holds (the loss function is locally quadratic). So if steady-state error is

very low, we can directly transport the intuition of the quadratic case. However when steady state

error increases, Equation (13) becomes increasingly approximate. In the limiting case, we could con-

sider rF½w� as being completely uncorrelated from r2F½w�, in which case Q
w
½rF½w�� »Q

w
½D�� would

hold. Numerical results in Figure 5 supports this assertion in nonlinear networks: the optimal ratio

satisfies kDck
2
: kD�k

2
» 1 in conditions where steady-state task error is high, and kDck

2
: kD�k

2
� 1 in

conditions where it is low.

Overall, we see that if Dc / �rF½w� (i.e. compensatory plasticity enacts gradient descent), then

we would expect compensatory plasticity to be outcompeted by synaptic fluctuations to maintain

optimal steady-state error.

Even if compensatory plasticity does not move in the steepest direction of error decrease (i.e. the

error gradient), it must move in an approximate downhill direction to improve task error (see e.g.

Raman et al., 2019). Furthermore, the worse the quality of the gradient approximation, the larger

the optimal level of compensatory plasticity (illustrated conceptually in Figure 4b–c, and numerically

in Figure 5 and Figure 5—figure supplement 1). Why? We can rewrite such a learning rule as

Dc/�rF½w� þ n;

where n represents systematic error in the gradient approximation. The upward curvature in the

direction Dc becomes a (nonlinear) interpolation of the upward curvatures in the directions rF½w�

and n (see Equation (A6) of the SI). As long as n is less biased towards high curvature directions than

rF½w� itself, then this decreases the upward curvature in the direction Dĉ, and thus increases the

optimal compensatory plasticity rate. Indeed Figure 5 shows in simulation that this rate increases for

more inaccurate compensatory plasticity mechanisms.

We now turn to zero-order learning algorithms, such as REINFORCE. These do not explicitly

approximate a gradient, but generate random plasticity directions, which are retained/opposed

based upon their observed effect on task error. We would expect randomly generated plasticity

directions to have ‘average’ upward curvature, similarly to synaptic fluctuations. In this case, we

would therefore get Q
w
½Dc� »Q

w
½D��, and compensatory plasticity should thus equal synaptic fluctua-

tions in magnitude.

Finally, we consider second-order learning algorithms, and in particular the Newton update:

r2F½w�Dc¼�rF½w�:

As previously discussed, we assume that learning algorithms that require detailed information

about the Hessian are biologically implausible. As such, our treatment is brief, and mainly contained

in SI section 2.2.2.

In a linear network, the Newton update corresponds to compensatory plasticity making a direct

‘beeline’ for w� (see Figure 4d). As such Q
w
½Dc� ¼ Q

w
½D�� and the optimal magnitude of compensa-

tory plasticity should match synaptic fluctuations. The same is true for a nonlinear network in a near-

optimal state. However if steady-state task error is high in a nonlinear network, then compensatory

plasticity should outcompete synaptic fluctuations. This case does not contradict our central claim

however, since high task error at steady state implies that the task is not truly learned.
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Together our results and analyses show that the magnitude of compensatory plasticity, at steady

state task error, should be less or equal to that of synaptic fluctuations. This conclusion does not

depend upon circuit architecture, or choice of biologically plausible learning algorithm.

Discussion
A long-standing question in neuroscience is how neural circuits maintain learned memories while

being buffeted by synaptic fluctuations from noise and other task-independent processes

(Fusi et al., 2005). There are several hypotheses that offer potential answers, none of which are

mutually exclusive. One possibility is that fluctuations only occur in a subset of volatile connections

that are relatively unimportant for learned behaviours (Moczulska et al., 2013; Chambers and Rum-

pel, 2017; Kasai et al., 2003). Following this line of thought, circuit models have been proposed

that only require stability in a subset of synapses for stable function (Clopath et al., 2017;

Mongillo et al., 2018; Susman et al., 2018).

Another hypothesis is that any memory degradation due to fluctuations is counteracted by restor-

ative plasticity processes that allow circuits to continually ‘relearn’ stored associations. The informa-

tion source directing this restorative plasticity could come from an external reinforcement signal

(Kappel et al., 2018), from interactions with other circuits (Acker et al., 2018), or spontaneous, net-

work-level reactivation events (Fauth and van Rossum, 2019). A final possibility is that ongoing syn-

aptic fluctuations are accounted for by behavioural changes unrelated to learned task performance .

All these hypotheses share two core assumptions that we make, and several include a third that

our results depend on:

1. Not all synaptic changes are related to learning.
2. Unchecked, these learning-independent plasticity sources generically hasten the degradation

of previously stored information within a neural circuit.
3. Some internal compensatory plasticity mechanism counteracts the degradation of previously

stored information.

We extracted mathematical consequences of these three assumptions by building a general

framework. We first modelled the the degree of degradation of previously learned information in

terms of an abstract, scalar-valued, task error function or ‘loss landscape’. The brain may not have,

and in any case does not require, explicit representation of such a function for a specific task. All

that is required is error feedback from the environment and/or some internal prediction.

We then noted that compensatory plasticity should act to decrease task error, and thus point in a

downhill direction on the ‘loss landscape’. We stress that we do not assume a gradient-based learn-

ing rule such as the backpropagation algorithm, the plausibility of which is an ongoing debate

(Whittington and Bogacz, 2019).

Our results do not depend on whether synaptic changes during learning are gradual, or occur in

large, abrupt steps. Although most theory work assumes plasticity to be gradual, there is evidence

that plasticity can proceed in discrete jumps. For instance, abrupt potentiation of synaptic inputs

that lead to the formation of place fields in mouse CA1 hippocampal neurons can occur within sec-

onds as an animal explores a new environment (Bittner et al., 2017). Even classical plasticity para-

digms that depend upon millisecond level precision in the relative timing of pre/post synaptic spikes

follow a paradigm where there is a short ‘induction phase’ of a minute or so, following which there is

a large and sustained change in synaptic efficacy (e.g. Markram et al., 1997; Bi and Poo, 1998). It

is therefore an open question as to whether various forms of synaptic plasticity are best accounted

for as an accumulation of small changes or a threshold phenomenon that results in a stepwise

change. Our analysis is valid in either case. We quantify plasticity rate by picking a (large or small)

time interval over which the net plasticity direction is approximately constant, and evaluate the opti-

mal, steady-state magnitude of compensatory plasticity over this interval, relative to the magnitude

of synaptic fluctuations.

A combination of learning-induced and learning-independent plasticity should lead to an eventual

steady state level of task error, at which point the quality of stored information does not decay

appreciably over time. The absolute quality of this steady state depends upon both the magnitude

of the synaptic fluctuations, and the effectiveness of the compensatory plasticity.

Raman and O’Leary. eLife 2021;10:e62912. DOI: https://doi.org/10.7554/eLife.62912 16 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.62912


Our main finding was that the quality of this steady state is optimal when the rate of compensa-

tory plasticity does not outcompete that of the synaptic fluctuations. This result, which is purely

mathematical in nature, is far from obvious. While it is intuitively clear that retention of circuit func-

tion will suffer when compensatory plasticity is absent or too weak, it is far less intuitive that the

same is true generally when compensatory plasticity is too strong.

We also found that the precision of compensatory plasticity influenced its optimal rate. When

‘precision’ corresponds to the closeness of an approximation to a gradient-based compensatory

plasticity rule, an increase in precision resulted in the optimal rate of compensatory plasticity being

strictly less than that of fluctuations. In other words, sophisticated learning rules need to do less

work to optimally overcome the damage done by learning-independent synaptic fluctuations. Indeed

experimental estimates (see Table 1) suggest that activity-independent synaptic fluctuations can sig-

nificantly outcompete systematic, activity-dependent changes in certain experimental contexts. Ten-

tatively, this means that the high degree of synaptic turnover in these systems is in fact evidence for

the operation of precise synaptic plasticity mechanisms as opposed to crude and imprecise

mechanisms.

Our results are generic, in that they follow from fundamental mathematical relationships in opti-

misation theory, and hence are not dependent on particular circuit architectures or plasticity mecha-

nisms. We considered cases in which synaptic fluctuations were distributed across an entire neural

circuit. However, the basic framework easily extends, allowing for predictions in more specialised

cases. For instance, recent theoretical work (Clopath et al., 2017; Mongillo et al., 2018;

Susman et al., 2018) have hypothesised that synaptic fluctuations could be restricted to ‘unimpor-

tant’ synapses. These correspond to low curvature (globally insensitive) directions in the ‘loss land-

scape’. Our framework (Equation (9) in particular) immediately predicts that the optimal rate of

compensatory plasticity will decrease proportionately with this curvature.

Precise experimental isolation/elimination of the plasticity sources attributable to learning and

retention of memories remains challenging. Nevertheless, in conventional theories of learning (e.g.

Hebbian learning), neural networks learn through plasticity induced by patterns of pre- and postsyn-

aptic neural activity. A reasonable approximation, therefore, is to equate the ‘compensatory/learn-

ing-induced’ plasticity of our paper with ‘activity-dependent’ plasticity in experimental setups. With

this assumption, our results provide several testable predictions.

Firstly, our results show that that the rate of compensatory (i.e. learning-dependent) plasticity is

greater when a neural circuit is in a phase of active learning, as opposed to maintaining previously

learned information (see Equation (10) and the surrounding discussion). Consequently, the relative

contribution of synaptic fluctuations to the overall plasticity rate should be lower in this case. It

would be interesting to test whether this were indeed the case, by comparing brain circuits in imma-

ture vs mature organisms, and in neural circuits thought to be actively learning vs those thought to

be retaining previously learned information. One way to do this would be to measure the covariance

of functional synaptic strengths at coinnervated synapses using EM reconstructions of neural tissue.

A higher covariance implies a lower proportion of activity-dependent (i.e. compensatory) plasticity,

since co-innervated synapses share presynaptic activity histories. Interestingly, two very similar

experiments (Bartol et al., 2015) and (Dvorkin and Ziv, 2016) did indeed examine covariance in

EM reconstructions of hippocampus and neocortex, respectively. This covariance appears to be

much lower in hippocampus (compare Figure 1 of Bartol et al., 2015 to Figure 8 of Dvorkin and

Ziv, 2016). Many cognitive theories characterise hippocampus as a continual learner and neocortex

as a consolidator of previously learned information (e.g. O’Reilly and Rudy, 2001). Our analysis pro-

vides support for this hypothesis at a mechanistic level by linking low covariance in coinnervated hip-

pocampal synapses to continual learning.

Secondly, a number of experimental studies (Nagaoka et al., 2016; Quinn et al., 2019;

Yasumatsu et al., 2008; Minerbi et al., 2009; Dvorkin and Ziv, 2016) note a persistence of the

bulk of synaptic plasticity in the absence of activity-dependent plasticity or other correlates of an

explicit learning signal, as explained in our review of key experimental findings. However, there are

two important caveats for relating our work to these experimental observations:

. Experimentally isolating different plasticity mechanisms, measuring synaptic changes, and
accounting for confounding behavioural/physiological changes is extremely challenging. The
most compelling in vivo support comes from Nagaoka et al., 2016, where an analogue of
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compensatory plasticity in the mouse visual cortex was suppressed both chemically (by sup-
pression of spiking activity) and behaviourally (by raising the mouse in visually impoverished
conditions). Synaptic turnover was reduced by about half for both suppression protocols, and
also when they were applied simultaneously. Further studies that quantified changes in synap-
tic strength in addition to spine turnover in an analogous setup would lend further credence to
our results.

. We do not know if observed synaptic plasticity in the experiments we cite truly reflect a neural
circuit attempting to minimise steady-state error on a particular learning goal (as captured
through an abstract, implicit, ‘loss function’). Our analysis simply shows that somewhat surpris-
ing levels of ongoing plasticity can be explained parsimoniously in such a framework. In partic-
ular, the concepts of ‘learning’ and behaviour have no clear relationship with neural circuit
dynamics in vitro. Nevertheless, we might speculate that synapses could tune the extent to
which they respond to ‘endogenous’ (task independent) signals versus external signals that
could convey task information in the intact animal. Even if the information conveyed by activ-
ity-dependent signals were disrupted in vitro, the fact that activity-dependent signals deter-
mined such a small proportion of plasticity is notable, and seems to carry over to the in vivo
case.

Thus, while our results offer a surprising agreement with a number of experimental observations,

we believe it is important to further replicate measurements of synaptic modification in a variety of

settings, both in vivo and in vitro. We hope our analysis provides an impetus for this difficult experi-

mental work by offering a first-principles theory for the volatility of connections in neural circuits.

Materials and methods

Simulations
We simulated two types of network, which we refer to as linear (Figure 5—figure supplement 1)

and nonlinear (Figures 1 and 5) respectively. We ran our simulations in the Julia programming lan-

guage (version 1.3), and in particular used the Flux.jl software package (version 0.9) to construct and

update networks. Source code is available at https://github.com/Dhruva2/OptimalPlasticityRatios

(copy archived at swh:1:rev:fcb1717a822f90b733c49d62bfc2f970155b7364, Raman, 2021).

Nonlinear networks
Networks were rate-based, with the firing rate rðtÞ of a given neuron defined as

rðtÞ ¼ sðwTðtÞuðtÞÞ;

where w is the vector of presynaptic strengths, u represents the firing rate of the associated presyn-

aptic neurons, and sðxÞ :¼ 1

1þexpð�xÞ is the sigmoid function. Initial weight values were generated ran-

domly, according to the standard Xavier distribution (Glorot and Bengio, 2010). Networks were

organised into three layers, containing 12, 20, and 10 neurons, respectively. Any given neuron was

connected to all neurons in the previous layer. For the first layer, the firing rates of the ‘previous

layer’ corresponded to the network inputs.

Linear networks
Networks were organised into an input layer of 12 neurons, and an output layer of 10 neurons. Each

output neuron was connected to all input layer neurons. Networks were rate-based, with the firing

rate rðtÞ of a given neuron defined as

rðtÞ ¼wTðtÞuðtÞ;

where uiðtÞ corresponds to the ith input (input-layer neuron) or the firing rate of the ith input-layer

neuron (output-layer neuron). Initial weight values were generated randomly, according to the Xavier

distribution (Glorot and Bengio, 2010).

Task error
For each network, we generated 1000 different, random, input vectors. Each component of the vec-

tor was generated from a unit Gaussian distribution. Task error, at the tth timestep, was taken as the
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mean squared error of the network in recreating the outputs of the initial (t ¼ 0) network, in response

to the suite of inputs. Mathematically, this equates to

F½wðtÞ� ¼
1

jUj

X

u2U

kyðwðtÞ;uÞ� yðwð0Þ;uÞk2
2
;

where yðwðtÞ;uÞ denotes the output of the network given the synaptic strengths at time t, in response

to input u2 U. Note that this task error recreates the ‘student-teacher’ framework of e.g.

(Levin et al., 1990; Seung et al., 1992), where a fixed copy of the initial network is the teacher.

Weight dynamics
At each simulation timestep, synaptic weights were updated as

Dwtþ1 ¼ Dct þD�t:

We took the synaptic fluctuations term, D�t, as scaled white noise, that is,

D�t /Nð0; IÞ

The constant of proportionality was calculated so that the magnitude kD�k
2
conformed to a pre-

specified value. This magnitude was 2 in the simulation of Figure 1, and was a graphed variable in

the simulations of Figure 5 and Figure 5—figure supplement 1.

The compensatory plasticity term, Dct, was calculated in two stages. First we applied the backpro-

pagation algorithm, using yðwð0Þ; uÞ as the ideal network outputs to train against. This generated an

‘ideal’ direction of compensatory plasticity , proportional to the negative gradient rF½wðtÞ�. For Fig-

ure 5 and Figure 5—figure supplement 1 we then corrupted this gradient with a tunable propor-

tion of white noise. Overall, this gives,

Dct ¼�g1rF̂½w�t þ%g2n̂t;

where nt ~Nð0; IÞ is the noise corruption term, and g1;g2>0 are tunable hyperparameters. The higher

the ratio g2 : g1, the greater the noise corruption. Meanwhile,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2

1
þg2

2

p

sets the overall magnitude of

compensatory plasticity . By tuning g1 and g2, we can therefore independently modify the magnitude

and precision of the compensatory plasticity term. In Figure 1, we set g2 ¼ 0.
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Chronic 2P-STED imaging reveals high turnover of dendritic spines in the Hippocampus in vivo. eLife 7:e34700.
DOI: https://doi.org/10.7554/eLife.34700, PMID: 29932052

Polyak BT. 1987. Introduction to Optimization. New York: Optimization Software, Publications Division.
Quinn DP, Kolar A, Harris SA, Wigerius M, Fawcett JP, Krueger SR. 2019. The stability of glutamatergic synapses
is independent of activity level, but predicted by synapse size. Frontiers in Cellular Neuroscience 13:291.
DOI: https://doi.org/10.3389/fncel.2019.00291, PMID: 31316356

Raman DV, Rotondo AP, O’Leary T. 2019. Fundamental bounds on learning performance in neural circuits. PNAS
116:10537–10546. DOI: https://doi.org/10.1073/pnas.1813416116, PMID: 31061133

Raman D. 2021. OptimalPlasticityRatios. Software Heritage. swh:1:rev:
fcb1717a822f90b733c49d62bfc2f970155b7364. https://archive.softwareheritage.org/swh:1:dir:
99a9eca93055b26e2e47805788fc5c2b62888113;origin=https://github.com/Dhruva2/OptimalPlasticityRatios;visit=
swh:1:snp:1ac3958410687f0808a1839d57a8daedb0a4e058;anchor=swh:1:rev:
fcb1717a822f90b733c49d62bfc2f970155b7364

Raman DV, O’Leary T. 2021. Frozen algorithms: how the brain’s wiring facilitates learning. Current Opinion in
Neurobiology 67:207–214. DOI: https://doi.org/10.1016/j.conb.2020.12.017, PMID: 33508698

Rule ME, O’Leary T, Harvey CD. 2019. Causes and consequences of representational drift. Current Opinion in
Neurobiology 58:141–147. DOI: https://doi.org/10.1016/j.conb.2019.08.005, PMID: 31569062

Rule ME, Loback AR, Raman DV, Driscoll LN, Harvey CD, O’Leary T. 2020. Stable task information from an
unstable neural population. eLife 9:e51121. DOI: https://doi.org/10.7554/eLife.51121, PMID: 32660692

Seung HS, Sompolinsky H, Tishby N. 1992. Statistical mechanics of learning from examples. Physical Review A
45:6056–6091. DOI: https://doi.org/10.1103/PhysRevA.45.6056, PMID: 9907706

Seung HS. 2003. Learning in spiking neural networks by reinforcement of stochastic synaptic transmission.
Neuron 40:1063–1073. DOI: https://doi.org/10.1016/S0896-6273(03)00761-X, PMID: 14687542

Susman L, Brenner N, Barak O. 2018. Stable memory with unstable synapses. arXiv. https://arxiv.org/abs/1808.
00756.

Tronson NC, Taylor JR. 2007. Molecular mechanisms of memory reconsolidation. Nature Reviews Neuroscience
8:262–275. DOI: https://doi.org/10.1038/nrn2090, PMID: 17342174

Whittington JCR, Bogacz R. 2019. Theories of error Back-Propagation in the brain. Trends in Cognitive Sciences
23:235–250. DOI: https://doi.org/10.1016/j.tics.2018.12.005, PMID: 30704969

Williams RJ. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning 8:229–256. DOI: https://doi.org/10.1007/BF00992696

Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H. 2008. Principles of long-term dynamics of dendritic
spines. Journal of Neuroscience 28:13592–13608. DOI: https://doi.org/10.1523/JNEUROSCI.0603-08.2008,
PMID: 19074033

Ziv NE, Brenner N. 2018. Synaptic tenacity or lack thereof: spontaneous remodeling of synapses. Trends in
Neurosciences 41:89–99. DOI: https://doi.org/10.1016/j.tins.2017.12.003, PMID: 29275902

Zuo Y, Lin A, Chang P, Gan WB. 2005. Development of long-term dendritic spine stability in diverse regions of
cerebral cortex. Neuron 46:181–189. DOI: https://doi.org/10.1016/j.neuron.2005.04.001, PMID: 15848798

Raman and O’Leary. eLife 2021;10:e62912. DOI: https://doi.org/10.7554/eLife.62912 22 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1037/0033-295X.108.2.311
http://www.ncbi.nlm.nih.gov/pubmed/11381832
https://doi.org/10.1016/j.cophys.2018.01.006
https://doi.org/10.7554/eLife.34700
http://www.ncbi.nlm.nih.gov/pubmed/29932052
https://doi.org/10.3389/fncel.2019.00291
http://www.ncbi.nlm.nih.gov/pubmed/31316356
https://doi.org/10.1073/pnas.1813416116
http://www.ncbi.nlm.nih.gov/pubmed/31061133
https://archive.softwareheritage.org/swh:1:dir:99a9eca93055b26e2e47805788fc5c2b62888113;origin=https://github.com/Dhruva2/OptimalPlasticityRatios;visit=swh:1:snp:1ac3958410687f0808a1839d57a8daedb0a4e058;anchor=swh:1:rev:fcb1717a822f90b733c49d62bfc2f970155b7364
https://archive.softwareheritage.org/swh:1:dir:99a9eca93055b26e2e47805788fc5c2b62888113;origin=https://github.com/Dhruva2/OptimalPlasticityRatios;visit=swh:1:snp:1ac3958410687f0808a1839d57a8daedb0a4e058;anchor=swh:1:rev:fcb1717a822f90b733c49d62bfc2f970155b7364
https://archive.softwareheritage.org/swh:1:dir:99a9eca93055b26e2e47805788fc5c2b62888113;origin=https://github.com/Dhruva2/OptimalPlasticityRatios;visit=swh:1:snp:1ac3958410687f0808a1839d57a8daedb0a4e058;anchor=swh:1:rev:fcb1717a822f90b733c49d62bfc2f970155b7364
https://archive.softwareheritage.org/swh:1:dir:99a9eca93055b26e2e47805788fc5c2b62888113;origin=https://github.com/Dhruva2/OptimalPlasticityRatios;visit=swh:1:snp:1ac3958410687f0808a1839d57a8daedb0a4e058;anchor=swh:1:rev:fcb1717a822f90b733c49d62bfc2f970155b7364
https://doi.org/10.1016/j.conb.2020.12.017
http://www.ncbi.nlm.nih.gov/pubmed/33508698
https://doi.org/10.1016/j.conb.2019.08.005
http://www.ncbi.nlm.nih.gov/pubmed/31569062
https://doi.org/10.7554/eLife.51121
http://www.ncbi.nlm.nih.gov/pubmed/32660692
https://doi.org/10.1103/PhysRevA.45.6056
http://www.ncbi.nlm.nih.gov/pubmed/9907706
https://doi.org/10.1016/S0896-6273(03)00761-X
http://www.ncbi.nlm.nih.gov/pubmed/14687542
https://arxiv.org/abs/1808.00756
https://arxiv.org/abs/1808.00756
https://doi.org/10.1038/nrn2090
http://www.ncbi.nlm.nih.gov/pubmed/17342174
https://doi.org/10.1016/j.tics.2018.12.005
http://www.ncbi.nlm.nih.gov/pubmed/30704969
https://doi.org/10.1007/BF00992696
https://doi.org/10.1523/JNEUROSCI.0603-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19074033
https://doi.org/10.1016/j.tins.2017.12.003
http://www.ncbi.nlm.nih.gov/pubmed/29275902
https://doi.org/10.1016/j.neuron.2005.04.001
http://www.ncbi.nlm.nih.gov/pubmed/15848798
https://doi.org/10.7554/eLife.62912


Appendix 1

Alternative derivation of Equation (9a)
We provide an alternative derivation of Equation (9a) that removes the need for assumption (3b).

We did not put this main derivation in the main text as we perceive it to have less clarity.

The derivation proceeds identically to that given in the main text until Equation (7). We can then

use (3a) to simplify Equation (7). We get

E½DF� ¼ Dc
TrF½wðt�Þ�

þ
1

2
kDck2

2
Q

wðt�Þ½Dc� þ
1

2
kD�k2

2
Q

wðt�Þ½D��

þDc
Tðr2F½wðt�Þ�ÞD�:

E½DF� ¼ Dc
TrF½wðt�Þ�

þ
1

2
Dc

Tðr2F½wðt�Þ�ÞDcþ
1

2
D�

Tðr2F½wðt�Þ�ÞD�

þDc
Tðr2F½wðt�Þ�ÞD�:

Recall that expectation is taken over an unknown probability distribution from which D� is drawn,

which satisfies Equation (3a).

We then assume that we are in a phase of stable memory retention, so that E½DF� ¼ 0. Now if the

magnitude of compensatory plasticity kDck
2
is tuned to minimise steady state error F, then any

change to kDck
2
will result in an increase in E½DF�. So E½DF� is locally minimal in kDck

2
. This implies

dE½DF�

dkDck
2

¼ 0:

We also claim that local minimality implies

dE½ DF
kDck

2

�

dkDck
2

¼ 0: (1)

Why? E½DF� ¼ 0 implies that E½ DF
kDck

2

� ¼ 0. If a small change to kDck
2
results in E½DF� � 0, then it also

results in E½ DF
kDck

2

� � 0, since kDck
2
is non-negative.

Expanding the LHS of Equation (1), we get

d

dkDck2
fDĉTrF½wðt�Þ�þ

1

2
kDck

2
Dĉ

Tðr2F½wðt�Þ�ÞDĉ

þ
1

2

D�
Tðr2F½wðt�Þ�ÞD�

kDck
2

þDĉ
Tðr2F½wðt�Þ�ÞD�g¼ 0:

Differentiating, we get

1

2
Dĉ

Tðr2F½wðt�Þ�ÞDĉ¼
1

2

D�
Tðr2F½wðt�Þ�ÞD�

kDck2
2

:

)Q
w
½Dc� ¼

kD�k2
2

kDck2
2

Q
w
½D��;

from which (9a) follows.

Positivity of the numerator and denominator in Equation (9a)
Equation (9a) of the main text asserts that

kDck2
2

kD�k2
2

¼
Q

w
½D��

Q
w
½Dc�
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holds as long as both the numerator and denominator of the RHS are positive. Here we describe

sufficient conditions for positivity.

The inequality r2F½w� � 0 must hold in some neighbourhood of any minimum w
�. Recall that we

referred to such a neighbourhood as a highly trained state of the network in the main text. In such a

state, our assertion follows immediately, as Q
w
½v� :¼ 1

kvk2
2

v
Tðr2F½w�Þv � 0, for any vector v. Therefore,

Q
w
½D�� � 0 and Q

w
½Dc� � 0.

We now consider a partially trained network state, which we defined in the main text as any w sat-

isfying Trðr2FÞ � 0. Note that

F½wþD�� ¼ F½w�þrF½w�TD�þ
1

2
D�

TrF½w�D�þOðkD�k3
2
Þ:

We assumed in the main text (Equation (3a)), that D� is uncorrelated with the gradient rF½w� in

expectation, since D� is realised by memory-independent processes. Similarly we can assume that D�

is unbiased in how it projects onto the eigenvectors of r2F½w�. In other words,

E½v̂Ti D�� ¼E½v̂Tj D��;

for any normalised eigenvectors v̂i, v̂j of r2F½w�. In expectation, we can therefore simplify to

E½F½wþD��� ¼ F½w�þE½rF½w�TD�þ
1

2
D�

TrF½w�D��þOðkD�k3
2
Þ:

¼ 0þkD�k2
2

Trðr2F½w�Þ

N
þOðkD�k3

2
Þ;

where N is the dimensionality of the vector w. So a partially trained network is one for which small,

memory-independent weight fluctuations (such as D�, or white noise) are expected to decrease task

performance.

Now recall that Q
w
½D�� ¼ 1

kD�k2
2

D�
Tr2F½w�D�. So we have

E½Q
w
½D��� ¼

Trðr2F½w�Þ

N
>0;

where the positivity constraint comes from being in a partially trained network.

We now consider why Q
w
½Dc� should be generically positive in a partially trained network. Sup-

pose Q
w
½Dc�<0 holds. We can rewrite this as Dc

Tr2F½w�Dc � 0. In this case, maintaining the same

compensatory plasticity Dc over the time interval ½t� þ Dt; t� þ 2Dt� would result in increased improve-

ment in loss, as

rF½wþDc�TDc¼rF½w�TDcþDc
Tr2F½w�DcþOðkDck2

2
Þ:

Effectively, memory improvement due to compensatory plasticity Dc would be in an ‘accelerating’

direction, and maintaining the same direction Dc of compensatory plasticity would lead to ever faster

learning. However, by assumption, we are in a regime of steady state task performance, where

E½Fðt� þ 2DtÞ�Fðt� þDtÞ� ¼E½Fðt� þDtÞ�Fðt�Þ� ¼ 0:

Optimal plasticity ratios in specific learning rules
Noise-free learning rules (first-order)

Let us first consider the case where Dc can be computed with perfect access to the gradient rF½w�,

but without access to r2F½w�. Such a Dc is known as a first-order learning rule, as it has access only

to the first derivative of F (Polyak, 1987). Imperfect access is considered subsequently. In this case,

the optimal direction of compensatory plasticity is

Dc/�rF½w�:
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In other words, Dc would implement perfect gradient descent on F½w�. The condition of Equa-

tion (11) for synaptic fluctuations to outcompete reconsolidation plasticity evaluates to

Q
w
½rF½w�� �Q

w
½D��:

To what extent can we quantify Q
w
½rF½w��? First let us relate the gradient and Hessian of F½w�.

Let w� be an optimal state of the network (i.e. one where F is minimised). Let us parameterise the

straight line connecting w with w
�:

gðsÞ ¼ sw� þð1� sÞw; s2 ½0;1�:

Then

rF½w� ¼ ðw�w
�ÞTM; where

M ¼

Z

1

0

r2F½gðsÞ� ds:

This gives

Q
w
½rF½w�� ¼

ðw�w
�ÞTMTr2F½w�Mðw�w

�Þ

ðw�w
�ÞTMTMðw�w

�Þ
:

First let us rewrite

ðw�w
�Þ :¼

X

N

i

civi;

Mðw�w
�Þ :¼

X

N

i

divi

where ðli;viÞ is the ith eigenvalue/eigenvector pair of r2F (sorted in ascending order of li), and ci, di

are some scalar weights. Now

Q
w
½rF½w�� ¼

PN
i¼1

d2i li
PN

i¼1
d2i

: (2)

The value of Q
w
½rF½w�� now depends upon the distribution of mass of the sequence fdig. If later

elements of the sequence are larger (i.e. Mðw¼w
�Þ projects more highly onto eigenvectors of

r2F½w� with large eigenvalue), then Q
w
½rF½w�� becomes larger, and the optimal magnitude of recon-

solidation plasticity decreases, relative to the magnitude of synaptic fluctuations. The opposite is

true if earlier elements of the sequence are larger.

Guaranteed bounds on the value of Equation (2) are vacuous. If we do not restrict M, then we

can tailor the sequence fdig as we like, and we end up with l1 � Q
w
½rF½w�� � lN . However, prag-

matic bounds are much tighter. Let us now consider two plausibly extremal cases.

First consider the simplest case of a network that linearly transforms its outputs, and which has a

quadratic loss function F½w�. In this case r2F is a constant, (independent of w), positive-semidefinite

matrix, and M ¼ r2F. This means that

di ¼ cilivi

Q
w
½rF½w�� ¼

PN
i¼1

c2i l
3

i
PN

i¼1
c2i l

2

i

:

Condition (11) then becomes

Q
w
½rF½w�� �Q

w
½D�� ,

PN
i¼1

c2i l
3

i
PN

i¼1
c2i l

2

i

�

PN
i¼1

li

N
: (3)
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A conservative sufficient condition for (Equation 3), using Chebyshev’s summation inequality, is

that

c2i l
2

i � c2i�1
l2i�1

; foralli2 f1; . . . ;Ng: (4)

Under what conditions would a plausible reconsolidation mechanism choose to ‘outcompete’

synaptic fluctuations, in this linear example? For Q
w
½rF½w��<Q

w
½D�� to even hold, (26) would have to

be broken, and significantly so due to conservatism in the inequality. In other words, w�w
� must

project quite biasedly onto the eigenvectors of r2F with smaller-than-average eigenvalue. If the dis-

crepancy between w and w
� were caused by fluctuations (which are independent of r2F), then this

would not be the case, in expectation. Even if this were the case, the reconsolidation mechanism

would have to know about the described bias. This requires knowledge of both w
� and r2F, and is

thus implausible.

Now let us consider the case of a generic nonlinear network. At one extreme, if kw� w
�k

2
is

small, then M »r2F½w�, and the discussion of the linear case is valid. This corresponds to the case

where steady state error is close to the minimum achievable by the network. As kw� w
�k

2
increases

(i.e. steady state error gets worse), the correspondence between M and r2F½w� will likely decrease.

Thus the optimal magnitude of reconsolidation plasticity, relative to the level of synaptic fluctuations,

will rise.

We could consider another ‘extreme’ case in which M and r2F½w� were completely independent

of each other. In this case,

d2i »
1

N

X

N

i¼1

d2i : (5)

In other words, the projection of Mðw�w
�Þ onto the different eigenvectors of r2F½w� is approxi-

mately even. Using (24), this gives

Q
w
½rF½w��»

PN
i¼1

li

N
¼Q

w
½D��:

In summary, we have two plausible extremes. One occurs where M ¼r2F½w�, and another occurs

where M is completely independent of r2F½w�. In either case, Q
w
½rF½w�� �Q

w
½D��, and so the magni-

tude of synaptic fluctuations should optimally outcompete/equal the magnitude of reconsolidation

plasticity. Of course, there might be particular values of w where the correspondence between M

and r2F½w� is ‘worse’ than chance. In other words, eigenvectors of M with large eigenvalue preferen-

tially project onto eigenvectors of r2F½w� with small eigenvalue. In such cases, we would have

Q
w
½rF½w�� �Q

w
½D��. However, we find it implausible that a reconsolidation mechanism would be able

to gain sufficient information on M to determine this at particular points in time, and thereby

increase its plasticity magnitude.

Noise-free learning rules (second-order)

Let us now suppose that Dc can be computed with perfect access to both rF½w� and r2F½w�. In this

case, the reconsolidation mechanism would optimally apply plasticity in the direction of the Newton

step: we would have

r2F½w�Dc¼�rF½w�:

Note that the Newton step is often conceptualised as a weighted form of gradient descent,

where movement on the loss landscape is biased towards direction of lower curvature. Thus we

would expect Q
w
½Dc� to be smaller, and the optimal proportion of reconsolidation plasticity to be

larger. This is indeed the case. For mathematical tractability, we will restrict our discussion to the

case in which r2F½w� � 0, and M � 0. This would hold if F½w� were convex, or if w were sufficiently

close to a unique local minimum w
�. In this case we can rewrite
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Dc¼�r2F½w��1rF½w�;

which gives

Q
w
½Dc� ¼

rF½w�Tðr2F½w�Þ�1rF½w�

rF½w�Tðr2F½w�Þ�2rF½w�
(6a)

¼
ðw�w

�ÞMðr2F½w�Þ�1
Mðw�w

�Þ

ðw�w
�ÞMðr2F½w�Þ�2

Mðw�w
�Þ

(6b)

¼

PN
i¼1

d2i l
�1

i
PN

i¼1
d2i l

�2

i

: (6c)

Once again, we first consider the case of a linear network with quadratic loss function, and hence

with constant Hessian r2F. This gives M ¼r2F, and

Q
w
½Dc� ¼

ðw�w
�Þr2F½w�ðw�w

�Þ

kw�w
�k2

2

¼

PN
i¼1

c2i li
PN

i¼1
c2i

:

We again assume that the reconsolidation mechanism does not have knowledge of the relative

projections of w�w
� onto the different eigenvectors of r2F, which requires knowledge of w�. With-

out such information, we can use an analogous argument to that preceding (Equation 5) to argue

that the approximation c2i »
1

N

PN
i¼1

c2i is reasonable. This gives Qw
½Dc�»Q

w
½D��.

Note that the Newton step, in the linear-quadratic case just considered, corresponds to a direc-

tion w
� � w, that is, a direct path to a local minimum. So we could consider a compensatory plasticity

mechanism implementing the Newton step as one directly undoing synaptic changes caused by D�.

We now consider the case of a nonlinear network. As before, if kw� w
�k

2
is small, then we have

M »r2F½w�, and the arguments of the linear network hold. As kw� w
�k

2
increases, the correspon-

dence between M and r2F will decrease. We again consider the plausible extreme where M is

completely uncorrelated with r2F½w�, and so the approximation (Equation 5) holds. In this case,

Equation (6) can be simplified to give

Q
w
½Dc�»

PN
i¼1

l�1

i
PN

i¼1
l�2

i

:

We assumed that r2F½w� � 0. Therefore, all eigenvalues are positive. This allows us to use Cheby-

shev’s summation inequality to arrive at

PN
i¼1

l�1

i
PN

i¼1
l�2

i

�

PN
i¼1

li

N
¼Q

w
½D��:

So as kw�w
�k

2
increases, the magnitude of reconsolidation plasticity will optimally outcompete

that of synaptic fluctuations. This is the one case that contradicts our main claim.

Imperfect learning rules

The previous section applied in the implausible case where a reconsolidation mechanism had perfect

access to rF½w� and/or r2F½w�. Recall from the main text that at least some information on rF½w� is

required, in order for compensatory plasticity to move in a direction of decreasing task error. What

if Dc contains a mean-zero noise term, corresponding to unbiased noise corruption of these quanti-

ties? We will now show how such noise pushes Q
w
½Dc� towards equality with Q

w
½D��, and thus pushes

the optimal magnitude of reconsolidation plasticity towards the magnitude of synaptic fluctuations.

Let us use the model
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Dc¼ ~
Dcþ n; (7)

where n is some mean-zero random variable, and ~
Dc is the ideal output of the reconsolidation mech-

anism, assuming perfect access to the derivatives of F½w�. Here n represents the portion of compen-

satory plasticity attributable to systematic error in the algorithm, due to imperfect information on

F½w�. This could arise due to imperfect sensory information or limited communication between syn-

apses. We can therefore assume, as for D�, that it does not contain information on r2F½w�. We there-

fore get

Q
w
½n�»

Trðr2F½w�Þ

N
;

analogously to Equation (12). Now the operator Q
w
satisfies

Q
w
½Dc� ¼Q

w
½ ~Dc�ð1þ

knk2
2

k ~
Dck2

2

Þ�1 þQ
w
½n�ð1þ

k ~
Dck2

2

knk2
2

Þ�1
: (8)

So depending upon the relative magnitudes of ~
Dc and n, Q

w
½Dc� interpolates between Q

w
½ ~Dc� and

Q
w
½n�. In particular, as the crudeness of the learning rule (i.e. the ratio knk

k ~
Dck

) grows, Q
w
½Dc� approaches

equality (from below) with Q
w
½n�, and thus Q

w
½D��, completing our argument.
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