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It has been indicated that tumor necrosis factor receptor-associated factor-6 (TRAF6) will upregulate the expression of hypoxia-
inducible factor-1𝛼 (HIF-1𝛼) and promote tumor angiogenesis. TRAF6 proteins can be treated as drug target proteins for a
differentiation therapy against cancers. As structural disordered disposition in the protein may induce the side-effect and reduce
the occupancy for ligand to bind with target protein, PONDR-Fit protocol was performed to predict the disordered disposition
in TRAF6 protein before virtual screening. TCM compounds from the TCM Database@Taiwan were employed for virtual
screening to identify potent compounds as lead compounds of TRAF6 inhibitor. After virtual screening, the MD simulation was
performed to validate the stability of interactions between TRAF6 proteins and each ligand.The top TCM compounds, tryptophan,
diiodotyrosine, and saussureamine C, extracted from Saussurea lappa Clarke, Bos taurus domesticus Gmelin, and Lycium chinense
Mill., have higher binding affinities with target protein in docking simulation. However, the docking pose of TRAF6 protein
with tryptophan is not stable under dynamic condition. For the other two TCM candidates, diiodotyrosine and saussureamine
C maintain the similar docking poses under dynamic conditions. Hence, we propose the TCM compounds, diiodotyrosine and
saussureamine C, as potential candidates as lead compounds for further study in drug development process with the TRAF6 protein
against cancer.

1. Introduction

Nowadays, based on the increasing number of researches
which identify the mechanisms of diseases [1–3], the number
of potential target proteins for drug design against each dis-
ease is increasing sharply [4–6]. A recent research in cancer
has indicated that tumor necrosis factor receptor-associated
factor-6 (TRAF6) will promote tumor angiogenesis [7] as it
will upregulate the expression of hypoxia-inducible factor-1𝛼
(HIF-1𝛼) [8]. TRAF6 plays an important role in intracellular
signal transduction as it can activate the function of NF-
𝜅B [9, 10]. It belongs to a family of proteins which plays an
important role in the regulation of inflammation, antiviral

responses, and apoptosis [11, 12]. TRAF6 can also mediate
the signaling from Toll/IL-1 family [13], CD40 [14, 15], and
RANK [16]. Recent studies indicate that the overexpression
of TRAF6 can induce a fatal acute myeloid leukemia [17] and
several human cancer types [18, 19]. TRAF6 proteins can be
treated as drug target proteins for a differentiation therapy
against cancers.

The computer-aided virtual drug screening had been
wildly used in the drug design [20, 21]. Many compounds
from traditional Chinese medicine (TCM) have been iden-
tified as potential lead compounds for drug design against
cancers [22–24], inflammation [25], influenza [26], viral
infection, metabolic syndrome [27], diabetes [28], stroke
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Figure 1: Disordered disposition predicted by PONDR-Fit. The residues in the binding domain are illustrated in purple lines.
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Figure 2: Chemical scaffold of top three TCM candidates. (a)
Tryptophan, (b) diiodotyrosine, and (c) saussureamine C.

[29–31], and many other diseases [32, 33]. To improve
the development of TCM compounds, we aim to identify
potent TCM compounds from the TCM Database@Taiwan
[34] as lead compounds of TRAF6 inhibitor. As structural
disordered disposition in the protein may induce the side-
effect and reduce the occupancy for ligand to bind with
target protein [35, 36], PONDR-Fit protocol was performed
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Figure 3: Docking pose of TRAF6 protein complex with (a)
tryptophan, (b) diiodotyrosine, and (c) saussureamine C.
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Figure 4: Docking pose of TRAF6 protein complex with (a)
tryptophan, (b) diiodotyrosine, and (c) saussureamine C drawn by
LigPlot program.

to predict the disordered disposition inTRAF6protein before
virtual screening. After virtual screening, the MD simula-
tion was performed to validate the stability of interactions
between TRAF6 proteins and each ligand.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure
of the human TNF receptor-associated factor-6 (TRAF6)
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Figure 5: Root-mean-square deviations in units of nm for protein
and ligand and variation of total energy in units of 103 kJ/mole
for TRAF6 proteins in apo form and complexes with tryptophan,
diiodotyrosine, and saussureamine C over 10 ns of MD simulation.

downloaded from RCSB Protein Data Bank with PDB ID
3HCT [37] was employed for virtual screening. PONDR-Fit
[38] protocol was employed with the sequence of TRAF6
protein from Swiss-Prot (UniProtKB: Q9Y4K3) to predict
the disordered amino acids. In preparation section, Pre-
pare Protein module in Discovery Studio 2.5 (DS 2.5) was
employed to protonate the X-ray crystallography structure of
TRAF6 protein with Chemistry at HARvardMacromolecular
Mechanics (CHARMM) force field [39] and remove crystal
water. Prepare Ligand module in DS 2.5 was employed to
protonate the final structure of TCM compounds from TCM
Database@Taiwan [34] and filter TCM compounds using
Lipinski’s Rule of Five [40]. The binding site for virtual
screening was defined closed to key residues Glu69, Pro71,
Ile72, Leu74, Met75, Ala101, and Pro106.

2.2. Docking Simulation. LigandFit protocol [41] in DS 2.5
was employed using a shape filter and Monte-Carlo ligand
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Figure 6: Radii of gyration for protein and ligands of TRAF6 pro-
teins in apo form and complexes with tryptophan, diiodotyrosine,
and saussureamine C over 10 ns of MD simulation.

conformation generation to dock the TCM compounds into
the binding site. The protocol optionally minimized the
docking poses with CHARMM force field [39] and filtered
the similar poses using the clustering algorithm. Dock Score
energy function was employed to evaluate the docking poses
using the following equation:

Dock Score = − (ligand receptor interaction energy

+ ligand internal energy) .
(1)

2.3. Molecular Dynamics (MD) Simulation. Gromacs 4.5.5
[42] was employed for themolecular dynamics (MD) simula-
tion using classical molecular dynamics theory, which simu-
lates each protein-ligand complex under dynamic conditions.
In preparation section, the pdb2gmx protocol of Gromacs
and SwissParam program [43] were employed to provide
topology and parameters for TRAF6 proteins and each
ligand, respectively. For solvation with TIP3P water model,
the Gromacs protocol defined a cubic box upon the edge
approximately 1.2 nm from the protein complexes periphery
and creates a neutral system using 0.145M NaCl model. A
maximum of 5,000 steps of steepest descents [44] minimiza-
tion was employed to remove bad van der Waals contacts.
In equilibration section, a position-restrained molecular
dynamics with the linear constraint algorithm for all bonds
was performed using NVT equilibration, Berendsen weak
thermal coupling method, and Particle Mesh Ewald method.
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Figure 7: Mean square displacement (MSD) for protein and ligand
over 10 ns of MD simulation for TRAF6 proteins in apo form and
complexes with tryptophan, diiodotyrosine, and saussureamine C.

A total of 10 ns production simulations were performed with
time step in unit of 2 fs under NPT ensembles and Particle
Mesh Ewald (PME) option. The 10 ns MD trajectories were
then analyzed by a series of Gromacs protocols, and the
presumable pathways for small molecule under dynamic
conditions were analyzed by the CAVER 3.0 program [45].

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered disposi-
tion of TRAF6 protein was predicted by PONDR-Fit pro-
tocol [38] with the sequence from Swiss-Prot (UniProtKB:
Q9Y4K3). The result displayed in Figure 1 indicates that the
key residues in the binding domain do not lie in disordered
disposition and they can form a stable binding domain
in protein folding. As the residues in the binding domain
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Figure 8: Root-mean-square fluctuation (RMSF) for residues of TRAF6 proteins in complexes with (a) tryptophan, (b) diiodotyrosine, and
(c) saussureamine C and in (d) apo form.

Table 1: Scoring functions of top candidates from TCM database screening.

Name Dock score -PLP1 -PLP2 -PMF
Tryptophan 171.283 27.71 27.51 23.06
Diiodotyrosine 171.000 20.22 20.27 23.51
Saussureamine C 170.814 27.27 24.71 42.2
Eupachinilide J 170.774 32.62 27.11 25.13
Tryptophan 169.656 36.05 32.98 21.91
Diiodotyrosine 168.307 33.24 27.04 16.58
5-Hydroxy-L-tryptophan 166.948 30.73 32.06 27.43
L-Tyrosine 165.590 33.52 33.82 20.64
S-Allylmercaptocysteine 165.014 17.05 18.65 16.6
Emetine 162.586 29.04 27.44 8.71

have no significant variation, the crystallography structure of
TRAF6 protein is a suitable receptor for docking simulation.

3.2. Docking Simulation. After virtual screening, the chemi-
cal scaffold top TCM compounds ranked by Dock Score [41]
are shown in Table 1 with the scoring function of -PLP1, -
PLP2, and -PMF. For the top three TCM compounds, tryp-
tophan, diiodotyrosine, and saussureamine C, which were
extracted from Saussurea lappaClarke, Bos taurus domesticus
Gmelin, and Lycium chinense Mill., the chemical scaffold
top TCM compounds are shown in Figure 2. According
to the docking poses in Figure 3, the top three candidate

compounds have interaction with common residue Glu69,
and diiodotyrosine also has an H-bond with residue Leu64.
In addition, the docking poses drawn by LigPlot program in
Figure 4 showed that the residues Ser66, Pro71, and Leu74
are common residues in the binding domain to form the
hydrophobic contacts with ligands.

3.3. Molecular Dynamics Simulation. As the TRAF6 proteins
present as a rigid body in docking simulation performed
by LigandFit protocol, the interactions between ligand and
protein may be varied while the conformation of the TRAF6
protein was modified under dynamic conditions. The MD
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Figure 9: Variation of secondary structure of TRAF6 proteins in complexes with (a) tryptophan, (b) diiodotyrosine, and (c) saussureamine
C and in (d) apo form.

simulation was employed to validate the stability of interac-
tions between TRAF6 proteins and each ligand. Root-mean-
square deviation (RMSD) displayed the atomic fluctuations
during MD simulation. The complex RMSD in Figure 5
indicates that the atomic fluctuations of TRAF6 proteins in
apo form and complexes with tryptophan, diiodotyrosine,
and saussureamine C tended to stabilize after 9000 ps of MD
simulation. For the atomic fluctuations of each compound,
the ligand RMSD 1 and RMSD 2 displayed the RMSD values
of each ligand, which were calculated after the least squares
fitting of protein and ligand, respectively. They indicate that
the docking pose of tryptophan tends to destabilize after 3 ns
of MD simulation. For the other TCM candidates, diiodoty-
rosine and saussureamine C, the structure of compounds

tends to stabilize after 4 ns of MD simulation. In addition,
the total energy over 10 ns MD simulation for each complex
in Figure 5 indicates that there is no significant change for
the total energies of each TRAF6 protein complex during
MD simulation. Figure 6 displayed the variation radii of
gyration for protein and ligands over 10 ns of MD simulation.
It indicates that the radii of gyration for TRAF6 proteins in
complexes of TRAF6 with diiodotyrosine and saussureamine
C were smaller than TRAF6 proteins in apo form and in
complexes of TRAF6 protein with tryptophan after MD
simulation, while the radii of gyration for each ligand were
stabilized under dynamic condition. The mean square dis-
placement (MSD) for protein and each ligand was illustrated
in Figure 7. The protein MSD indicates that the diffusion
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Figure 10: Root-mean-square deviation value (upper left half) and graphical depiction of the clusters with cutoff 0.14 nm (lower right half)
for TRAF6 protein complexes with (a) tryptophan, (b) diiodotyrosine, and (c) saussureamine C.

constants of TRAF6 proteins in apo form and in each TRAF6
complex were similar after 10 ns of MD simulation. However,
the ligandMSD indicates that the diffusion constant of atoms
for tryptophan is increasing sharply after MD simulation.
It indicates that docking pose of tryptophan has a rapidly

variation under dynamic condition. In Figure 8, root-mean-
square fluctuation (RMSF) for each residue over 10 ns of
MD simulation indicates that the residues from Lys106 to
Asn109 are more flexible in complexes of TRAF6 protein
with tryptophan than in TRAF6 proteins in apo form and
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Figure 11: Docking poses in docking simulation and representative structures of TRAF6 protein complexes with (a) tryptophan, (b)
diiodotyrosine, and (c) saussureamine C.

Table 2: H-bond occupancy for key residues of TRAF6 protein with top three TCM candidates over 10 ns of MD simulation.

Ligand H-bond Ligand atom Amino acid Distance (nm) Occupancy (%)
Max. Min. Average

Tryptophan

1 H27 Glu59:OE1 2.93 0.15 0.95 13.0%
2 H27 Glu59:OE2 2.729 0.152 0.901 32.6%
3 H20 Glu69:OE1 2.68 0.163 1.229 0.8%
4 H20 Glu69:OE2 2.671 0.17 1.214 1.0%
5 H27 Glu69:OE1 2.427 0.146 0.933 29.6%
6 H27 Glu69:OE2 2.318 0.148 0.926 25.4%

Diiodotyrosine
1 H24 Glu69:OE1 0.55 0.15 0.30 77%
2 H24 Glu69:OE2 0.56 0.15 0.30 82%
3 H24 Leu74:O 0.92 0.27 0.59 14.2%

Saussureamine C

1 H50 Leu64:O 1.13 0.16 0.44 45.0%
2 H50 Glu69:OE1 0.69 0.16 0.44 19.6%
3 H50 Glu69:OE2 0.72 0.15 0.46 17.8%
4 H52 Glu69:OE1 0.44 0.15 0.23 95.6%
5 H52 Glu69:OE2 0.38 0.15 0.24 85.8%

H-bond occupancy cut-off is 0.35 nm.

in complexes of TRAF6 protein with diiodotyrosine and
saussureamine C. It indicates that TRAF6 proteins docking
with diiodotyrosine and saussureamine C causes similar flex-
ibility for TRAF6 proteins. In addition, Figure 9 illustrated
the change of secondary structure of TRAF6 proteins in
apo form and complexes with tryptophan, diiodotyrosine,

and saussureamine C. There is no significant change in the
secondary structure of TRAF6 proteins in apo form and each
complex.

The RMSD values and graphical depiction of the clusters
analysis with a RMSD cut-off of 0.14 nm during 5–10 ns
of MD simulation in Figure 10 indicate the representative
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Figure 12: Distance variation of H-bonds with TRAF6 protein during MD simulation. (a) Tryptophan, (b) diiodotyrosine, and (c)
saussureamine C.

structures of TRAF6 protein complexes with tryptophan,
diiodotyrosine, and saussureamine C. After MD simulation,
the docking poses in docking simulation and representative
structures of each TRAF6 protein complex are illustrated
in Figure 11. The TCM candidates except tryptophan have
similar docking poses as docking simulation, which has
stable H-bonds with residues Glu69. For TRAF6 protein

complex with tryptophan, the docking pose of tryptophan
was changed. It misses out the H-bond with Glu69 and forms
an H-bond with Glu59 after MD simulation. The H-bond
occupancy for key residues in complexes of TRAF6 protein
with top TCM compounds over 10 ns of MD simulation
was listed in Table 2 and the distance variation of each H-
bond was illustrated in Figure 12. For tryptophan, it cannot
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Figure 13: Dialplots of torsion angles for ligands during MD. The plots illustrate the time-dependent change of the dihedrals for (a)
tryptophan, (b) diiodotyrosine, and (c) saussureamine C.

maintain theH-bondswith key residueGlu69 under dynamic
condition. For diiodotyrosine and saussureamine C, they
maintain theH-bondswith key residueGlu69 under dynamic
condition. In addition, saussureamine C forms an H-bond
with residue Leu64 after MD simulation. Figure 13 illustrates
the variation of torsion angles in each ligand over 10 ns of
MD simulation. For tryptophan, the torsion angles 1 and
3 were messy as the docking pose in complexes of TRAF6
protein with tryptophan was varied during MD simulation.
For diiodotyrosine, the torsion angles 5 and 6 tend to stabilize
after a short period of MD simulation; the torsion angle
4 was fluctuated, as two oxygen atoms in carboxyl group
own equal opportunity to form the H-bonds under dynamic
condition. For saussureamine C, the torsion angles also tend
to stabilize after a short period of MD simulation except
that torsion angle 4 was fluctuated as two oxygen atoms in

carboxyl group own equal opportunity to form the H-bonds
under dynamic condition. Figure 14 displays the projection
of trajectories on eigenvectors 1 and 2 for TRAF6 proteins
in apo form and complexes with tryptophan, diiodotyrosine,
and saussureamine C. Figure 15 illustrated the distribution
of eigenvectors 1 and 2, respectively, for TRAF6 proteins in
apo form and complexes with tryptophan, diiodotyrosine,
and saussureamine C. They indicate that TRAF6 proteins
in complexes with tryptophan has the larger fluctuation
in both major eigenvectors than in the others. Analysis
of transport pathways for each TRAF6 protein complex
illustrated in Figure 16 indicates the presumable pathways for
small molecule. They show that the TRAF6 protein complex
has more potential pathway than that in apo form, which
indicates that the space of binding domain has varied after
docking with the TCM compounds.
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Figure 14: Eigenvector distribution of TRAF6 proteins in complexes with (a) tryptophan, (b) diiodotyrosine, and (c) saussureamine C and
in (d) apo form.

4. Conclusion

This study aims to investigate the potent leadTCMcandidates
for TRAF6 protein inhibitors against cancers. The top TCM
compounds, tryptophan, diiodotyrosine, and saussureamine
C, have higher binding affinities with target protein in dock-
ing simulation. They has H-bonds with residues Glu69 and
hydrophobic contacts with common residues Ser66, Pro71,
and Leu74. After MD simulation, the top TCM compounds
except tryptophan maintain the similar docking poses under
dynamic conditions. For tryptophan, the docking pose has
varied under dynamic condition and misses out the H-bond
with Glu69 to form an H-bond with Glu59. For the other two
TCM candidates, diiodotyrosine and saussureamine C were
extracted from Bos taurus domesticus Gmelin and Lycium
chinense Mill. Hence, we propose the TCM compounds,
diiodotyrosine and saussureamine C, as potential candidates
as lead compounds for further study in drug development
process with the TRAF6 protein against cancers.
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Figure 15: Distribution of Eigenvector PC1 and PC2 for TRAF6 proteins in complexes with (a) tryptophan, (b) diiodotyrosine, (c) and
saussureamine C and in (d) apo form.
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Figure 16: Analysis of transport pathways for TRAF6 proteins in complexes with (a) tryptophan, (b) diiodotyrosine, and (c) saussureamine
C and in (d) apo form.
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