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Abstract: The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory
mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the
immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes
foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of
immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory
disorders and cancer therapy. However, the conventional drugs used in regular management can
interfere with glycome machinery and exert a divergent effect on immune controlling systems.
Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and
their importance in diagnosis, prediction, and clinical outcomes.
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1. Introduction

The immune homeostasis is a complex and precise mechanism that underlies tissue environment
control, regeneration, and repair processes, as well as the surveillance of pathogens and
malignancies [1,2]. All events controlled by the immune system depend on the cellular interactions
that maintain the balance between tolerance and defense processes. The communication between host
cells and their environment recruits the cellular and molecular mechanisms responsible for the recognition,
adhesion, and secretory activity [3]. Recent advances in immunology show that targeting the molecules
underlying immune homeostasis is a promising therapeutic tool for inflammation, autoimmunity, cancer,
and neurodegeneration [4,5]. The immune checkpoints are the system of regulatory proteins that
play a critical role in self-tolerance processes and prevent autoimmune reactions against self-produced
antigens [6]. The interplay between stimulatory or inhibitory checkpoint molecules with their specific
ligands modulates cellular functions to avoid immune injury. However, the mechanisms underlying
these processes are not fully understood. Moreover, the molecular mimicry of checkpoint systems by
pathogens leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune
system [7–9]. The clinical data support that the prolonged exposure to bacterial and viral antigens leads to
overexpression of several checkpoint receptors, e.g., programmed cell death protein 1 (PD-1) and cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) in effector lymphocytes that provide negative signals and
induce reversible exhaustion state. The anti-PD-1 antibody-based directed therapies have been shown
to have a beneficial effect on malignant cell clearance [10–13]. The PD-L1 and CTLA-4 targeting have
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been introduced successfully into oncological practice, and the combination immunotherapy and multiple
immunomodulatory targets open promising therapeutic strategies [14].

A growing body of evidence supports the role of sialoglycans at various clinical stages
of immune-based pathologies [15,16]. Since sialylated glycans are involved in many biological
processes, their frequently altered expression, as well as recognition by individual sialic acid-binding
immunoglobulin-like lectins (Siglecs), can be related to the increased progression of the pathological
processes [17–19]. This review briefly focuses on the engagement of the sialic acid-Siglec axis in some
pathophysiological processes and its importance in routine clinical practice.

2. Sialic Acid and Immune Recognition

More than 50 nine-carbon monosugars derived from neuraminic acid belong to the family of
sialic acids, among which N-acety1-5-neuraminic acid also called sialic acid (SA, Neu5Ac, NANA)
is the most common form found in cell membrane glycoproteins and body fluids [20]. The sialic
acid is ubiquitously expressed, typically at the terminal position of glycoproteins and lipids in the
glycosylation process, resulting in co-translational and posttranslational modifications of approximately
80% of cell proteins [21]. Sialylation as the final stage of glycosylation is based on the balance achieved
by the expression and activity of sialyltransferases and sialidases involved in the decoration of sugar
chains, and on the sialic acid precursors contained in nutrient resources, as well as the expression
of several metabolic enzymes implicated in the synthesis and conversion of sialic acid molecules.
The attachment of sialic acid enhances the complexity of the glycosylation processes and results
in wide microheterogeneity of glycoconjugates, which can be used to predict the occurrence of
pathology, diagnosis, and therapy monitoring [22,23]. In contrast to the stable and reproducible
glycosylation pattern under normal conditions, the unbalanced sialylation processing enzymes lead
to the dramatic differences in sialic acid expression. It is of particular importance in the context of
immune recognition processes underlying chronic inflammatory diseases and immune tolerance in
cancer [24–27]. The biological recognition processes are closely linked to the biological function of
sialic acids and include the regulation of adhesion that occurs from cell-cell and cell-extracellular
matrix (ECM) interaction [28,29]. Binding of specific membrane sialoglycoproteins is the first step in
the adsorption of pathogens on host cell membranes and further colonization of tissues and organs.
This process has been confirmed in bacterial (Escherichia coli, Streptococcus suis), viral (influenza,
Cardiovirus, Paramyxovirus), and protozoan (Plasmodium falciparum) infections [30–35]. Sialoglycans,
especially sialo-Lewisa,b,x,y epitopes, play a crucial role in the interaction with selectins, which are the
molecular basis of adhesion processes linked to the migration of immune cells to the target organs
through the vascular endothelium and outside the circulatory system. Thus, the sialic acid-mediated
negative charge on membranes reduces the mutual adhesiveness of cells, which underlies the migration
of highly sialylated cancer cells in the metastatic process [36]. In addition, the aberrant sialic acids
mask the underlying glycan structure, thereby avoiding recognition by other lectins such as galectins
and C-type lectins [37]. The host’s immune system, whose cells express sialo-Lewis antigens does
not produce specific antibodies and allows the invasion of sialo-Lewis positive pathogens by way of
molecular mimicry. Many malignancies use this mechanism to hide their epitopes, which inhibits the
complement activation pathway to reduce immunogenicity, recruits of plasma factor H to control of
alternative complement pathways. Furthermore, the sialic acid epitopes protect the human colon mucins
from the clearance by liver receptors, including the hepatocyte asialoglycoprotein receptor (ASGPR),
macrophage galactose lectin-1,-2 (MGL-1,-2), hyaluronic acid receptor for endocytosis, and scavenger
receptors (SRs) [17,38,39]. The digestion with neuraminidase becomes cells more immunogenic,
and the weaker antigenic sites more accessible. Loss of membrane sialic acid in lymphoid cells
increases their migration to the liver and makes them more deformable and phagocytic [40]. Recent
advances in glycoimmunology indicate the interplay between the cell membrane sialylated glycans
with Siglec immune receptors as a new checkpoint axis in the regulation of the immune system [41,42].
The human CD33-related Siglecs, as well as their mouse homologs, form a major subfamily of
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the Siglecs characterized by the specificity of distribution in the immune cells and recognition of
sugar products [43,44]. Differences in the structure of the intracellular domain of Siglecs determine
the activating or suppressive signaling pathways responsible for the function of the immune cells.
Posttranslational glycosylation of cell adhesion molecules (CAMs) plays a pivotal role in regulating
cell proliferation, differentiation, migration, and survival that underlie ontogenetic development and
cellular plasticity [45]. In the central nervous system (CNS), the glycan-dependent cross-talk between
neurons, glia, and microglia form a balance between synapse formation, potentiation, and removal,
thereby maintaining homeostasis of the brain by controlling the tissue architecture, microenvironment,
and defense reactions [46,47]. Clinical observations, animal models, and in vitro co-culture systems
confirmed the significance of glycoconjugates sialylation in innate immunity and its relationship
with development, cognition, regeneration, and aging [17,48]. In the brain, sialylated glycocalyx
is recognized by Siglec-expressing microglial cells that normalize normal brain wiring, as well as
various type leukocytes infiltrating the infected and/or damaged structures [49,50]. The polysialylated
derivatives of neural CAMs (PSA-NCAMs) are known as a specific ligand for the microglial Siglec-11
receptor, which transduces an immunosuppressive signal and inhibits several immune functions.
The binding of PSA with the Siglec-11 receptor in the neuron-microglia co-culture system was closely
associated with limited immune function. It may reflect the control mechanism, called cis-interaction,
which prevents the autoimmune processes in the healthy CNS [50]. The imbalance between sialidases
and sialyltransferases activities, as a result of pathology or exposure to degenerative factors, disturbs
the sialylation pattern, and modulates the function of “On” and “Off” signaling system. Interestingly,
the enzymatic removal of sialic acid reduces the neuritic density and the number of perikaryons and
induces changes in the morphology of microglia expressed by the transformation of the resting to the
activated form [50]. In line with this observation, selective enzymatic removal of sialic acids attached
by α2,3 and α2,6 linkages reduces the reactivity of the suppressive Siglec-F receptor protein to its
ligands on the neuronal surface, which can be part of the mechanism of neuronal protection and
homeostasis in the brain [50].

3. Sialic Acid-Siglec Checkpoint in Human Pathology

The molecular pattern of glycosylation has an essential role in biological recognition and could
predict the involvement of the immune system in pathology initiation and progression. Recent
advances in glycobiology are focused on the prognostic value of sialylated epitopes as markers
of pathology [44,51]. The applied experimental models and analyzed clinical material referring to
the various human pathologies demonstrated changes in the level of cell membrane sialoglycans.
Sialylation processes pretend to be a useful prognostic marker and the potential target for drug
development as well as an indicator in monitored therapy [17]. To date, serum total sialic acid as
well as lipid- and protein-bound sialic acids are the fields of clinical interest in their importance as
diagnostic markers of pathology. The assessment of differences in the level of free sialic acid and
patterns of sialylation of particular glycosaminoglycans is characterized by the various methodological
approaches in current glycoscience. The quantification of serum and plasma sialic acids by colorimetric,
fluorimetric, and enzymatic methods confirmed their significance as a prognostic factor in clinical
practice. However, multiple interferences from substances present in biological samples are the
strong limitation for routine use of these analyses [52]. Since the immunological methods have been
developed, the specific monoclonal antibodies and labeled sialic acid-binding lectins are widely used in
the evaluation of basement membrane sialic acid composition by electrophoretic and ELISA methods in
the studies of cancer biology [53,54]. The latest advances in this field are enriched by the development of
mass spectrometry (MS) with high resolution and mass accuracy that allows analyzing glycans in terms
of structure [55,56]. For example, the recent analysis of the sialic acid linkages of the glycome of the
epithelial ovarian cancer (EOS) patients by the matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry revealed significant differences in α2.3-linked/α2.6-linked sialic acid
ratio in EOS patients when compared to healthy individuals [57].
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Most Siglecs participate in negative signal transduction resulting in the downregulation of the
immune response and are critical for self-tolerance processes and prevent autoimmune reactions
against self-produced antigens [43]. Sialylated glycoconjugates belong to the self-associated molecular
patterns (SAMPs) that bind to the individual immunoreceptor tyrosine-based inhibition motif (ITIM)
associated Siglec receptors presented on the same cell membranes and orchestrate inflammatory
reactions within damaged tissues. Intriguingly, the pathogen-associated molecular patterns (PAMPs)
developed the ability to recognize both, ITIM and ITAM (immunoreceptor tyrosine-based activation
motif) associated Siglecs that underlie the mechanisms of chronic inflammation and neurodegeneration,
as well as impaired immune surveillance in pathogen infections and cancer invasion [19].

3.1. CNS Diseases

Despite the role of the sialic acid-Siglec checkpoint, it was not widely studied in brain functions.
There is increasing evidence that chronic stress exerts proinflammatory effects, which are associated
with the local activation of microglia, the production of proinflammatory factors, neuronal atrophy,
and increased expression of sialylated acute-phase proteins. The measurement of sialidase activity as a
posttranslational indicator of glycoproteins remodeling revealed the pivotal role of PSA-NCAMs in
chronic stress-induced cognitive disturbances [58]. Changes in PSA-NCAM expression in response to
stress stimuli may reflect hippocampus atrophy in long-term exposure to corticosteroids known as
endocrine modulators in stress [59]. On the cellular level, the polysialylated NCAMs are recruited
in neuron-microglia interaction via Siglec-11 binding and ITIM-coupled signaling, and they restrict
damage by immune cells during brain inflammation [60,61]. This scenario could reflect immune
controlling mechanisms in the brain after exposure to proinflammatory factors. In an animal model of
systemic inflammation, intraperitoneal injection of lipopolysaccharide (LPS) caused significant changes
in the sialylation pattern in CNS. The elevated PSA-NCAMs expression in the hippocampus was
correlated with the intracellular level of inflammation mediators [62]. Besides the role of PSA-NCAMs
as regulators of neural plasticity in the hippocampus, their engagement in compensatory and protective
mechanisms during neurodegeneration was also described. The presence of glycans, including
α2.8-linked sialic acids, protects glycoconjugates against proteolysis and affects proper regeneration
through the reestablishment of a crude topographic map of reinnervation [63]. The LPS-induced acute
inflammation was not accompanied by the altered expression of suppressive Siglec-F both in vivo
and in vitro studies and can be interpreted by the altered regulation of Siglec receptor expression in
respective stages of inflammation [62]. Siglec receptors that contain ITAM promote proinflammatory
cellular activity in the acute phase, whereas receptors with the ITIM inhibitory domain (e.g., Siglec-F, -G),
reduce the cytotoxicity of immune cells in the chronic phase of inflammation [64].

The cell-intrinsic mechanism involving Siglecs can be associated with divergent outcomes
of pathology within the brain. Moreover, the CD33-mediated suppression of microglia seems
to be regulated alternatively by the hypersialylation of proteins and lipids. The sialic acid-rich
glycoconjugates on the surface of amyloid plaques, mimicking the cell surface glycocalyx, activate the
Siglec-11 receptor, and thereby switch the „Off” signaling which allows pathological structures to avoid
immune surveillance of microglia [65]. It has been shown that Siglec-3 (CD33) and CD33-related Siglecs,
including Siglec-11, belong to the top-rated factors which may confer the risk for Alzheimer’s disease
(AD) [66,67]. Given the microglia ability for amyloid-β (Aβ) clearance, it seems that CD33-coupled
signaling pathways can regulate their phagocytic potential. The postmortem analysis of the AD cortex
evidenced an increased number of CD33-positive microglia, which was concomitantly linked with
elevated CD33 mRNA level [68]. Nevertheless, the knocking out CD33 in the experimental mouse
model of AD caused efficient phagocytosis of pathogenic Aβ by microglia and macrophages [69].
Therefore, the interactions between the sialoglycans and Siglecs are a promising targeting therapy
based on antibodies with a monovalent affinity to different Siglecs.
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3.2. Respiratory System Disorders

Clinical studies and animal models of respiratory tract obturation demonstrated that increased
expression and specific distribution of Siglec-8 is closely associated with inflammation [70–72].
Progressive inflammation in airway tissues promotes the expression of specific sialoglycans carrying
predominantly 6-sulfo-sialyl Lewisx epitopes. The cross-linking with Siglec-8 initiates ITIM-signaling
cascades and downstream effector proteins that lead to the apoptosis of infiltrating eosinophils.
This process occurs when eosinophils are in proinflammatory cytokine milieu, indicating that Siglec-8
and its murine functionally convergent paralog, Siglec-F, regulate the turnover of activated cells in
the context of inflammation. A growing body of evidence suggests that Siglec-8 is an important
regulator of inflammation and disease. In animal models of the respiratory tract inflammation, mice
lacking Siglec-8 have an increased inflammatory response and hypereosinophilic syndrome (HES) [73].
Contrary, the administration of Siglec-F antibodies in mouse models of chronic asthma normalizes
eosinophilic pulmonary inflammation and eliminates lung tissue remodeling [74,75]. Interestingly,
monocyte turnover in simian immunodeficiency virus (SIV) infections correlates with the severity of
pulmonary lesions contribute to chronic pulmonary inflammation [76].

As with many human phenotypes, the controlling mechanisms of chronic inflammation,
neurodegeneration, and immune surveillance depend on the levels of multiple genes. Siglec-5
and Siglec-14 belong to the group of paired receptors that show the extreme similarity of the amino
acid sequence of the extracellular part and identical distribution in tissues and cells. This phenomenon
results from partial conversion of the closely related SIGLEC5 and SIGLEC14 genes in the evolution
process resulting in similar ligand recognition properties but an opposing signaling system [77].
According to the published data, the expression of the activating Siglec-14 receptor predominates in the
European population and may potentiate inflammatory response in bacterial (Haemophilus influenza)
and viral infections (influenza virus), which are the cause of chronic respiratory diseases. The clinical
observation of patients with chronic obstructive pulmonary disease (COPD) has shown that the loss of
Siglec-14 reduces the risk of COPD exacerbations related to bacterial infections [78]. The predominant
expression of Siglec-5 is observed in the Asian population and is closely linked to reduced bactericidal
and virucidal abilities during infections with Streptococcus, Neisseria, Pseudomonas, Campylobacter,
and HIV [79]. It is of particular importance in exposure to proinflammatory conditions. The in vitro
studies revealed an increase in the expression of paired Siglec-5/14 receptors in THP-1 cells exposed
to cigarette smoke (CS). Simultaneous changes in immune activity as an increase in intracellular
interleukin 1β (IL1β) and interleukin 10 (IL10) expressions and impairment of phagocytic capacity
were observed. In parallel to CS-induced changes in human monocytes, an increase of sialoglycans
in lung epithelial cells was observed [80]. It confirms the overwide hypothesis that CS cigarette
smoke may induce functional alterations in the immune response in cells of the respiratory system.
Changes in the expression of the paired Siglec-5/14 receptor may be important for predicting the risk
of exacerbations in respiratory diseases and the immune system performance in bacterial and viral
infections in both regular and social smokers.

3.3. Pathogen Invasion

In each immune disorder, the microbial invasion can contribute to the different stages of
hyperinflammation. As suggested above, the interplay between pathogen sialoglycans and the
host Siglec-5/14 can act as a regulatory mechanism of bacterial infections in the respiratory system.
Besides the divergent role of paired Siglec-5/14 in the pathogen-dependent course of COPD, there is
evidence of engagement of Siglec-5/14 in life-threatening organ dysfunction during infections with
group B Streptococcus (GBS). Carlin et al. demonstrated that β-protein in GBS plays a pivotal role in
the mechanism of molecular mimicry through the interaction with inhibitory Siglec-5 resulting in the
impaired phagocytic function of lymphocytes [81]. In GBS-infected Siglec-5/14+/+ individuals, Siglec-14
on neutrophils counteract Siglec-5-mediated immunosuppression by activating p38 mitogen-activated
protein kinase (MAPK) and Akt signaling pathways [82]. In sepsis, recently defined as endotoxin
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tolerance, monocytes undergo reprogramming to generate immunosuppression in the late phase
of the disease. It has been shown that α2,3- and α2,6-sialylation on the LPS-induced tolerant
RAW264.7 cell surfaces were significantly increased and correlated with enhanced Siglec-1 mRNA
expression [83]. The interaction between Siglec-1 and the heavily sialylated proteins, e.g., mannose
receptor, macrophage galactose-type lectin 1 (MGL1), mucin-1 (MUC1), and P-selectin glycoprotein
ligand-1 (PSGL-1) enhances TGF-β1 production, and thereby, controls the development of endotoxin
tolerance [84–86]. Clinical outcomes in sepsis confirm the association between high mortality and
apoptosis—induced loss of cells of the innate and adaptive immune system, including CD4, CD8 T,
and dendritic cells. Kidder et al. demonstrated that Siglec-1 positive macrophages induce the apoptosis
of CD4+ T regulatory cells (Tregs) via recognition and binding of α2.3-linked sialic acids. However,
the mechanism is not fully understood. In consequence, the reduction of Tregs numbers provides an
increase in the T effectory cells (Teffs) population and promotes uncontrolled inflammation [87]. Siglec-2,
which is mostly expressed on B cells, participates in the immune balance of sepsis through controlling
chemokine production and regulating B cell response. Similarly, Siglec-10 plays an anti-inflammatory
role in sepsis through increasing IL-10 expression. It has been shown that the anti-inflammatory effects
in Campylobacter jejuni infections are mediated through the cis interaction between Siglec-10 and CD24
that inhibits dendritic cell cross-presentation and weak B cell signaling [88].

The sialic acid-Siglec axis has also been considered as a controlling mechanism in viral invasion
machinery. Several sialylated glycoconjugates act as a key and facilitate the entry of retroviruses,
including HIV, into the mature dendritic cell after binding to Siglec-1. In detail, the sialylated
glycoprotein 120 (gp120) widely expressed on an HIV envelope can bind Siglec-1 and Siglec-7 on
monocytes/macrophages and NK cells, respectively, which induces viral entry, promotes HIV replication
and allows the infection of CD4+ T lymphocytes [89]. In the context of coronavirus (CoVs) pandemic
issues, Varki and Angata hypothesize that the expression of sialic acids by the envelope of CoV can
affect Siglec receptors biology in the hosts and thereby regulate the reactivity of innate immune cells [90].
The inhibitory receptors, such as Siglec-7 and -9, are also exploited in molecular mimicry mechanisms
that allow viruses to avoid immune surveillance [91]. It has been demonstrated that the Hepatitis
B virus (HBV) induces NK cell dysfunction via Siglec-9 recruitment. Conversely, blocking Siglec-9
on these cells of HBV-infected individuals increases TNF-α and IFN-γ secretion [92]. Thus, targeted
manipulation of these processes could lead to a new therapeutic opportunity for patients with bacterial
and viral infections [93,94].

3.4. Cancer Progression

Since sialic acids are commonly found in different types of cancers, their interplay with
Siglec-expressing immune cells within the tumor microenvironment is considered a mechanism that
shapes immune response in malignancy. The sialylation pattern in some cancers is highly heterogenous
in specific cancer types and determines the profiles of engaged Siglec-expressing subpopulations of
immune cells. Mostly, the Siglec expressing cells with the capacity for inhibitory signal transduction are
recruited in cancer progression. It has been shown that lung cancers and melanomas express sialoglycans
predominantly for Siglec-7 and Siglec-9. Among the human ligands, the highly sialylated mucin-1
(MUC-1), which binds Siglec-9, attenuates anti-tumor immunity in tumor-associated macrophages
(TAMs) [95]. Moreover, the strong affinity of α2.3- and α2.6-linked sialic acids to Siglec-9 on neutrophils
results in neutrophils inhibition measured by reactive oxygen species (ROS) production. In contrast,
the administration of Siglec-9 targeting antibody restored the effector functions of these cells in
the presence of malignant cells in vitro [96]. In macrophages, binding of cancer-associated MUC-1
to Siglec-9 induced the conversion into the M2 phenotype, which has the function of reducing
inflammation and contributing to tumor growth and immunosuppressive function. Beside Siglec-9,
macrophages express widely Siglec-5/14, Siglec-7, and Siglec-10 that give a wide sialoglycan binding
spectrum and thereby increases the role of the sialic acid-Siglec axis in the anti-tumorigenic regulatory
mechanism [41,46,97]. In the cellular model of glioma, the crosstalk between murine malignant
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astroglia and immune cells via sialic acid—Siglec-F or Siglec-E axis support tumor-promoting functions,
including remodeling of the extracellular matrix and recruitment of immunosuppressive myeloid
cells [98,99]. According to Engblom et al. observations, the presence of Siglec-F—positive neutrophilia
within tumors promotes cancer growth and correlates with poor prognosis [100]. Interestingly,
the enhanced expression of polysialylated neural cell adhesion molecules (PSA-NCAMs) in human
glioblastoma promotes migration, invasion, and metastasis, and thereby has been described as an
adverse prognosis factor [101]. Given the recognizing capacity of microglial Siglec-11, it is reasonable
to speculate that the PSA-NCAM-Siglec-11 axis may underlie the immunosuppression and impaired
immune surveillance in the brain. The participation of the Siglec-sialoglycans axis in the maintenance
of immune homeostasis suggests that the targeted manipulation of these processes could open a
new therapeutic way in multiple immune-based disorders. Numerous clinical trials for cancer and
autoimmune disorders revealed the beneficial effects of anti-CD22 (Siglec-2) and CD33 monoclonal
antibodies (mAb), in particular when conjugated with immunotoxins. However, multiple adverse
effects, including increased mortality, were observed [102]. Recently, Siglec-9 and Siglec-15 have
been reported as crucial inhibitors of anti-tumor immunity, which can be blocked by mAbs in the
novel anticancer management [103,104]. Recent advances in the field of immunotherapy suggest that
targeting Siglec receptors with specific antibodies or fluorinated sialic acid analogs, called “false sialic
acids,” help to control autoimmunity, pathogen invasion, and malignancies [105,106].

3.5. Cardiovascular System Dysfunction

Moreover, a growing body of evidence supports the role of the sialoglycan-Siglec axis in the
pathogenesis of vascular dysfunctions. The epidemiological analysis has uncovered a positive
correlation between plasma total sialic acid and the risk of coronary artery disease (CAD) [107]. It has
been shown that murine Siglec-G, mainly expressed on B-1 cells, promotes atherosclerosis and liver
inflammation by inhibiting the protective function of B-1 cells [108]. The clinical studies showed that
CAD patients express a reduced Treg level and Treg/Teff ratio, caused by the modulatory function of
Siglec-E-expressing dendritic cells, as confirmed in animal models of CAD. Inhibition of Siglec-1, highly
expressed on circulating monocytes and plaque macrophages in atherosclerotic patients, can prevent
atherosclerotic lesion formation by suppressing the interaction between monocytes and endothelial cells,
and macrophages accumulation [109,110]. In a laboratory model of diabetes, hyperglycemia-induced
up-regulation of sialoglycans on human umbilical vein endothelial cells (HUV-EC-C) and mouse aorta
was associated with the decreasing of Siglec-9-mediated phagocytic activity in macrophages and was
described as a significant risk factor of angiopathy [111].

4. Sialic Acid-Siglec Checkpoint and Conventional Therapy

Despite the better knowledge of molecular mechanisms of immunity and progress in the
development of new targeting drugs, conventional therapies are still the main strategy in the
management of multiple disorders. In addition to well-determined and desired clinical outcomes,
standard therapies include multiple negatives ranging from expected and/or unexpected adverse
effects to not fully understood and studied interference on treatment efficacy. There are minimal data
on the effects of conventional drugs on the sialoglycan-Siglec checkpoint and its importance in the
progression of the disease process (Table 1).

4.1. Sialidase Inhibitors—Not Only in Influenza Virus Infections

The inhibition of glycan–lectin interactions is of importance in the treatment of pathogenic
infections and several other glycan based diseases. The disruption of glycome controlling mechanisms
prevents the interaction between pathology-related molecules. Oseltamivir and zanamivir, the most
active inhibitors of influenza sialidase, prevent the virus release from the host cells and its
multiplication [112]. In addition to the direct effect on viral sialidase, oseltamivir modulates DCs
activity via sialidase-mediated Siglec-Toll like receptor (TLR) interaction [113,114]. Several Siglec



Int. J. Mol. Sci. 2020, 21, 4361 8 of 18

receptors, e.g., murine Siglec-E and human Siglec-5/-9, interact with toll-like receptors (TLR) and
inhibits their activation, thereby helping to maintain a healthy cytokine balance following infection.
In the presence of pathogens, endogenous neuraminidase-1 (sialidase-1, Neu-1) disrupts the interaction
between the TLRs and the Siglecs, thereby activating the receptors and triggering an immune response
during infection [115,116]. However, abnormal TLR4 activation by bacterial endotoxin in sepsis
can be reduced by oseltamivir-induced Neu-1 inhibition and protects against endotoxemia [83,117].
Additionally, recent clinical investigations revealed that targeting sialidase-1 (neuraminidase-1, Neu-1)
by reducing total sialic acid contents may represent a possible therapeutic strategy in CAD therapy [118].
In cancer, Neu-1 inhibition by oseltamivir changes epidermal growth factor receptor (EGFR)-mediated
signaling and shift cadherin expression that reduces metastatic potential and chemoresistance in
various malignant cells [119,120]. There are no data about the recruitment of sialidase inhibitors in
sialic acid-Siglec checkpoint activity.

4.2. Sialic Acid-Siglec Axis and Standard Respiratory Obstruction Therapy

Siglecs are involved in respiratory tract disorders. The molecular mechanisms of glycome
machinery and its therapeutic targeting are extensively studied. According to the GINA (Global
Initiative for Asthma) and GOLD (Global Initiative for Chronic Obstructive Lung Disease) guidelines,
the main goal of conventional therapies in respiratory obstructive diseases is the limiting of
inflammation [121–123]. However, in contrast to bronchial asthma, the inefficient management
of COPD is related to the low sensitivity of patients to corticosteroids, and relatively high risk of
exacerbation due to bacterial or viral infections [124]. The effects of mono- and combined therapies
on paired Siglec-5/14 receptors were evaluated in CD14+ cells isolated from clinically stable COPD
patients. It has been shown that inhaled corticosteroids (ICS), but not long-acting β2-agonist (LABA)
and long-acting muscarinic antagonists (LAMA), increase Siglec-5 and/or Siglec-14 expression. Given
the function of paired receptors, ICS, depending on the patients’ genotype, may exert either beneficial
or negative effects through the enhanced expression of paired Siglec-5/14 receptors and may raise the
risk of harm to some individuals [125]. Zeng et al. demonstrated that dexamethasone (Dex), a potent
routinely used corticosteroid, might exert an anti-inflammatory effect on COPD-origin neutrophils by
up-regulating Siglec-9 expression (Figure 1) [126].

Moreover, a high level of Siglec-8 was observed in cells isolated from induced sputum in
eosinophilic COPD patients after add-on LAMA therapy, which may have a pivotal role in disease
regulation by downregulation of eosinophils [64]. The Siglec-8-related eosinophils maturation was also
detected in the aspirin-exacerbated respiratory disease (AERD) but not in eosinophilic aspirin-tolerant
asthma and chronic sinusitis [127].

4.3. Corticosteroids—Benefits and Pitfalls in the Cancer Management

In recent years, the engagement of Siglecs in cancer progression was intensively studied. Some
of them have been described as diagnostic markers and a promising therapeutic target. Current
clinical trials based on the targeting of sialic acid-Siglec axis revealed that ligation of sialylated ligands
to ITIM-coupled Siglecs on leukocytes mediates immunosuppression and blockade of anti-tumor
activity, whereas targeting of Siglec-3/-7/-9 or -15 by MAbs promotes anti-tumor immunity [96].
The clinical trials and preclinical observations running for the treatment of cancer showed that
corticosteroids interfere with the function of local and infiltrating immune cells and impair cancer
immunosurveillance [128–131]. According to neurosurgery and brain oncology guidelines for pre- and
postoperative management, systemic corticosteroids are a “gold standard” in the regular therapy of
glial tumors [132]. The retrospective clinical studies confirm the beneficial antioedemic effects of Dex.
However, they also suggest the activation of mechanisms that activate genes expression correlated with
shorter survival [129,133–137]. The mechanisms of therapeutic effects of corticosteroids and modulatory
action on cell biology are well established, but non-genomic mechanisms underlying cancer immune
evasion are not fully understood. Since sialic acid is involved in the regulation of immunogenicity effect
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of corticosteroids on sialoglycans in gliomas was studied [138,139]. Cytometric analysis of glioblastoma
cells of different immunogenicity showed a dose-dependent effect of dexamethasone on the sialylation
pattern, which was also associated with the changed affinity of the Siglec-E and -F receptors to glioma
cell membranes [98]. In co-culture systems without physical interaction, dexamethasone enhanced
α2.8-sialylation in glioma cells, which was accompanied by the promotion of the suppressive immune
status of microglial cells [99]. It may reflect Dex-induced dampening of anti-tumor immunity via
interferention with the activity of the sialoglycan-Siglec checkpoint and mechanisms controlling the
glycome machinery. According to the Cancer Genome Atlas, Dex activates several genes, including
CDC25C, CDCA8, CDC20, PRC1, and PLK1 that are closely correlated with a worse prognosis and
shorter survival in patients with glioblastoma [133]. Given the effects of corticosteroids on glycosylation
pattern and sialome-dependent cellular interactions, the assessment of individual Siglec profiles in
patients with malignant gliomas may be useful in verifying the safety of steroid therapy and the
prediction of overall survival.
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Figure 1. Possible effects of systemic (sCS) and inhaled corticosteroids (iCS) on immune functions
via sialoglycan-Siglec checkpoint. The administration of sCS and/or iCS modulates the expression
and activity of sialyltransferases (ST) and neuroaminidases (Neu) that result in changes of cell
surface sialylation pattern. Depending on inhibitory and activatory Siglec expression in individuals,
the binding of specific sialic acid ligands exerts the immune response of different intensity in selected
pathological stages.
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Given that the genomic and nongenomic mechanisms of action of corticosteroids are not fully
understood, their clinical importance in the management strategies of lymphoid neoplasms is relatively
high. Since the correlation of CD33 with poorer prognosis in leukemia was established, the running
clinical trials implicate the potential of anti-CD33 frontline therapy [102,140]. However, it has been also
shown that various dosage systems of corticosteroids, including prednisone and methylprednisolone,
exert a pro-apoptotic effect toward CD33-positive lymphoblasts [141]. In B-acute lymphoblastic
leukemia, phase II of the clinical trial on targeting for Siglec-2 revealed that the combined therapy with
Dex increases the therapeutic efficacy of epratuzumab in Siglec-2-positive B cells [142].

4.4. Anti-Inflammatory Management

The extensive studies on the pathogenesis of AD revealed the beneficial role of anti-inflammatory,
analgesic, and local anesthetic medications in the prevention of degenerative processes within the
CNS. Using the preclinical mice model of surgery-induced neuroinflammation, Xu et al. showed
that post-operative cognitive dysfunction in old, but not young, animals are strongly correlated with
the increased levels of TNFα, IL-6, Iba-1, and CD33-positive cells in the hippocampus [143]. Despite
many limitation of this study, the authors suggest that ibuprofen, an anti-inflammatory and analgesic
drug, as well as local anesthetic levobupivacaine suppress inflammation and microglia activation
but do not affect the cognitive function in experimental animals. As mentioned previously, Siglec-3
and other CD33-related Siglecs are associated with AD pathology. Therefore, it may be beneficial
to consider anti-inflammatory therapy to limit the risk of post-operative cognitive dysfunction in
elderly individuals. This observation opens a new view of the standard pharmacological strategies,
as well as searching for biologically active natural substances that exert neuroprotective effects
through the recruitment of some immune checkpoints. In line with this, curcumin, the widely known
component extracted from the rhizome of Curcuma longa, has been described as a candidate for
the diagnosis, prevention, and treatment of AD. Besides the antioxidation and anti-inflammatory
properties, the strong biological activity of curcumin expressed by downregulation of Siglec-3 capacity
results in the phagocytic clearance of amyloid and makes it a potential. However, it is still not formally
registered as a therapeutic tool for AD as confirmed in human sections ex vivo [144].

Recent studies on the risk factors for fetal development confirmed the role for type 1 interferone
(IFN) in the pathogenesis of autoimmune congenital heart block (CHB) in newborns [145]. The analysis
of immune cells subpopulations from a fetus with CHB showed that upregulation of type 1 interferone
correlates with a high level of Siglec-1 expressing monocytes and/or macrophages that are functionally
involved as effector cells in fibrosis. The clinical investigations on the CHB preventing strategies
revealed that targeting the maternal interferone significantly reduces the risk of fetal affections. As
Lisney et al. have reported, the IFN-α-targeted therapy with anti-inflammatory hydroxychloroquine
decreases Siglec-1 expression on maternal monocytes and/or macrophages and reduces risk for the
development of fetal CHB [146].

Table 1. Human/murine Siglec receptors in selective pathologies and related conventional therapies.

Pathology Conventional Therapy/Drugs Human/Murine
Siglec Involved References

Infections zanamivir, oseltamivir Siglec-5,-9,-E [115,116]
COPD corticosteroids, LAMA, LABA Siglec-5/14, Siglec-8 [64,125,126]

Asthma aspirin Siglec-8 [127]
Brain tumors (in vitro models) corticosteroids Siglec-E,-F [98,99]

Leukemia corticosteroids CD22, CD33 [141,142]
Alzheimer’s’ Disease ibuprofen, levobupivacaine CD33 [143]

Congenital Heart Block Hydroxychloroquine Siglec-1 [146]
Liver injury acetaminophen Siglec-10 [147,148]

The function of the sialic acid-Siglec axis in the host response to the conventional drugs-related side
effects was analyzed in the pharmacologically induced tissue injury. Scaffidi et al. showed that high dose
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of acetaminophen, routinely used to treat mild to moderate pain or to reduce fever, causes the hepatocytes
injury accompanied by the release of high-mobility group box 1 protein (HMGB-1) [147]. During cellular
injury, HMGB-1, similar to the heat shock protein 70 and 90 (HSP-70, -90) are capable of induce inflammatory
response expressed production of IL-6 and TNFα. However, the heavy sialylated CD24-Siglec-10 axis on
human macrophagesas, as well as its murine analogue CD24-Siglec-G, shows HMGB-1 binding capacity,
thereby dampen tissue damage-induced immune responses. Contrarily, mice with a targeted mutation
of Siglec-G encoding gene and CD24 deficiency are extremely sensitive to acetaminophen-induced liver
injury and are predisposed to develop cytokine release syndrome [148] (Table 1.).

5. Conclusions and Perspectives

This brief review focuses on some examples of the potential role of the sialic acid-Siglec checkpoint in
pathological states and related conventional therapies. The interplay between sialoglycans and Siglecs
undergoes dynamic changes in many physiological and pathological processes. Both, in resting and
activation status, the glycome machinery controls the sialylation pattern and Siglec-related cellular
activity that underlies the immune homeostasis and participates in the immune defense. Thus, it is
certainly an important target in the field of glycoengineering-based therapy. The mechanisms of a new
targeting therapies inhibit the Siglec-mediated cellular processes by structurally modified sialoglycans
and monoclonal anti-Siglec antibodies applied in the modern delivery systems, as well as enzymatic
modifications of cell membranes, seem to be showing therapeutic potential in future medicine. However,
conventional therapy will be the main strategy in clinical management, and its interference with components
of sialic acid-Siglec immune checkpoints should be verified in cancer or inflammatory diseases.
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