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The first genetically gene‐edited babies: It's “irresponsible and
too early”
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Abstract

A scientist, Jiankui He of Southern University of Science and Technology of China,

recently claimed at the Second International Summit on Human Genome Editing in

Hong Kong on 29 November that he has created the world's first genetically altered

babies using CRISPR. This announcement sparked controversy and criticism. The

newly developed CRISPR/Cas9 technique has been applied to genetic modification

of many kinds of animals. However, the technique is still in its infancy and many

questions remain to be answered before it can be used for clinical purposes, espe-

cially for reproductive purposes.
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On 29 November 2018, at the Second International Summit on

Human Genome Editing in Hong Kong, the scientist Jiankui He, of

Southern University of Science and Technology of China, claimed he

has created the world's first genetically altered babies. This

announcement sparked controversy and criticism and was almost

universally denounced.
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The Chinese Academy of Medical Sciences responded: “we are

opposed to any clinical operation of human embryo genome editing

for reproductive purposes in violation of laws, regulations, and ethi-

cal norms in the absence of full scientific evaluation”.1 The National

Health Commission of China responded: “This illegal behavior will be

verified and punished”.2 The genetic alteration of human eggs,

sperm, and embryos is prohibited for germ line purposes. The rele-

vant guidelines already exist in China. Jiankui He's work violated

those guidelines.

CRISPR/Cas9 techniques have been applied in many kinds of ani-

mals, including human cells. It is very clear that this system can be

used to genetically modify the human germ line today. However,

many questions remain to be answered before this technique can be

used to alter the human genome for reproductive purposes.

Although the intent may be to create perfect human beings, the

result may be a monster.

WHAT IS CRISPR /CAS9?

Mammalian genomes contain billions of base pairs and are difficult

to manipulate. With the development of homologous recombination

(HR), we can precisely modify the genome, with expected outcomes.

However, precise HR‐mediated alteration occurs at a very low fre-

quency (one in 106‐109 cells).3 A series of programmable nuclease‐
based genome editing tools, such as Zinc finger nucleases (ZFNs),4

transcription activator‐like effector nucleases (TALENs)5-7 and the

RNA‐guided DNA endonuclease Cas9 (CRISPR/Cas9),8-10 have been

developed in recent years, which enable efficient genetic modifica-

tions of many species. The ZFNs were derived from eukaryotic tran-

scription factors,4 TALENs were derived from Xanthomonas

bacteria,5-7 and CRISPR/Cas9 was derived from the type II CRISPR

system.8-10 Of the current genome editing tools, the RNA‐guided
Cas9 system has been developed most rapidly. This system can

easily be used to target a genomic locus with a small guide RNA

(sgRNA) complementary to the target DNA sequence.11,12

CRISPRs were first reported in Escherichia coli in 1987 and are

present in over 40% of sequenced bacteria and 90% of sequenced

archaea.13 Currently, the type II CRISPR system, first identified as

part of an adaptive immunity system that protects the hosts against

invasion by plasmids and other DNA contaminants, is the most com-

monly used.14,15

Since the first report of CRISPR/Cas9 techniques being used for

gene targeting in mammalian cells in 2013, these techniques have

been applied in many species.8,10,16,17 In theory, they can be used

for human germ line modification, but there are still many open

questions to be solved before any attempts to apply it should be

made.

Targeting difficulties

All programmable nuclease‐based editing tools work via introduction

of a site‐specific DNA double strand break (DSB).4-10,18 The DSB will

stimulate DNA repair through nonhomologous end‐joining (NHEJ)

and/or homologous recombination (HR)‐directed repair mechanisms.

HR‐mediated repair occurs only in specific phases of the cell cycle

(G2 and S), while NHEJ‐mediated repair occurs throughout the cell's

life. NHEJ‐mediated repair is the primary damage‐mediated repair

mechanism. NHEJ‐mediated repair is not an entirely accurate pro-

gress and may induce small deletions or insertions at the target

sequence. In order to achieve very precise genome modification, var-

ious kinds of CRISPR‐based genome editing tools were developed

including adenine base editors (ABEs), cytosine base editors3 (BE3),

and so on.19-23 NHEJ‐mediated small deletions or insertions result

in: (a) frameshifts causing a stop codon occurrence at or after DSB

sites, which results in elimination of the target gene; (b) frameshifts

which introduce a new amino acid strand or protein, resulting in a

different protein; (c) deletion of several amino acids. In the second

situation, the newly produced amino acid or protein may be toxic

and have unexpected consequences. More basic research is neces-

sary to evaluate the safety and validity of these techniques. Accord-

ing to present information, the system which Jiankui He used have

resulted in different base insertion and deletions. Using this tech-

nique could lead to unintended results for the organism.

Off‐target effects

The most important concern a newly developed gene editing tool

must address before any kind of application is attempted is to show

that there are no off‐target effects. Based on present data, the

CRISPR/Cas9 system does induce off‐target mutations. And further,

these mutations can be transmitted to the organism's descen-

dants.24-29 While we know a lot about this technique, there are still

many unknowns. Further research and development of this technol-

ogy may uncover more unintended off‐target and other effects, as

well as other unexpected consequences. Such off‐target mutations

or other effects could lead to cancer or other diseases in the early

or later life of genetically modified babies.

Mosaic issue

The CRISPR/Cas9 system may continue to work beyond one‐cell fer-
tilized eggs and result in a mosaic genotype.10,29-31 This means that

different tissues or organs will have different genetic modifications,

even within the same organism. We are still uncertain what the

effects of the gene editing would be in the genome of babies.

WHICH IS THE PERFECT TARGET GENE?

In order to select the perfect target gene and an efficient target site,

we need to understand that gene's function well, and the target

sgRNA should have very few or no off‐target effects. This requires a

significant accumulation of knowledge, which is so far lacking. Cur-

rently, most knowledge about gene function comes from basic

research, which often uses mice missing a gene of interest (called

knockout mice) to understand the effects of the gene. However,

whether genes function in the same way in mice and humans is still
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unclear, and gene function studies in humans are still in their

infancy. There is currently very little known about how gene knock-

out in humans will affect a person's behavior, health, and lifespan

and how it could be transmitted to their descendants. There is no

effective method to evaluate those effects in human beings.

Jiankui He selected the Ccr5 gene as the target gene, with the

stated purpose of preventing HIV infection. However, is this the per-

fect target for HIV prevention? The C‐C chemokine receptor 5

(CCR5) is a seven‐transmembrane G protein‐coupled receptor (GPCR)

and is highly expressed in bone marrow‐derived cells including T cells

and macrophages.32 In other tissues, CCR5 is expressed on epithe-

lium, endothelium, vascular smooth muscle, and fibroblasts.33-35

Many studies have demonstrated that CCR5 has an important role in

HIV virus infection.36,37 CCR5 is therefore a potential target for HIV

infection protection. In another study, however, Ccr5 gene deletion

also showed lupus nephritis susceptibility.38 In the central nervous

system, Ccr5 is expressed on neurons, astrocytes, and microglia and

functions as a suppressor for cortical plasticity and hippocampal

learning and memory.35 The Ccr5 gene function in many tissues is still

unclear. Deletion of this gene may result in unexpected disease.38 It

is therefore a very risky target for gene editing.

ETHICAL PROBLEMS

The scientific community has already developed a broad social con-

sensus about the application of these techniques. It strongly encour-

ages basic research and manipulation in laboratories, but does not

condone use of the technique for genetically altering human babies.

We agree with the major recommendations:

Research: “Intensive” research is encouraged and should proceed,

including in human germ line cells, subject to appropriate legal and

ethical oversight.

Clinical use (somatic): Treating adults with gene editing therapies

should proceed within existing regulatory frameworks and guidelines.

Clinical use (germ line): Gene editing for human reproductive pur-

poses is in principle prohibited until all safety and ethical issues can

be addressed.

Ongoing forum: The international community should establish

“norms” and every country makes its own laws for human gene editing.

Many countries already have principles and guidelines regulating

human embryo experiments. In the United States of America, use of

federal funds to finance genetic modification experiments in gametes

and embryos is prohibited. In China there are already guidelines for

genetic manipulation for human reproductive purposes. The guideli-

nes including: Guiding Principles of Ethics for Human Embryonic

Stem Cell Research (2003), Ethics Principles for Human Assisted

Reproductive Technology and Human Sperm Bank (2003), Ethical

Review Measures for Biomedical Research Involving Human Beings

(2016), and Safety Management Measures for Biotechnology

Research and Development (2017).1

While regulations and guidelines already exist and regulate gov-

ernment‐funded studies, but there are few restrictions for privately

funded research. The CRISPR technique is still in the initial stages of

evaluation and it is premature to consider it for clinical use, espe-

cially for reproductive purposes. In order to avoid the birth of “a sec-

ond CRISPR baby,” we strongly recommend that the government

should regulate clinical experiments using this technique for human

reproductive purpose.
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