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SUMMARY

Many behaviors that are critical for survival and reproduction are expressed over
extended time periods. The ability to inexpensively record and store large vol-
umes of video data creates new opportunities to understand the biological basis
of these behaviors and simultaneously creates a need for tools that can automat-
ically quantify behaviors from large video datasets. Here, we demonstrate that
3D Residual Networks can be used to classify an array of complex behaviors in
Lake Malawi cichlid fishes. We first apply pixel-based hidden Markov modeling
combined with density-based spatiotemporal clustering to identify sand distur-
bance events. After this, a 3D ResNet, trained on 11,000 manually annotated
video clips, accurately (>76%) classifies the sand disturbance events into 10 fish
behavior categories, distinguishing between spitting, scooping, fin swipes, and
spawning. Furthermore, animal intent can be determined from these clips, as
spits and scoops performed during bower construction are classified indepen-
dently from those during feeding.

INTRODUCTION

Animals respond to and interact with their environment using a rich repertoire of behavioral actions. A ma-

jor challenge for neuroscientists is to understand how neural circuits coordinate these behaviors in

response to sensory and internal stimuli. Automated identification and classification of behavioral actions

will aid in this task, as most neural responses are stochastic, requiring a large number of replicates to accu-

rately estimate relationships with complex behaviors (Egnor and Branson, 2016). In addition, many behav-

iors are executed over long timescales through the accumulated actions of thousands of individual deci-

sions (e.g., foraging, construction, and social behaviors), making manual analysis of the full course of

behavior entirely impractical (Russell et al., 2017; Feng et al., 2015; Mouritsen, 2018; Tucker, 1981).

One common approach is to manually observe snapshots of long-term behaviors over extended periods of

time. This method is labor intensive and thus can severely limit the total number of animals that can be

measured in a single study. Furthermore, it cannot provide a complete and detailed quantitative descrip-

tion of the full behavioral trajectory. An alternative approach is to design abbreviated assays that elicit the

behavior of interest during a short period of time. One issue, however, is that many natural behaviors may

be expressed differently over short timescales, and/or in unnatural/unfamiliar environments. Recently,

deep learning approaches have revolutionized our ability to automatically analyze video and image data

(Nath et al., 2019; Mathis et al., 2018; Weissbrod et al., 2013; Wild et al., 2018). Convolutional neural net-

works (CNNs) can be applied to images for the purpose of object detection, identifying all animals within

an individual frame (Girshick, 2015; Ren et al., 2015; Redmon et al., 2016; Pereira et al., 2019). CNNs can also

identify body parts, such as eyes, legs, or wings, allowing for the determination of an animal’s posture at

any specific time (Graving et al., 2019; Pereira et al., 2019; Kain et al., 2013; Petrou and Webb, 2012; Gunel

et al., 2019; Andriluka et al., 2018; Nath et al., 2019). Although position and pose alone are not sufficient for

defining animal behavior, postural time series can be used to define some behavioral actions. Such analysis

has, for example, been used to quantitatively describe different types of stereotyped movements in

Drosophila flies, such as different locomotor and grooming behaviors (Berman et al., 2014). Similar ap-

proaches have also been used successfully on other species (Stephens et al., 2008).

1School of Biological
Sciences, Georgia Institute of
Technology, Atlanta, GA
30332, USA

2Interdisciplinary Graduate
Program in Quantitative
Biosciences, Georgia
Institute of Technology,
Atlanta, GA 30332, USA

3Parker H. Petit Institute of
Bioengineering and
Bioscience, Georgia Institute
of Technology, Atlanta, GA
30332, USA

4School of Physics, Georgia
Institute of Technology,
Atlanta, GA 30332, USA

5These authors contributed
equally

6Lead Contact

*Correspondence:
todd.streelman@biology.
gatech.edu (J.T.S.),
patrick.mcgrath@biology.
gatech.edu (P.T.M.)

https://doi.org/10.1016/j.isci.
2020.101591

iScience 23, 101591, October 23, 2020 ª 2020
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:todd.streelman@biology.gatech.edu
mailto:todd.streelman@biology.gatech.edu
mailto:patrick.mcgrath@biology.gatech.edu
mailto:patrick.mcgrath@biology.gatech.edu
https://doi.org/10.1016/j.isci.2020.101591
https://doi.org/10.1016/j.isci.2020.101591
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101591&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


It remains challenging, however, to translate changes in position and posture into complex behaviors that

are characterized by an animal’s interaction with the environment. For example, many goal-directed behav-

iors involve significant manipulation of the physical environment in ways that are essential for survival or

reproductive success, such as mice digging burrows, birds building nests, spiders weaving webs, and bow-

erbirds or cichlid fishes constructing courtship bowers (Hansell, 2000; Benjamin and Zschokke, 2000; Voll-

rath, 1992; Collias and Collias, 2014; Dawkins, 1982; McKaye et al., 2001). In such cases, information about

changes to the physical environment itself is essential to fully describe the behavior.

One possible solution for analysis of these types of behaviors is to train a deep learning network that takes

in videos as input and then outputs a prediction for the corresponding behavior type. For example, 3D Re-

sidual Networks (3D ResNets) have been successfully used to classify human behaviors, distinguishing be-

tween hundreds of different action classes (Hara et al., 2018; Qiu et al., 2017). These deep learning networks

use 3D kernels with the ability to extract spatiotemporal features directly from videos. Videos are fed into

these networks raw, without any individual body posture information beyond what can be learned from the

training data. One major benefit of these 3D networks, when compared with networks that process each

frame individually, is that they can integrate spatial and temporal information to recognize changes in

the animal’s environment that might indicate a particular behavior (e.g., digging, feeding, or construction

behaviors). However, a significant challenge in applying action recognition to large videos is detecting ac-

tions of interest in a time and space frame, which is known as shot transition detection. This requires split-

ting large (e.g. 10-h-long) videos into small enough temporal units such that each unit contains only one

action of interest and excludes as much irrelevant information as possible.

In this article, we describe an approach for analyzing construction, feeding, and mating behaviors from

hundreds of hours of videos of Lake Malawi cichlids behaving freely in naturalistic and social home tank

environments. Lake Malawi is the most species-rich freshwater lake on the Earth, and it contains 700–

1,000 cichlid species that have rapidly evolved in the past 1–2 million years (Brawand et al., 2014). Approx-

imately 200 of these species express long-term bower construction behaviors, in which males manipulate

sand to create large courtship structures, or bowers, to attract female mates (York et al., 2015) (Figure 1A).

Males construct pits and castles over the course of many days and make thousands of decisions about

where to scoop up and then spit out mouthfuls of sand. Bower construction is therefore a useful model

for understanding how goal-directed behaviors are executed over long time periods in environments

that are physically and socially dynamic.

To measure bower construction, we first develop an action detection algorithm that uses hidden Markov

models (HMMs) and density-based spatial clustering to identify regions of the video where the fish has

manipulated sand using its mouth, fins, or other parts of its body. Then, after generating small video clips

that encompass these events, we use a 3D ResNet to classify each sand disturbance event into one of ten

action categories. We demonstrate that this approach can be used to quickly, accurately, and automatically

identify hundreds of thousands of behaviors across hundreds of hours of video. Through this approach, we

measure the times and locations of construction, mating, and feeding behaviors expressed over the course

of many days in three different species and one hybrid cross.

Figure 1. Measurement of Lake Malawi Cichlid Bower Behaviors in Laboratory Aquariums

(A–C) Approximately 200 species of Lake Malawi cichlids exhibit bower behaviors. In these species, sociosexual cues

trigger reproductive adult males to construct large courtship structures by manipulating sand with their mouths. The

geometric structure of the bower is species-specific. (A) Example of a castle structure built in LakeMalawi. (B) Example of a

castle structure built in a standard aquatics facility aquarium. (C) Top down view of acrylic tray used to constrain bower

building to a third of the tank. Video recordings using this view were used to characterize bower building behaviors

throughout this article. Scale bar, 10 cm. Photo credit to Dr. Isabel Magalhaes (A).

See also Figure S1.
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RESULTS

Collection of Video Recordings of Male Cichlid Fish Constructing Bowers

If provided access to an appropriate type of sand and gravid females, Lake Malawi male cichlids will typi-

cally construct species-typical bower structures in standard aquarium tanks within 1–2 weeks (York et al.,

2015) (Figure 1B). After testing sand from different suppliers, we found that males construct most vigorously

with a sand mixture composed of black and white grains. Only half of each home tank was accessible for

top-down video recording, due to physical constraints such as support beams and water supply/drain lines.

To restrict sand manipulation behaviors to the video-accessible region of each tank, we placed a custom-

built acrylic tray containing sand directly within the video camera field of view. We then introduced a single

male individual to four female individuals (Figure 1C). For each trial, we collected 10 h of video daily for

approximately 10 consecutive days, resulting in the collection of �100 h of video per trial. We analyzed

two types of trials: construction trials, in which males constructed bowers in the presence of four females,

and control trials, in which tanks were empty or tanks contained four females but no male. We analyzed

eight construction trials, encompassing three different species and one F1 hybrid cross: pit-digger Copa-

dichromis virginalis, CV, n = 1; castle-builder Mchenga conophoros, MC, n = 3; pit-digger Tramitichromis

intermedius, TI, n = 2; and pit-castle hybrid MCxCV F1, n = 2. Visual inspection confirmed that each male

built a species-typical bower. We also analyzed three empty tank control trials, and five female-only control

trials. Table 1 summarizes all trials that were analyzed in this article.

To initially analyze these videos, we first focused on a single MC trial, identifying 3 days when castle build-

ing occurred. A trained observer manually annotated all spit and scoop events for a single hour on each

day. In total, 1,104 spit events and 1,575 scoop events were observed (there is not a 1:1 correspondence

between spit and scoop events because males sometimes scoop sand from multiple locations before per-

forming a single spit) (Figure S1). Analysis of these 3 h of videos required 36 h of human time, or a 12:1 ratio

of human time to video time. Full analysis of a single trial would require 1,200 h of human time, or approx-

imately 30 weeks of full-time work dedicated tomanual annotation. Automated analysis of these videos was

thus necessary for the full characterization of bower construction even in this limited set of trials, let alone

any larger-scale investigation of bower behavior.

Automatic Identification of Sand Disturbance Events

In the process of manually annotating these videos, we noticed that spit and scoop events resulted in an

enduring and visually apparent spatial rearrangement of the black and white grains of sand. Scoop and

Species Type n Bower Shape Training Set Description

– Empty 3 – No No fish in tank

CV Feeding only 2 – No Four female fish

MC Feeding only 2 – No Four female fish

TI Feeding only 1 – No Four female fish

CV Building 1 Pit Yes One male and four female

fish

MC Building 3 Castle Yesa One male and four female

fish

TI Building 2 Pit Yes One male and four female

fish

MC/CV F1 Building 2 Pit/castleb Yes One male and four female

fish

Table 1. Summary of Video Recordings Used in This Report

CV, Copachromis virganialis; MC, Mchenga conophoros; TI, Tramitichromis intermedius
aOnly two of the three MC trials was manually labeled for training.
bF1 hybrids display codominant phenotype. Males initially build a pit structure and then transition to build a castle structure

nearby the original pit.
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spit events were associated with a permanent transition between pixel values. To test whether events could

be identified despite the frequent occurrences of fish swimming over the sand, we inspected local regions

in which a large number of pixels underwent permanent transitions. We observed temporary changes in

pixel values when fish or shadows occluded the sand and permanent changes in pixel values at the loca-

tions of sand disturbance events (Figures 2A–2F). Consistent with this, we plotted the grayscale value of

every pixel over entire 10-h videos and found that individual pixel values were, in general, fixed around

a specific mean value for extended periods of time, but showed small oscillations and large but temporary

deviations about this value across video frames (Figures 2G and 2H). In addition, we identified permanent

transitions in pixel value, in which the mean grayscale value of a single pixel would change to, and retain, a

new value.

To automatically identify permanent transitions in pixel color, we used an HMM to calculate a hidden state for

each pixel that represented its current color. In general, theHMMpartitioned each pixel into a small set of values

(�10–50) over the course of each 10-h video (Figures 2G and 2H). In testing the speed and accuracy of the HMM

on raw data, we observed that large temporary deviations greatly impacted the accuracy of the HMM calls,

potentially due to their violation of the assumption of a Gaussian distribution. Therefore, these large deviations

were excluded using a rolling mean filter. We also found a speed/resolution trade-off to the frame rate. As we

wanted to perform this analysis for the entire 1,2963 972-pixel video, we needed to analyze over 1million pixels

through time.We found that 1 frameper second, sampled from the 30 frames per second in the raw video, was a

reasonable trade-off—an entire video could be analyzed in approximately 2 h on a 24-core machine. After

setting appropriate parameters, manual inspection of the HMMfits showed reasonable agreement with our ex-

pectations: enduring transitions in pixel valueswere associatedwith sanddisturbance by fish, and three orders of

magnitudemore of these transitionsweredetected in tankswith fish versus empty tanks (Figure 2I). In addition to

identifying when and where a sand disturbance occurs, this approach also allowed us to create background im-

ages that excluded fish and shadows from each frame (Figure 2J).

Clustering of HMM Changes to Detect Sand Disturbance Events

When a fish scoops up or spits out sand, HMM transitions occur in hundreds to thousands of nearby pixels.

To group individual pixel transitions together, we applied density-based spatial clustering to the x, y, and

time coordinate of each individual HMM transition (Ester et al., 1996) (Figure 3A). To find the best param-

eters, we used exploratory data analysis and parameter grid search (Figure S2). This approach allowed us to

determine the spatial and temporal location of thousands of individual fish-mediated sand disturbances on

each day of each bower trial. We also calculated distributions for the width, height, temporal span, and

number of HMM transitions for every cluster (Figure S3). These data further demonstrated that clusters

were associated with the presence of fish, as empty tanks showed a minimal number of clusters (Figure 3B).

Inspection of a subset of these clusters confirmed that the clusters were associated with regions of sand

that were undergoing lasting change (Figure 3C).

To further validate these clusters, we generated 200 3 200-pixel, 4-s video clips for a randomly sampled

subset of clusters centered over their mean spatial and temporal position (�2,000 per trial for seven of

the eight bower construction trials). Manual review of these video clips revealed that the majority (>90%,

13,288/14,234 analyzed events) of clusters were true sand change events caused by fish behaviors, with

the remaining portion including reflections of events in the glass, shadows caused by stationary or slow-

moving fish, or small bits of food, feces, or other debris settling on the sand surface.

To ensure this procedure recovered most sand disturbance events, we leveraged our manually annotated

spit/scoop dataset (Figure S1) and performed HMM and density-based spatial clustering. For each event,

the spatial and temporal center of the event was compared. The differences in time between human anno-

tations and machine annotations follow a Gaussian distribution (Figure S4A). 95.6% (725/758) human anno-

tations have at least one machine annotation in the (-1s, +1s) interval. Of these 725 events, 93.7% (679/725)

also had a machine annotation event within 70 pixels (approximately 3.5 cm), which is approximately one-

third of the oval fish length (Figure S4B). By these criteria, 89.6% (679/758) of human-annotated events can

be retrieved by the automated machine HMM/clustering process.

Automatic Classification of Cichlid Behaviors with 3D Residual Networks

On average, �1,000 clusters were identified in each hour of video (Figure 3B). We aimed to automatically

identify the subset of these events corresponding to bower construction behaviors in each video. However,
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Figure 2. Automated Detection of Sand Change from Video Data

(A�H) The sand in this behavioral paradigm is composed of black and white grains (e.g., as seen in A), and therefore sand manipulation events during bower

construction cause permanent rearrangement of the black and white grains at specific locations.We aimed to detect these events by processing whole video

frames (A, with turquoise box indicating an example region of interest. Scale bar, 10 cm) sampled once per second and tracking the values of individual pixels

throughout whole trials. Fish swimming over sand cause transient changes in pixel values (e.g., B�F, black arrows indicate an example location of a fish

swimming over the sand; the bottom row depicts a zoomed in 20 3 20-pixel view of a location that the fish swims over, sampled from representative frames

across 4 s). In contrast, sand manipulation behaviors cause enduring changes in pixel values (e.g., B�F, turquoise arrows indicate an example location of a

fish scooping sand. Scale bar, 2cm; the middle row contains a zoomed in 20 3 20-pixel view of a location where the fish scoops sand). We used a custom

hidden Markov model to identify all enduring state changes for each pixel throughout entire videos (G, green line indicates HMM-predicted state, orange

line indicates raw grayscale pixel value, and blue lines indicate transient fluctuations beyond the pixel’s typical range of values likely caused by fish swimming

or shadows). Because fish swim over the sand frequently, a large number of transient changes are ignored (e.g., pixel value fluctuations indicated by blue

arrows in H), while enduring changes are identified (e.g., pixel value change indicated by green arrow in (H).

(I) Number of HMM transitions identified per hour based on trial type. ‘‘Feeding only’’ are trials containing four females. ‘‘Build trial’’ contains four females

and onemale that builds a bower. The boxplot shows quartiles of the dataset while the whiskers show the rest of the distribution unless the point is an outlier.

(J) The HMM could be used to calculate a background image at a given time point, resulting in removal of the fish and the associated shadow from the image.

Scale bar, 1cm.
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scooping and spitting sand during bower construction represents only a subset of behaviors that cause

sand change in our paradigm. For example, feeding behaviors performed by both males and females

also involve scooping and spitting sand, and are expressed frequently throughout trials. Quivering and

spawning behavior, in which amale rapidly circles and displays his fins for a gravid female, are less frequent,

and also cause significant sand change. Identifying bower construction behaviors therefore requires iden-

tifying other behaviors that cause sand change. To achieve this, we turned to a deep learning approach and

assessed whether 3D Residual Networks (3D ResNets), which have been recently shown to accurately clas-

sify human actions from video data (Qiu et al., 2017), could accurately distinguish fish behaviors that cause

sand change in our paradigm.

To create a training set for the 3D ResNet, we first generated a video clip for each cluster based on its loca-

tion in space and time. This process narrowed down each event to a 4-s, 2003 200-pixel video clip from the

original 1,296 3 972-pixel video. To create a training set for the 3D ResNet, a trained observer manually

classified 14,172 of these video clips (�2,000 per trial) into one of ten categories (bower scoop, bower

spit, bower multiple, feed scoop, feed spit, feed multiple, drop sand, quivering, other, and shadow/reflec-

tion) (Videos S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10). Feeding was themost frequently observed behavior,

accounting for nearly half of all clips (47.0%, 6,659/14,172 annotated clips; feeding scoops, 15.2%; feeding

spits, 11.6%; multiple feeding events, 20.2%). Bower construction behaviors were the next most common

(19.5%; bower scoops, 9.4%; bower spits, 8.1%; multiple bower construction events, 1.9%). Quivering

and spawning events were the least frequently observed, accounting for just 2.6% of all clips. The

remainder of sand change events were annotated as sand dropping behavior (5.6%), ‘‘other’’ behaviors

(e.g., brushing the sand surface with the fins or the body; 18.7%), or shadows/reflections (6.6%) (Figure 4).

A 3D ResNet was then trained on 80% (�11,200 clips) of the data, and the remaining 20% of the data was

reserved for validation (2,752 clips) (Table 2 and Figures 5A and 5B). To place the ResNet predictions in the

context of human performance, we also measured the accuracy of a previously naive human observer who

underwent 12 h of training and then manually annotated a test set of 3,039 clips from three trials and all 10

behavior categories (Table S1). The 3D ResNet achieved �76% accuracy on the validation set, which was

better than the accuracy of the newly trained human observer (�73.9% accuracy, 2,246/3,039 clips). Confi-

dence for 3D ResNet predictions on the validation set ranged from 22.1% to 100%, and confidence tended

to be greater for correct predictions (mean confidence 92.93% G 0.279%) than for incorrect predictions

(mean confidence 78.28%G 0.074%) (Figure S5A, C). We found an imbalance in the distribution of incorrect

predictions across categories (Table 2). For some categories, such as ‘‘build multiple,’’ ‘‘feed multiple,’’ and

‘‘fish other,’’ video clips could contain behaviors that also fit into other categories. For example, a ‘‘feed

multiple’’ clip by definition contains multiple feeding scoop and/or feeding spit events, a ‘‘bower multiple’’

clip contains multiple bower scoops and/or bower spits, and a ‘‘fish other’’ clip may contain a bower scoop

and a fin swipe (or some other combination of behaviors). We found that erroneous ‘‘within building’’

Figure 3. Clustering HMM Events Identifies Sand Disturbance Events

(A) Example of clusters identified in a 60 s period. HMM transitions are color coded based on their cluster membership. Scale bar, 10 cm.

(B) Number of clusters identified per hour based on trial type. ‘‘Feeding only’’ are trials containing four females. ‘‘Build trial’’ contain four females and one

male that builds a bower. The boxplot shows quartiles of the dataset while the whiskers show the rest of the distribution unless the point is an outlier.

(C) Before and after images (20 s) for eight example clusters. Left and middle panels show raw grayscale images. Right panel shows heatmap displaying pixel

value differences in the left and middle frames. Yellow indicates large changes. Blue indicates no change. Scale bar, 1 cm.

See also Figures S2�S4.
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category predictions for build multiple, ‘‘within feeding’’ predictions for feedmultiple, and ‘‘fish other’’ pre-

dictions accounted for�82% of all incorrect predictions. We further found that the area under the precision

recall curve was 0.91 (Figure S5B). By setting a confidence threshold of 90%, most (�62%) incorrect predic-

tions were excluded, whereas most (70%) correct predictions were included. At the same time, �86% of

correct bower scoop predictions and �88% of correct bower spit predictions were included. Of all predic-

tions, 69% were above the 90% confidence threshold, and overall accuracy for these high-confidence pre-

dictions was �87% (Figure S5C).

We tested howmany annotated clips are required to achieve a similar accuracy by inputting 5%–50% of the

original labeled clips into the training dataset. A similar accuracy was achieved using just 50% of the clips,

but a significant decrease in accuracy (75%–62%) was observed when the number of training clips was

decreased from 50% to 30% of the original set (Figure 5B).

As there was an uneven distribution of the different categories in the training data, we were curious if our

model might be biased toward the more frequent categories and have lower overall accuracy than a model

trained on data with a balanced distribution of the different categories. To test this hypothesis, we built a

model from an equal sampling of all 10 categories. First, we created an ‘‘equal sampling’’ set where each

category in the training dataset has the same number of clips. Because the category ‘‘build multiple’’ has

the least number of clips (277 clips out of 14,172 annotated video clips), for each category, we used 220 clips

for training and 50 clips for validation. As a ‘‘random sampling’’ control, we randomly sampled an equal

number of clips for training and validation as the uniform set. Specifically, there are 2,200 randomly

sampled clips for training and 500 for testing. Overall, the accuracy was comparable, although we did

note some large differences in accuracy based upon category (Figure S5F). For example, build multiple,

a very rare category, was much less accurately predicted in the ‘‘random sampling’’ model comipared to

the ‘‘equal sampling’’ model (18% versus 75%). When we compared the overall accuracy of each model,

we noted that the higher-performing model depended on the validation set. When an equal sampling

of validation clips was used, the equal sampling model performed better (64.0% accuracy compared to

60.5% accuracy). When a random sampling of validation clips was used, the random sampling method

was more accurate (62.2% accuracy compared to 57.7% accuracy).

The spatiotemporal dimension of each video clip is a very important hyperparameter to tune to achieve the

best classification accuracy. The spatial scale is optimal when the whole behavior is captured, and when

irrelevant pixels are excluded from the frame as much as possible. The same is true for temporal scale.

Therefore, we decided to test the amount of spatial and temporal data necessary to accurately classify

each clip. We found that the classification accuracy initially increased with frame size and peaked at

120 3 120 pixels per frame (Figure S5D). The accuracy decreased from 76% to 74% when the entire

200 3 200-pixel frame was used as input. This decrease in accuracy further affirmed our choice to crop

the clips before feeding them to the ResNet, as it eliminates information unrelated to action in the frame.

Figure 4. Distribution of Different Sand Perturbation Events

A human observer manually classified 14,234 video clips into one of ten categories. Bower events are scoops, spits, or

multiple scoop/spit events associated with bower construction. Feeding events are scoops, spits, or multiple scoop/spit

events associated with feeding behaviors. Spawning events involve male fish quivering to attract females. Other events

include sand perturbations caused by fins or the body, reflections of events in the aquarium glass, or sand dropped from

above.
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Next, we tested the relationship between the number of frames per clip and the classification accuracy. We

tuned two parameters, including the total number of frames sampled (n = 16, 32, 48) and the interval be-

tween each sampled frame (i = 0, 1, 2, 3, 4). Classification accuracy steadily increased from 67% (n = 16) to

72% (n = 48) when more frames were used. When the total number of frames was fixed, accuracy was

greater when the sampling interval (i) was larger (Figure S5E).

Distinguishing between Feeding and Bower Construction Events

The differences between construction behaviors and feeding behaviors are subtle and are often indistin-

guishable to inexperienced observers (Table S1). Feeding and construction both involve scooping sand

into themouth, swimming, and then spitting sand from themouth. Feeding behaviors are also typically per-

formed more frequently relative to bower construction behaviors (Figure 4). We were therefore concerned

that the 3D ResNet would be unable to accurately distinguish between feeding versus construction behav-

iors, which would prevent accurate measurement of spatial patterns associated with bower construction.

Much to our surprise, the ResNet reliably distinguished between feeding and construction events; for construc-

tion and feeding scoops and spits, the model achieved F1 scores of 0.74, 0.86, 0.72, and 0.73 (for build scoops,

build spits, feeding scoop, and feeding spits, respectively), with balanced precision and recall scores. These F1

scoreswere comparable to theoverall averagedF1 score (or accuracy) of themodel, 0.76. Remarkably, themodel

outperformed a newly trained human observer in distinguishing between construction and feeding: the average

F1 score for the model across these categories was 0.76, whereas the newly trained observer’s average F1 score

was 0.71. The difference in performance was further evident when we quantified the proportion of build-feed

false-positives (build scoopsmis-classified as feed scoops, build spitsmis-classified as feed spits, and vice versa);

theseerroneouspredictionswere 2.53more frequent in thenewly trainedobserver’s annotations comparedwith

themodel’s predictions (201/1,469 predictions in these categories, or 13.7% for the human; 68/1,211 predictions

in these categories, or 5.6% for the model). Differences in the spatial position and relative timing were readily

observed among bower construction, feeding, and spawning events (Figures 5C and 5D).

Accuracy of Model on New Trials

The trainedmodel showedhigh validation accuracy on the seven trials. However, our ultimate goal is tomeasure

bower construction in hundreds of independent trials. To that end, we tested how generalizable this model is

when applied to previously unobserved individuals. To test this, we retrainedmodels using six of the seven trials

Predicted Label

Human

label

Category Build

scoop

Feed

scoop

Build

spit

Feed

spit

Build

mult

Feed

mult

Spawn Shadow

Reflect

Other Sand

drop

Total Percent Acc

Build scoop 187 25 1 0 2 1 0 0 26 2 244 9% 77%

Feed scoop 23 303 0 3 0 48 0 1 28 0 406 15% 75%

Build spit 1 0 194 5 6 1 1 0 10 2 220 8% 88%

Feed spit 1 6 15 225 0 38 2 1 27 26 341 12% 66%

Build mult 8 0 9 0 29 1 1 0 7 0 55 2% 53%

Feed mult 16 73 4 22 2 402 0 0 17 1 537 20 75%

Spawn 0 0 0 0 1 0 56 0 15 1 73 3% 77%

Shadow/

reflect

0 0 1 1 0 1 0 169 11 1 184 7% 92%

Other 26 26 4 10 10 11 8 9 388 20 512 19% 76%

Sand drop 1 0 1 12 0 1 0 2 14 149 180 7% 83%

Total 263 433 229 278 50 504 68 182 543 202 2,752 100% 76%

Table 2. Confusion Matrixa for Sand Disturbance Events Classified with a 3D Residual Network
aEach row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class.
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Figure 5. Automated Classification of Sand Disturbance Events Using a 3D Residual Network

(A) Schematic of 3D residual network.

(B) Validation accuracy of machine-learning labels as a function of number of videos used to train the model.
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and tested their ability to classify video clips from the remaining trial. In all seven cases, we saw a significant drop

in accuracy, from 76% to between 48% and 62%depending on the trial (Figure 6). We could, however, recapture

much of this accuracy loss by including a small subset of videos from the excluded trial (�100–400), suggesting

that including a limited number of labeled videos from new trials could dramatically increase the accuracy. Inter-

estingly, trials that had the largest imbalance in the frequency of different categories compared with the mean

also showed the largest decrease in accuracy (Figure S6).

DISCUSSION

Automated classification of behavior is an important goal for many areas of basic, applied, and translational

research. Advances in hardware have made collection of large amounts of video data cost effective, using

small, battery-operated cameras (e.g., Go Pro), mobile phones, or small microcomputers (e.g., Raspberry

Pi). The small size and inexpensive nature of these hardware systems makes it possible to collect large vol-

umes of data frommany individuals. For example, here we collected hundreds of hours of video from seven

home tanks in standard aquatics housing facilities. Inexpensive cloud data storage systems additionally al-

lowed for the transfer and archiving of this data. We used Dropbox to store all video data for these exper-

iments, and our long-term goal is to collect data from hundreds of trials in many species.

In this paradigm, our recording system collects >300 gigabytes of video data for each behavioral trial. A

major challenge is thus designing a pipeline to identify behaviors of interest through large amounts of

background noise. Here we demonstrate one possible solution that involves first identifying environmental

disturbances and then classifying the behavioral causes of those disturbances. This approach is rooted in

two main advances: first, an action detection algorithm for identifying times and locations of sand distur-

bances, allowing small video clips containing behaviors of interest to be generated on a large scale; and

second, custom-trained 3D Residual Networks to classify each clip into one of ten possible categories.

For actiondetection,we tailoredanHMMto recognizepermanent changes inpixel color thatoccurwheneverfish

alter the sand. The core approach involves identificationof lasting changes in the sand, whichmanifest as perma-

nent changes in pixel color within specific subfields of view. This approachmay beuseful for studyingmany other

animalbehaviors that aredefinedbymanipulationof theenvironment, suchasnest construction, burrowdigging,

or web weaving. Many animals also disturb the environment as they forage and feed; for example, they may

disturb or dig through ground substrate or ingest physical components of the environment such as leaves, fruits,

berries, or algae. Thus, this approachmay facilitatemeasurement of many behaviors inmore complex and natu-

ralistic environments.One limitation to this approach is that individual pixelsmust be focusedona specific region

of the background. In our paradigm, we accomplished this by fixing the camera, but slightly moving cameras

could also be used if an accurate means of registration is available to align frames at different time points.

Following identification of sand disturbance events, we used action recognition to classify events into etho-

logically meaningful behavioral categories. Previous machine learning strategies have relied on positional

tracking and/or pose estimation data to classify animal behaviors (Hong et al., 2015; Anderson and Perona,

2014; Robie et al., 2017). In contrast, our paradigm was poorly suited to these methods, due to a lack of

conspicuous stereotypical joint movement from top-down video and an abundance of stereotypical inter-

actions between subjects and their environment, which were critical for defining the behaviors of interest.

We found that a 3D ResNet classified video clips of animal behavior into 10 categories more accurately than

a newly trained human observer, demonstrating that these networks can effectively quantify many different

behaviors of interest from large volumes of raw video data. This result suggests that 3D ResNets may be a

powerful tool for measuring animal behavior in naturalistic settings, and may drastically increase the scale

of experimental designs in systems that, historically, have been constrained by the amount of human obser-

vation time required to measure behaviors of interest.

Feeding and construction behaviors have different underlying goals and are critical for survival and repro-

duction in the wild, but their physical execution is often indistinguishable to inexperienced observers.

Figure 5. Continued

(C) Spatial position of four categories of sand manipulation events over 10 days of building by aMchenga conophoros. A castle structure was built in the top

middle of the field of view. Scale bar, 10 cm.

(D) Raster plot of time of each sand disturbance event by classification. (C and D) Building events occur at different spatial and temporal positions than

feeding events.

See also Figure S5.
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Separating these behaviors is critically important in our paradigm, where there is a high risk that decisions

to scoop and spit during bower construction will be undetectable through a high volume of feeding ac-

tions. Remarkably, the 3D ResNet was able to distinguish between feeding and construction behaviors

more accurately than a newly trained human observer. The ability to accurately identify subtle differences

in behavior may have important implications for better understanding the progression of neurological dis-

eases characterized by subtle changes in locomotor function over extended periods of time, or monitoring

efficacy of different treatment strategies for improving locomotor function.

Striking differences in the relative spatial positions and timing of predicted feeding versus construction

behaviors were readily apparent across whole trials. For example, in castle-building MC males, bower

spits were more spatially concentrated than bower scoops, feeding spits, and feeding scoops, consistent

with the idea that castle construction is driven by scooping sand from dispersed locations and spitting

into a concentrated region. Similarly, feeding behaviors and bower construction behaviors were ex-

pressed daily but at different times, whereas spawning events occurred infrequently in punctuated

bursts. These data show that our system can be used to map tens of thousands of behavioral events

in time and space, allowing future studies to unravel how these different complex behaviors are ex-

pressed in dynamic environments over extended time periods. It will be important to link these sand

manipulation events with information about the actual structure being built by the fish. Development

of an approach to characterize the shape of the bower at any given time will be necessary for connecting

building behaviors with the structure.

The 3D ResNet accurately classified behaviors across three different species and one interspecies hybrid

cross that all differ in morphology and color patterning. For example, Copadichromis virginalis males

exhibit black body coloration, yellow heads and dorsal fins, and narrower jaws relative to Tramitichromis

intermedius males, which exhibit yellow and red body coloration, blue heads, and a relatively wide jaw

apparatus. Bower construction in particular has evolved in hundreds of species, and the evolution of

feeding morphology and behavior is thought to be central to the explosive radiation of cichlids into thou-

sands of species. Our results suggest that our system will likely be effective for measuring natural variation

in these behaviors among hundreds of species. Lake Malawi cichlids can also be hybridized across species

boundaries, enabling powerful genetic mapping approaches (e.g., quantitative trait loci mapping) to be

applied in subsequent hybrid generations to identify genetic variants that influence complex traits. Our

data show that our system is effective for phenotyping hybrid individuals, allowing future studies to identify

specific regions of the genome that are responsible for pit versus castle building. Last, high prediction ac-

curacy for quivering, a conserved and stereotyped sexual behavior expressed by many fish, supports that

action recognition may be useful for analyzing mating behaviors in many fish species. More broadly, our

results suggest that 3D ResNets may be effective tools for measuring complex behaviors in other systems

even when individuals vary substantially in physical traits.

Figure 6. Application of the Model on New Trials

Accuracy of model on different trials using 0, 100, 400, or 800 training videos. We restricted training data for one of the

seven trials and then tested the accuracy of the model on video clips specific to that trial. Models that used zero video

clips for training showed a decrease in accuracy.

See also Figure S6.
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Limitations of the Study

It is important to note that although this report demonstrates that 3D Resnets should be useful for behav-

ioral classification, it does not immediately generalize to other systems without additional work. For

example, mouse behavior scientists could not immediately apply this to their behavior of choice.

Resource Availability

Lead Contact

Further information and requests should be directed to and will be fulfilled by the Lead Contact Patrick T.

McGrath (patrick.mcgrath@biology.gatech.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Original data for 14,000 annotations and video clips used to train and validate the 3D ResNet is available at

Mendeley Data: https://doi.org/10.17632/3hspb73m79.1

All codes, including a ReadMe file explaining how to use them, for running action detection is available on

GitHub at https://github.com/ptmcgrat/CichlidActionDetection. All codes for training the 3D ResNet for

action classification is available on GitHub at https://github.com/ptmcgrat/CichlidActionRecognition.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 

 

Figure S1. Example images on three different days during bower building by a Mchenga conophoros male, 
related to Figure 1. Top panel shows a top down view with all building scoops (red) and building spits (blue) during 
a one hour period identified by manual inspection. Bottom panel shows same images without scoops and spit 
events. A castle bower is being built on the middle left portion of the tray. Scale bar is 10cm. 

 

  



  

 

 

Figure S2. HMM pixel distance exploratory analysis and parameter search for DBSCAN, related to Figure 3. 
A. HMM+ pixels sorted by distance from n-th nearest neighbor. This plot was used to visualize the distribution of n-
th nearest neighbor distances across HMM+ pixels. The knee point of the k-dist graph was used to estimate the 
optimal values for parameter eps to be 20-30. B. Number of identified clusters under different values for minPts and 
eps. This plot shows the number of identified clusters from segment of video data using different values for minPts 
and eps. Red boxes indicate values at which trained observers reviewed video clips of sand change clusters to 
identify optimal values for minPts and eps. See supplemental methods for further details. 

  



  

 

Figure S3. Violin plots showing distribution of cluster features, related to Figure 3. Dashed lines within the 
violins indicate the 1st quartile, median, and 3rd quartile values. A. Distribution of cluster sizes, using number of 
HMM transitions assigned to each cluster. B. Distribution of width and heights of each cluster. C. Distribution of 
time-length of each cluster. Since HMM transitions were only calculated at one second intervals, the number time-
length must be an integer number. 

  



  

 

Figure S4. Spatial and temporal difference between human defined center and machine defined center, 
related to Figure 3. A. The distribution of time differences between human defined center and machine defined 
center. B. The distribution of distance between human defined center and machine defined center.  

 



  

 

Figure S5. Ablation studies and performance analysis for the 3D ResNet, related to Figure 5.  A. Number of 
predictions in validation set by confidence. B. Precision Recall Curve for the action classifier. C Accuracy (mean ± 
standard error) of predictions grouped by confidence scores. D. Model validation accuracy by frame size used for 
training. E. Model validation accuracy by total number of frames used for training. F. Per category accuracy by data 
sampling method. 

  



  

 

 

Figure S6. Relationship between category distribution difference and the 3D ResNet performance, related 
to Figure 6. A. Category distribution difference for each trial versus distribution of all other trials. B. Test trial 
accuracy versus its distribution difference from the training dataset. For each trial, the sum of absolute per category 
difference (from panel A) is used as x-axis and its accuracy when used as test dataset while the rest 6 trials as 
training dataset is used as the y-axis. A 90% confidence interval is shown as shaded blue.    



  

Supplemental Tables 

 

Table S1 Confusion matrix for sand disturbance events classified by a newly-trained human observer, related to 
Figure 5. 

  

 Newly-trained label 

Well-
trained 
label 

Category Build 
scoop 

Feed 
scoop 

Build 
spit 

Feed 
spit 

Build 
mult 

Feed 
mult 

Spa
wn 

Shadow 
Reflect Other Sand 

drop Total Percent Acc 
Build scoop 277 63 88 14 3 4 0 1 15 0 465 15.3% 59.6% 
Feed scoop 58 356 5 20 1 7 0 2 8 2 459 15.1% 77.6% 
Build spit 3 0 196 16 3 4 0 3 4 1 230 7.6% 85.2% 
Feed spit 3 4 64 209 0 6 1 0 2 26 315 10.4% 66.3% 
Build mult 4 0 10 3 12 4 0 1 6 0 40 1.3% 30.0% 
Feed mult 14 43 8 34 36 498 0 2 7 2 644 21.2% 77.3% 
Spawn 0 0 0 0 0 0 66 1 10 0 77 2.5% 85.7% 
Shadow/Reflect 0 1 1 3 0 0 0 219 6 1 231 7.6% 94.8% 
Other 19 15 5 11 2 5 3 13 273 2 348 11.5% 78.4% 
Sand drop 0 0 67 10 0 1 1 0 11 140 230 7.6% 60.9% 
Total 378 482 444 320 57 529 71 242 342 174 3039 100.0% 73.9% 



  

Transparent Methods 
 

1. Animals and husbandry 
 

1.1 Subjects 

Lake Malawi bower-building species (Copadichromis virginalis, Tramitichromis intermedius, Mchenga conophoros) 
derived from wild-caught stock populations, as well as genetically hybrid individuals derived from two of these species 
(described below), were housed in social communities (20-30 individuals) in 190 liter glass aquaria (90.2 cm long x 
44.8 cm wide x 41.9 cm tall) into adulthood (>180 days). Aquaria were maintained under conditions reflective of the 
Lake Malawi environment: pH=8.2, 26.7ºC water, and a 12 h:12 h light:dark cycle with 60-minute transitional dim light 
periods. Fish were fed twice daily with dried spirulina flakes (Pentair Aquatic Eco-Systems). 

 

1.2 In vitro hybridization 

Reproductively active males and females were visually identified based on abdominal distension (females), nuptial 
coloration (males), and expression of classic courtship behaviors (e.g. chasing/leading and quivering). A hybrid cross 
was created between Mchenga conophoros (female) and Copadichromis virginalis (male). To cross-fertilize, a petri 
dish was filled with water from the home tank, and eggs were collected into the dish by applying gentle pressure 
between the pectoral region and the anal pore of the female. Eggs remained fully submerged while the male’s sperm 
was extracted into the same dish by applying gentle pressure to both sides of the abdomen. The mixture was 
immediately and gently agitated and then eggs were gently rinsed twice with fresh aquarium water to reduce 
polyspermy. Eggs were transferred into a beaker containing a fresh oxygen tube, fresh aquarium water, and a drop 
of methylene blue to minimize risk of fungal infection. Water replacement was performed at least once daily until 
hatching (approximately 5-6 days post-fertilization).  

 

2. Behavioral trials 
 

Bower building occurs for multiple days. Animal care guidelines required that testing over such extended time periods 
had to be done in the home tank (as opposed to external testing arenas). In our facilities, home tanks are supported 
on tank racks with built-in piping and support beams that partially occlude top-down fields of view (FOVs). Additionally, 
all tanks have a central support crossbeam that partially occludes top-down FOVs. We found that a ~36 cm diameter 
sand tray placed on one half of the home tank provided a sufficient volume of sand for males to construct bowers, 
and was small enough to fit into an unobstructed top-down FOV. We designed a custom acrylic platform to surround 
the sand tray to prevent subjects from spitting sand over the edge of the tray onto the bottom of the aquarium. Thus, 
in this design, subject males and females could freely enter and exit the sand tray region throughout the trial.  
 
For all behavioral experiments, a single reproductive adult male and four reproductive adult stimulus females of the 
same species or hybrid background were introduced into designated home tanks equipped with additional LED strip 
lighting (10 h:14 h light:dark cycle synced with full lights on), and a custom-designed hollow acrylic case (43.1 cm 
long x 43.1 cm wide x 10.2 cm tall, with a 35.6 cm diameter circular opening) surrounding a circular plastic tray (35.6 
cm diameter x 6.4 cm deep, and elevated 3.8 cm above the aquarium bottom) filled with sand (Carib Sea; ACS00222). 
Sand trays were positioned approximately 30 cm directly below a custom-designed transparent acrylic tank cover 
(38.1 cm long x 38.1 cm wide x 4.4 cm tall) that contacted the water surface to eliminate rippling for top-down video 
recordings. Subjects and stimulus females were allowed to freely interact throughout the entirety of the recording 
trial.  

 
3.  Recording and monitoring hardware 
 



  

We used a Raspberry Pi 3 Model B (RASPBERRYPI3-MODB-1GB; Raspberry Pi Foundation) connected a 
Raspberry Pi camera v2 (RPI 8MP CAMERA BOARD; Raspberry Pi Foundation) and a 1 TB external hard drive 
(WDBUZG0010BBK-WESN; Western Digital) to collect video clips for each trial. Data was stored locally on the hard 
drive until the end of the trial and then transferred to Dropbox through an Ethernet connection for analysis. The 
Raspberry Picamera was placed approximately 58 cm above the sand tray. 
 

4.  Data collection and analysis software 
 

4.1 Video Collection 

Upon start of a trial, an automated recording protocol was initiated collecting RGB video data during full light hours 
(08:00 to 18:00 EST) for 7-10 days. h264-encoded videos were collected at a 30 frame per second frame rate and 
a resolution of 1296x972 using custom Python scripts that used the picamera package 
(https://picamera.readthedocs.io). h264 videos were encoded into mp4 videos using ffmpeg 
(https://www.ffmpeg.org/). Data was transferred to a laboratory Dropbox account using rclone (https://rclone.org/). 

 

4.2 Identification of HMM state changes 

All code for running action detection is available on github at https://github.com/ptmcgrat/ 
CichlidActionDetection. This repository included code that accomplishes the following: (i) uses a Hidden Markov 
Model (HMM) algorithm to detect changes in pixel values through time by sampling one frame per second, (ii) uses 
a density-based clustering algorithm to identify clusters of HMM+ pixels, or putative sand change events, and (iii) 
creates video clips and frames for manual labeling and machine learning classification. 

To calculate HMM-predicted pixel values, we used the opencv and numpy packages for Python to decompress color 
mp4 videos into gray scale numpy arrays (0-255) to access data for each pixel across the entire video. To filter out 
short-term changes caused by fish, we calculated two rolling mean values for each pixel across a 120 second window 
either before and after each time point. Pixel values that were 7.5 units above or below either rolling mean value were 
removed and then interpolated using the ‘numpy’ package. Enduring changes in pixel values were identified using 
the ‘hmmlearn’ package for Python. Initial testing indicated that the time to calculate the HMM for the entire video 
would be on the order of days. Since the time to calculate the HMM states is on the order of O(N2), where N is the 
number of hidden states, we performed two additional pre-processing states to reduce the number of hidden states 
for each pixel. First, we only considered mean state values (i.e 0,2,..252,254). Second, since each pixel did not 
explore the entire range of possible values, we also calculated the values for each pixel that were found 10 or more 
times in the entire video. By using these heuristics, we could reduce the number of states to ~10-20.  

 

We also found that changes in lighting over the course of the day created small changes in mean pixel value that 
resulted in HMM state transitions. To limit the number of these small HMM changes, we also prevented transitions 
less than 4 units by modifying the transition probability matrix.  

 

4.3 Clustering of HMM state changes together into sand-manipulation events 

In order to group HMM state changes together that were caused by the same fish-mediated event, we used density-
based spatial clustering of applications with noise (DBSCAN) within the Python package ‘scikit-learn’ to identify 
clusters of HMM change in the presence of noise. DBSCAN analyzes the region surrounding each HMM pixel in time 
and space, determines if the neighboring region contains a minimal number of HMM+ pixels using a KD-tree, expands 
on dense groups of points, and repeats. DBSCAN parameters were set based on the observed size of sand change 
events and based on a k-dist graph. This enabled us to identify spatiotemporal clusters of HMM+ pixels, representing 
putative sand change events. Detailed discussion of different aspects of clustering follows.  

 

Pre-processing 



  

Occasionally there were large changes in lighting that resulted in state changes for the majority of pixels. We filtered 
out HMM+ changes from times when 1% or more of the pixels changed. 

 

Parameters for density-based clustering 

DBSCAN minPts and eps: 

minPts: observers reviewed several hundred putative sand perturbance events and estimated the minimum size of a 
true sand change cluster to be 10 pixels x 10 pixels x 3 frames, and HMM+ pixels change to cover at least 15% of 
the putative sand change region. Based on these estimates we calculated the range for the minimum number of 
pixels in a sand change event to be between 50-250 pixels. For this paper we used 90 points for the minPts 
parameter. 

 

eps: For a given k we defined a function k-dist from the database D into the non-negative real numbers, mapping 
each point to the distance from its k-th nearest neighbor. After sorting the points in the database in descending order 
based on their k-dist values, the graph of this function suggested a density distribution in the database. This graph is 
called the sorted k-dist graph, as described previously (Ester et al., 1996). We then fit a nearest neighbor tree to all 
points and used the k neighbors query to find the minPtsth nearest neighbor for each point, and the k-dist graphs for 
minPts = 200. We found that most of the points were close to each other; and most points had at least 200 points 
within 40 units.  

We used the knee point of the first k-dist graph (at minPts = 200; Figure S2) to estimate the optimal values for eps to 
be 20-30. We then ran DBSCAN on a grid of parameters and quantified the number of clusters labeled under each 
set of parameters. Three observers then annotated three sets of clips corresponding to minPts and eps values (Figure 
S2). After comprehensive review, we found the eps = 18 and minPts = 90 to best reflect true sand change clusters.  

Nearest Neighbor KD-tree treeR/neighborR and leaf size: 

treeR and neighborR are equivalent parameters for constructing KD-trees (Pedregosa et al., 2011). Within a radius 
around each point, all distances between this point and other points are calculated. DBSCAN queries the distances 
within eps (eps=18 in our analysis) for each point, so the treeR/neighborR ≥ eps. We set this parameter to 22 to 
prepare the distance matrix for DBSCAN with eps <= 22.  

leaf_size: this parameter is a threshold below which the calculation switches from traversing tree to brute-force. For 
small data sets (N less than 30 or so), brute force algorithms can be more efficient than a tree-based 
approach. Changing leaf_size will not affect the results of a query, but can significantly impact the speed of a query 
and the memory required to store the constructed tree as seen in (Pedregosa et al., 2011) and here: 
https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/#Scaling-with-Leaf-
Size. We set leaf_size above minPts 90 (leaf_size=190). 

Timescale: 

Since DBSCAN uses one radius to search clusters in all dimensions, we scaled the time dimension so that the 
temporal lengths of events were similar in magnitude to their spatial width, such that events were, in general, roughly 
spherical in 3D. By manually reviewing hundreds of events, we determined that the duration of sand change events 
was < 5 seconds, and the spatial widths were typically < 50 pixels. Based on this, the time dimension (on 
frame/second) was scaled by 10x. 

 

4.4 Creation of video clips for each cluster 

Finally, to create video clips for machine learning, we used the “opencv” package for Python to create small video 
clips around the center of each cluster. The width, height and length of these videos were 200 pixels, 200 pixels, and 
120 frames (4 seconds). For manual labeling, we also included cluster information on the pixels that underwent HMM 
transitions during the 4 second time window. 

 



  

5. Machine Learning 

5.1 Behavioral definitions for manual annotation 

The following 10 categories were used to categorize each of the manually-labeled video clips. 

Bower scoop: subject male collects sand into its mouth during bower construction. 

Bower spit: subject male expels sand from its mouth during bower construction.  

Bower multiple: multiple bower scoops and/or spits are expressed by the subject male within the same video clip. 

Feeding scoop: fish collects sand into its mouth during feeding.  

Feeding spit: fish expels sand from its mouth during feeding.  

Feeding multiple: multiple feeding scoops and/or spits are expressed by a fish within the same video clip. 

Spawn/quiver: the subject male rapidly vibrates his body left to right while simultaneously circling, often but not 
necessarily with a female in frame. The male’s body is typically arched left to right, with his anal fin (egg spots) 
displayed directly in front of the female. The female may also be present and circling in immediate proximity with the 
male. 

Sand dropping: A fish expels or releases sand from the mouth either while high in the water (after which the sand 
sprinkles down through the water before settling), or release of sand upon initiation of a rapid burst of swimming 
(typically chasing or being chased). A rarer subset of sand dropping events includes filtering sand through the 
operculum while swimming, typically during feeding.  

Other: Changes to the sand caused by any other fish activity not described above, often as a result of swiping of the 
fin or rubbing of the ventral surface of the body along the sand during performance of other behaviors. More rare 
cases included instances in which two fish both perform behaviors in the same clip but the sand change was 
designated as a single cluster.  

Shadow/reflection 

Other changes that are not caused by fish manipulating or changing sand, most commonly reflections of activity in 
the aquarium glass and shadows cast by a stationary or very slow-moving fish, or in rare instances food, feces, or 
other debris settling on the sand surface. 

All labeled data can be found at: 

https://data.mendeley.com/datasets/3hspb73m79/draft?a=b72c1f6d-505a-431a-ba3d-824cd148c01e 

5.2 Deep learning of cichlid behaviors 

All code for running behavior classification of  available on github at https://github.com/ptmcgrat/ 
CichlidActionRecognition. A trained observer manually classified 14,172 video clips randomly selected from 
representative days across seven trials, spanning seven subjects, three species, and one hybrid cross. Each clip 
was classified into one of the ten categories listed above. We randomly selected 80% of manually annotated clips 
for training an 18 convolutional layer 3D ResNet, and the remaining 20% of clips were used for validation. Briefly, 
3D ResNets are 3D convolutional neural networks (CNNs) that incorporate features of Residual Networks 
(ResNets), in which signals are bypassed across convolutional layers during training. This approach allows 3D 
ResNets to be deeper and more accurate than traditional 3D CNNs for action classification tasks. For training, 
validation, and prediction we used a 18- layer Resnet3D model as previously described (Qiu et al., 2017). The 
architecture, including the shape of each layer, of the neural network is shown in Figure 5A. Each ResNet Block 
consists of 2 convolutional layers, each has a kernel size of 3x3x3. The first convolutional layer has a kernel size of 
7x7x7. ReLu is used as the activation function across the neural network. Prior to training, each video clip was 
randomly cropped at a 120x120 frame. Each training video clip was also randomly cropped temporally down to 96 
continuous frames. Random horizontal and vertical flip, at a rate of 0.5, was also used for data augmentation. 
Finally, each channel was then normalized based on the mean value for that channel. Validation and test video 
clips were always cropped in the center spatially and temporally. For training, stochastic gradient descent was used 



  

to optimize the parameters of the neural network. Specifically, the learning rate was set to 0.1 (and set to decrease 
after 10 consecutive epochs of no change in validation loss), momentum was set to 0.9, dampening was set to 0.9, 
and weight decay was set to 1.0x10-5. The network was only initialized at the start and was trained for 100 epochs 
with a batch size of 8 per epoch. The final accuracy is calculated as the average the last five epochs when the 
accuracy reached plateau by visual inspection. 

  

5.3 Testing model generalizability 

In order to test the generalizability of the learned model, we used 6 out of the 7 projects for training/validation and 
the other one for testing. We tested all 7 combinations of these 7 projects. Sample split, network architecture and 
data augmentation were the same as above and test accuracy is calculated as the average the last five epochs 
when the test accuracy reached plateau. In order to test if label some of the test video clips could help the model to 
generalize to the new dataset, we randomly put 100,400,800 randomly selected test clips in training and the 
remaining test clips in test. After this, the new training/validation dataset went through the data augmentation and 
network computation. The new test accuracy is calculated on the remaining test video clips.  

 

To figure out why accuracy decrease in test trial, we compared the distribution of the categories for each test trial 
and that of the training trials. For each trial, we first calculated the percentage for each category. This distribution is 
subtracted by that of the training trials to get the distribution difference. Finally, the accuracy when this trial is used 
as test dataset is regressed on the sum of absolute per category difference. The p value is calculated from 
Pearson’s Correlation Coefficient. 
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