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Abstract

Current photon counting x-ray detector (PCD) technology faces limitations associated with

spectral fidelity and photon starvation. One strategy for addressing these limitations is to

supplement PCD data with high-resolution, low-noise data acquired with an energy-integrat-

ing detector (EID). In this work, we propose an iterative, hybrid reconstruction technique

which combines the spectral properties of PCD data with the resolution and signal-to-noise

characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic

model of data fidelity which substitutes the EID data into the data fidelity term associated

with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split

Bregman framework, these data fidelity constraints are minimized subject to additional con-

straints on spectral rank and on joint intensity-gradient sparsity measured between the

reconstructions of the EID and PCD data. Following a derivation of the proposed technique,

we apply it to the reconstruction of a digital phantom which contains realistic concentrations

of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this

experiment suggest reliable separation and detection of iodine at concentrations� 5 mg/ml

and barium at concentrations� 10 mg/ml in 2-mm features for EID and PCD data recon-

structed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread

function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial

resolution within material decomposition results and to improve low-contrast detectability by

as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the

simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse

model of soft-tissue sarcoma. Material decomposition results produced from this in vivo

data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

separation on the order of the energy resolution of the PCD hardware.

Introduction

Photon counting x-ray detector technology promises to revolutionize both clinical and pre-

clinical x-ray CT imaging applications; current x-ray CT systems, however, are largely based

on energy integrating x-ray detectors (EIDs), which integrate incoming x-rays over a poly-

chromatic source spectrum. EIDs have proven to be a robust and reliable technology for spec-

tral imaging with dual-energy (two kVp) CT. Clinically, dual-energy CT is now established in
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many diagnostic imaging applications, including the characterization of vascular diseases, lung

perfusion and ventilation, and kidney stones [1]. Preclinically, many translational applications

of EID-based spectral CT have been developed, including the characterization of myocardial

infarction [2], atherosclerotic plaque composition [3], and tumor aggressiveness and therapy

response in primary sarcoma tumors [4] and in lung cancer [5]. These preclinical applications

typically use one (or more) contrast agent(s) based on a heavy metal (e.g. iodine, barium, gold)

which can be semi-quantitatively separated from soft tissues based on its spectral signature [6,

7]. Despite these promising applications, future advancements in spectral CT imaging and

quantitative material differentiation are largely limited by the spectral sensitivity of EIDs. Nomi-

nally, photon counting x-ray detector (PCD) technology delivers superior spectral sensitivity to

EIDs by binning incoming x-ray photons as a function of their energy, achieving detector-cen-

tric spectral differentiation with a single, polychromatic source spectrum.

Current PCD hardware uses a semiconductor sensor (e.g. silicon, CdTe, CdZnTe) which

absorbs energy from incident x-rays through scattering and absorption interactions. Free elec-

trons within the semiconductor material, which are produced by these interactions, are read

out by a pixelated anode. The resulting electrical signal is thresholded based on its amplitude

as an indirect measure of the energy of the incident x-ray photon. Unfortunately, the recorded

energy of x-ray photons is often distorted due to technical challenges associated with the read-

out electronics and to physical phenomena such as charge sharing, pulse pileup, and K-escape

[8]. Addressing these challenges and meeting the design goals of specific clinical and preclini-

cal imaging applications has led to a number detector designs. For instance, a silicon-based

PCD with 50 μm2 pixels and slits to reduce scatter has been integrated into a commercial

mammography system (MicroDose mammography; Koninklijke Philips N.V., Amsterdam,

Netherlands). More recently, a dual-source clinical CT scanner produced by Siemens

(Munich, Germany) and installed at the Mayo Clinic (Rochester, MN) was modified, replacing

one of its EIDs with a PCD. The CdTe-based photon counting detector has 0.5-mm detector

pixels (effective size, z dimension) and covers a 275-mm field of view. Preliminary cadaver

studies performed with this hybrid clinical scanner demonstrated improved signal-to-noise

characteristics and reduced beam-hardening and calcium-blooming artifacts relative to clinical

EID data at diagnostically relevant tube currents and kVp settings [9].

PCD-based preclinical CT, which we focus on in this work, requires much higher spatial

resolution than clinical CT imaging (micro-CT; typical voxel sizes: ~5–100 μm3). When high-

resolution imaging is performed with a low-power, micro-focus x-ray source and a small

detector pixel pitch, common PCD issues associated with count-rate performance and charge

collection efficiency can be mitigated. However, PCD-based micro-CT suffers from high noise

levels due to photon starvation encountered with small pixels and energy binning. Spectral dis-

tortions due to charge sharing between small detector pixels (<<0.5 mm2) are also a signifi-

cant [8]. It follows that PCD-based micro-CT system design requires a balance between design

parameters related to these issues to achieve an optimum level of performance within the reso-

lution constraints. Currently, there is one commercially available PCD-based micro-CT sys-

tem, the Medipix All Resolution System (MARS Bioimaging Ltd.; Christchurch, New Zealand)

[10]. The MARS is based on the Medipix3 detector chip developed at CERN (Geneva, Switzer-

land). In addition to its 55 μm2 (110 μm2) pixel pitch, a unique feature of the Medipix3 detec-

tor is its charge-summing circuitry which can be used to compensate for charge sharing

between neighboring detector pixels [11]. Several other custom-built, PCD-based micro-CT

scanners have been demonstrated [12–16].

In both the clinical and preclinical arenas, hardware development will continue to improve

semiconductor readouts, count-rate performance, field-of-view coverage, etc.; however, funda-

mental issues such as photon starvation, quantitative material decomposition accuracy, and
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the cost of PCDs will require joint consideration between hardware development and the algo-

rithms used for post-processing and reconstruction. A prevailing strategy for overcoming

many of these issues is to supplement PCD projection data with projection data from a second

EID detector. This hybrid data acquisition strategy has already been implemented to extend

the field of view of PCD projection data to avoid truncation and to provide context for experi-

mental PCD data [9, 12, 13, 17].

Following from these implementations and with the objective of in vivo, preclinical micro-

CT imaging, we focus on the problem of jointly reconstructing EID and PCD data when the

PCD data is lower-resolution and noisier than the EID data. In other words, we propose and

demonstrate a hybrid spectral CT reconstruction technique which combines the spectral con-

trast of the PCD data with the spatial resolution of the EID data, yielding high-resolution

spectral CT reconstructions. While challenging from an algorithmic perspective, this hybrid

imaging paradigm is very attractive for in vivomicro-CT. By easing the pixel size requirements

on the PCD, problems such as spectral distortion due to charge sharing become more manage-

able, while the signal-to-noise characteristics of the PCD data improve. Economically, this par-

adigm also makes sense given the potential to co-develop PCD detectors for both clinical and

preclinical imaging.

Resolution enhancement in hybrid CT

In digital image processing literature, the problem of synthesizing high-resolution spectral

data from high-resolution “black and white” (panchromatic, “pan”) imagery and lower-resolu-

tion “color” (spectrally resolved, “spectral”) imagery is known as pansharpening. Many tech-

niques for pansharpening have been proposed, combined, and successfully applied to 2D

digital images, including the following broad categories: (1) color space transformations and

component substitution [18, 19]; (2) forward modeling and inversion of the imaging process

[20]; and (3) multi-resolution analysis and wavelet fusion [18, 19]. In this work, we adapt con-

cepts from each of these three categories to perform hybrid CT reconstruction.

The objective of component substitution (1) is to enhance low-resolution spectral data with

structural details from high-resolution pan data. Separation of structural details from spectral

information in both the pan and spectral data is achieved through a color space transforma-

tion. In this transformed space, the structural details from the high-resolution pan data are

substituted for the structural details of the low-resolution spectral data, yielding structurally

enhanced spectral data. Enhanced spectral CT data can be analogously synthesized from high-

resolution EID data and low-resolution PCD data through material decomposition. Specifi-

cally, material decomposition of PCD data, which can be performed given sufficient spectral

contrast, transforms the PCD data into energy-independent material maps. These material

maps can then be recomposed to produce a low-resolution estimate of the EID data. Replacing

this low-resolution estimate with the actual EID data enhances structural details in the PCD

data. In dose-agnostic imaging applications (e.g. ex vivo imaging, non-destructive testing),

analytical reconstruction combined with material-based component substitution could pro-

vide a closed-form solution for the reconstruction of hybrid CT data; however, we deal with a

dose-limited in vivo application in this work. Details on our implementation of material-based

component substitution and the role it plays in our iterative reconstruction technique for

hybrid CT are provided in theMethods section.

Our iterative, algebraic reconstruction technique is based on a simplistic, but largely intui-

tive, forward model (2). Specifically, the EID imaging chain consists of a polychromatic x-ray

source and an EID. The source-detector geometry is described by a system matrix for each

sampled angle. Following sampling and prior to reconstruction, gain correction and log-
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transformation are applied to the EID projection data. With the addition of detector binning,

acquisition of the PCD projection data is similarly performed with the PCD imaging chain;

however, the system matrix for the PCD chain is defined relative to the EID chain, including

an affine transform which maps the PCD line integrals from the space of the EID imaging

chain to the space of the PCD imaging chain. Defining the PCD system matrix relative to the

EID imaging chain yields PCD reconstructions in the space of the EID reconstruction, a pre-

requisite for iterative hybrid reconstruction. Furthermore, the resolution of the PCD and EID

reconstructions are defined relative to the resolution of the EID data. A resampling operator

reduces the spatial resolution of the PCD reconstruction to match the resolution of the PCD

imaging chain prior to projection with the system matrix. The forward model further incorpo-

rates component substitution by defining the high-resolution estimate of the PCD data as the

sum of the high-resolution EID data and the spectral contrast from the PCD data. Mathemati-

cal details of our proposed forward model are provided in theMethods section.

Finally, multi-resolution considerations (3) are incorporated into our proposed hybrid

reconstruction technique in two ways. The first way, as previously discussed, is the resampling

operation applied in the forward model. Inversion of the forward model requires deblurring of

the PCD reconstructions to match the spatial resolution of the EID data. This inversion pro-

cess is very sensitive to noise in the PCD projection data, requiring regularization and leading

to the second way in which we incorporate multi-resolution considerations. Specifically, to

deal with low-frequency, correlated noise introduced by the upsampling and deblurring of the

low-resolution PCD data, we take inspiration from an algorithm closely related to pansharpen-

ing: super-resolution. Super-resolution combines several aliased, low-resolution images with

different sampling patterns into a single, high-resolution image [21]. As we will show, corre-

lated noise can be robustly addressed through joint regularization of the EID and PCD data

following a reversible aliasing operation which improves denoising performance at low spatial

frequencies. In the next section, we establish a context for our regularization strategy relative

to other, previously proposed strategies for the regularization of spectral CT data.

Rank and sparsity constraints in spectral CT reconstruction

Given the inherent trade-offs between x-ray dose and photon flux per spectral bin in in vivo
PCD-based CT, robust regularization is generally required for accurate reconstruction and

material decomposition. There are two main categories of regularization which have proven

effective in spectral CT problems (dual energy and PCD CT): (1) regularization based on

intensity-gradient sparsity constraints and (2) regularization based on structural redundancy

(rank) constraints. Intensity-gradient sparsity constraints (1) are either applied directly to

numerical gradients computed from the reconstructed intensity values or indirectly to inten-

sity values processed with a kernel or sparsifying transform. Directly enforcing intensity-gradi-

ent sparsity implicitly assumes that the underlying image structure is piece-wise constant,

since only edge information which is significantly differentiated from noise is preserved.

Prominent examples of direct sparsity constraints include total variation minimization [22]

and the differentiable Huber roughness penalty [23]. These direct methods benefit from high

computational efficiency, but generally demonstrate inferior performance relative to well-opti-

mized, indirect methods which consider higher-order (more distant) intensity differences (e.g.

kernel methods) or which sample the data with a multi-resolution, sparsifying transform.

Prominent examples of indirect sparsity constraints include bilateral total variation minimiza-

tion [7], non-local means [24, 25], weighted intensity averaging over large-scale neighbor-

hoods [26], and soft thresholding of redundant, tight-frame transform coefficients [27].

Among sparsity constraints which have applied to spectral CT reconstruction problems, non-
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local means, and more generally dictionary learning and sparse coding, are somewhat unique

because they do not implicitly assume or require piece-wise constant image structure [28].

In many recent spectral CT reconstruction papers, intensity-gradient sparsity constraints

are often supplemented with an additional structural redundancy constraint (2). Redundancy

constraints exploit the coherence in image structure between spatially localized spectral sam-

ples to further improve the robustness of regularization. As with direct sparsity constraints,

direct redundancy constraints provide computationally efficient methods for exploiting spec-

tral redundancy and include methods such as energy-weighted averaging [29], prior image

constrained compressed sensing (PICCS) [30], and local highly constrained backprojection

reconstruction (HYPR-LR) [31]. More computationally expensive, indirect methods operate

on spectral singular value decompositions, either treating each reconstructed volume as a

whole (e.g. the prior rank, intensity, and sparsity model; PRISM [27]) or by parsing each vol-

ume into spatially-matching spectral patches [32]. Both methods have advantages when the

number of spectral measurements exceeds the number of unique basis materials. Working

with whole volumes provides significant, non-local statistical power in assigning voxels to sin-

gular vectors whose contrast is dominated by a subset of basis materials. Conversely, patches

offer reduced statistical power in grouping voxels within singular vectors, but can yield mean-

ingful rank reduction even when the number of spectral samples is less than the number of

unique basis materials, since the local rank tends to be lower (consists of fewer materials) than

the global rank.

An emerging category of spectral regularization strategies combines sparse representation

with the expectation of low spectral rank in a single constraint (rank-sparsity constraints).

Intuitively, concentrating CT data into a small number of significant, robustly determined

spatial coefficients through intensity differentiation (sparsifying transformation) and then

penalizing disagreement in those coefficients between energies is a powerful paradigm for reg-

ularization. For example, total nuclear variation minimization not only directly enforces piece-

wise constant image structure through traditional total variation minimization, it enforces

matching edge information between spectral channels by thresholding singular values associ-

ated with the total variation gradients computed for each spectral channel [33]. Following from

the previous discussion, moving from direct to indirect enforcement of sparsity within the con-

text of rank-sparsity can further improve performance, at the expense of increased computation.

For example, a variant of the PRISM algorithm combines a multi-resolution, tight frame trans-

formation with the thresholding of global singular values [27]. Unfortunately, for many real-

world, multi-dimensional CT reconstruction problems compounding the algorithmic complex-

ity of rank-sparsity constraints with the computation and storage requirements of an indirect

sparsity constraint—e.g. storing 7–8 sets of redundant transform coefficients per resolution

level and energy (3D)—severely limits practical application. Furthermore, soft thresholding

methods, which are frequently used to enforce sparsity and low rank, can require a significant

number of iterations to converge (100+) due to the balance between a static thresholding

parameter and the potential for bias in the final result [34].

In this work, we further develop our own previously proposed strategy for regularizing itera-

tive spectral CT reconstruction problems: rank-sparse kernel regression (RSKR) [35, 36]. As

detailed in theMethods sections, RSKR combines joint bilateral total variation minimization [7],

singular value decomposition, and adaptively determined regularization parameters within the

split Bregman method [37] to enforce low structural rank and intensity gradient sparsity between

spectral channels. The result is highly robust spectral regularization with rapid convergence and

without the need to store redundant information (e.g. redundant transform coefficients) between

iterations. To deal with correlated noise in the problem of hybrid reconstruction, we integrate an

aliasing strategy into RSKR, which improves robustness in removing low frequency noise without
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significantly increasing computation time or algorithm complexity. In tandem with RSKR, we

also perform regularization based on dictionary learning and sparse coding. As mentioned ear-

lier, dictionary learning methods adapt to the inherent signal model represented in the patches

used for training. In the hybrid reconstruction problem, training a redundant dictionary on the

high-resolution EID data explicitly models the spatial resolution characteristics of the EID data,

which can then be used to code the hybrid data in a way that is consistent with the EID data. For

both RSKR and dictionary sparse coding, computational speed and scalability to practical recon-

struction problems are achieved through GPU-based implementations of RSKR and dictionary

sparse coding.

Contributions

Our aim in this work is to make several meaningful contributions to the problem of spectral

CT reconstruction. To accomplish this, we refine our previously proposed RSKR algorithm,

reducing its computational complexity and its potential for introducing spectral bias, while

maintaining highly robust performance and fast convergence at noise levels and material con-

centrations realistic for in vivomicro-CT imaging. Further regarding regularization, in this

work we are among the first to demonstrate the integration of dictionary learning and sparse

coding into a realistically sized, multi-dimensional (3D + energy) CT reconstruction problem.

Specific to hybrid spectral CT reconstruction, we further develop our previously introduced

algebraic framework [38], including substantial additional details on its derivation and dra-

matically improving the robustness of its regularization, making it applicable to realistic prob-

lems. Following from the digital and in vivo experiments presented in this work, we prove the

value of our proposed methods through the largely unprecedented separation of realistic con-

centrations of iodine and barium, heavy-metal contrast materials with K-edge features sepa-

rated by only 4.2 keV.

Methods

In this investigation of hybrid CT reconstruction, we begin by outlining our proposed alge-

braic framework (Algebraic reconstruction sub-section). Using the split Bregman method, the

algebraic reconstruction results are subject to penalties which enforce sparsity and low spectral

rank (Spectral regularization). Leading to the practical application of hybrid reconstruction,

technical details regarding our hybrid micro-CT system setup and our data acquisition and

preprocessing strategy are then provided (Dual-source). Based on these details, a realistic simu-

lation experiment is conducted to establish limits on the expectations of resolution transfer

and contrast material decomposition accuracy possible with hybrid reconstruction (Digital
simulation). Finally, details are provided for an in vivo hybrid micro-CT experiment using a

mouse model of soft-tissue sarcoma (In vivo experiment).

Algebraic reconstruction of hybrid CT data

Hybrid data fidelity. We employ an algebraic approach for hybrid, spectral CT reconstruc-

tion. The log-transformed, system-calibrated, and vectorized projection data is represented by Y ¼
½ye¼1

; . . . ; ye¼ne � for the PCD chain and by w for the EID chain, where ye 2 R
ny�1 and w 2 Rnw�1.

ny and nw equal the number of detector elements times the number of projections for each chain.

ne is the number of energy bins sampled with the PCD. The projection data is used to reconstruct

XL ¼ ½xL;e¼1; . . . ; xL;e¼ne
�, the low-column-rank EID data, and XS ¼ ½xS;e¼1; . . . ; xS;e¼ne

�, the sparse,

high-resolution spectral contrast (xL; xS 2 R
nx�1). For simplicity, a single spectral data set from the

Hybrid spectral CT reconstruction
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EID chain is assumed (rank(XL)� 1); however, we note that this is not generally required for

reconstruction problems based on low rank and sparse decomposition.

Hybrid reconstruction is then performed via weighted least-squares optimization:

XL;XS½ � ¼
arg min

XL;XS

Pne
e¼1

1

2
kRxL;e � wk2

Q þ
lC;e

2
kABðxL;e þ xS;eÞ � yek

2

Ze

� �

: ð1Þ

The two least-squares terms enforce data fidelity relative to w and ye, respectively, for each

energy bin sampled with the PCD detector. The fidelity terms are balanced by the energy-

dependent scaling parameter, λC,e (vectorized form: λC). Expanding the first data fidelity term,

the k�kQ notation denotes least-squares weighting:

kRxL;e � wk2

Q≔ðRxL;e � wÞTQ� 1ðRxL;e � wÞ: ð2Þ

R is the system projection matrix for the EID data (Rnw�nx). As in [39], the least-squares

weights are calibrated based on the observed projection data, as an estimate of the expected

projection data, and the system-calibrated scaling parameters g and η:

Q ¼ diagð½q2

i¼1
; . . . ; q2

i¼nw
�Þ; ð3Þ

q2

i ¼ gi expðwi=ZÞ: ð4Þ

The diagonal elements of Q represent variance estimates for each line integral of the projection

data. An analogous, energy-dependent weighting matrix, Ze, is constructed for each energy bin

of the PCD chain. Notably, the use of diagonal weighting matrices approximates the detector

noise as uncorrelated between neighboring detector pixels.

Returning to Eq 1, the following signal model is implied for the PCD data:

ye ¼ ABxe þ εe; εe;i � N ð0; z2

e;iÞ; ð5Þ

xe ¼ xL;e þ xS;e: ð6Þ

The high-resolution PCD data is related to the observed, low-resolution PCD data through the

blurring and resampling operator, B (Rnx0�nx), the PCD projection matrix, A (Rny�nx0), and

additive, zero-mean Gaussian noise, εe (Rny�1). nx0 denotes the number of voxels in the low-

resolution PCD data. Notably, the inclusion of Gaussian noise in the signal model approxi-

mates the Poisson photon statistics as Gaussian under log transformation and under the

assumption of adequate photon flux in each energy bin of the PCD data. Consistent with the

use of diagonal weighting matrices, the noise is assumed uncorrelated between detector ele-

ments at the native, low resolution.

Under the (somewhat liberal) assumption that the point-spread function for each imaging

chain is well approximated with a spatially-invariant Gaussian kernel (G), the B operator

resamples the high-spatial-resolution EID data (GEID) to match low-resolution PCD data

(GPCD) with an appropriate resampling kernel (Gr):

Gr j � ið Þ ¼ exp �
kj � ik2

2

2s2
r

� �

: ð7Þ

The Cartesian spatial vectors i and j denote discrete sampling locations (voxel centers) within

the high- (xe(i)) and low- (x0eðjÞ) spatial-resolution data, respectively. Note that we define the

xe(i) notation to imply the treatment of vectors (xe) as volumes indexed by 3D coordinates (i).

The appropriate standard deviation for the resampling kernel, σr, is analytically computed
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from the measured full-width-at-half-maximum (FWHM) of the EID and PCD point-spread

functions:

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FWHM2

PCD � FWHM2

EID

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p : ð8Þ

Resampling is then performed with a discrete, normalized convolution operation evaluated at

each sampled spatial location within the low-resolution data, j:

x0e jð Þ ¼ c
P

ixeðiÞGrðj � iÞ
P

iGrðj � iÞ
¼ B jð Þxe; x0e ¼ Bxe ð9Þ

B(j) denotes the blur operator evaluated to produce a low-resolution sample at position j. As

denoted elsewhere in the paper, Bxe denotes this resampling operation evaluated at all spatial

positions, j. Assuming isotropic voxels, the scalar multiplier, c, scales attenuation measure-

ments based on the voxel length ratio between the reconstructions of the PCD and EID data.

The logical transpose of this resampling operation, which will be required in the following der-

ivation, estimates a high-resolution sample at position i from the low-resolution samples:

xe ið Þ ¼
1

c

P
jx
0
eðjÞGrðj � iÞ

P
jGrðj � iÞ

¼ BT ið Þx0e; xe ¼ BTx0e ð10Þ

Penalized algebraic reconstruction with the split Bregman method. Given that alge-

braic deblurring is an ill-conditioned inverse problem, particularly at noise levels encountered

in small animal micro-CT, robust regularization is required for successful hybrid reconstruc-

tion. Redefining the data fidelity terms (Eq 1) as a function of xL,e and xS,e, f(xL,e,xS,e), we intro-

duce rank and sparsity constraints on the solution to the hybrid reconstruction problem:

XL;XS½ � ¼
arg min

XL;XS

Pne
e¼1
fðxL;e; xS;eÞ þ lLkXLk� þ lSkXSkBTV: ð11Þ

kXLk� denotes the nuclear norm, or the sum of singular values of the matrix XL, which is a con-

vex proxy for column rank [40]. kXSkBTV denotes the bilateral total variation (BTV, [21, 41])

of XS and is a weighted L1 norm which jointly enforces intensity gradient sparsity between the

columns of XS. BTV is discussed further in a subsequent section.

Following several previous works [27, 37], we solve Eq 11 using the split Bregman method

and the add-residual-back strategy. Specifically, we split Eq 11 into a series of equivalent sub-

problems, each of which is more tractable than the original problem. The nuclear norm of XL

is first reduced:

DL ¼
arg min

DL

Pne
e¼1

1

2
kxL;e þ vL;e � dL;ek

2

2
þ

lL

mL
kDLk�; ð12Þ

where DL (dL,e) and VL (vL,e) are auxiliary variables introduced during the splitting which

track the regularized estimate of XL and the regularization residuals, respectively. Eq 12 can be

solved via soft thresholding of the column- (energy-) wise singular values of XL + VL [40]. Sec-

ond, the BTV of XS is reduced with additional auxiliary variables DS and VS:

DS ¼
arg min

DS

Pne
e¼1

1

2
kxS;e þ vS;e � dS;ek

2

2
þ

lS

mS
kDSkBTV: ð13Þ
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The cost in Eq 13 is reduced by the application of joint bilateral filtration (BF) between the col-

umns of XS + VS [36].

Following from the add-residual-back strategy, the residual variables associated with each

regularization term are then updated:

VL ¼ XL þ VL � DL; ð14Þ

VS ¼ XS þ VS � DS: ð15Þ

Notably, the use of equality signs in Eqs 14 and 15 represents overwriting of the values in the

VL and VS variables with the computed quantities. Finally, a lower-cost solution for the origi-

nal cost function (Eq 11) is found by solving the following convex optimization problem for

each energy:

XL;XS½ � ¼
arg min

XL;XS

Pne
e¼1

f xL;e; xS;e

� �
þ

mL;e

2
kxL;e þ vL;e � dL;ek

2

2
þ

mS;e

2
kxS;e þ vS;e � dS;ek

2

2

h i
:ð16Þ

Notably, in Eq 16 we have introduced energy dependence for the regularization parameters

μL,e and μS,e. These parameters are scaled with energy to account for differences in attenuation

magnitude and noise level (see below). The λL and λS parameters are also, technically, energy

dependent (Eqs 12 and 13); however, their effective values are adapted based on the input data

(XL + VL, XS + VS; see the Spectral regularization sub-section), and they are not explicitly com-

puted or assigned.

Because Eq 16 is convex and evaluated separately for each energy, it can be solved for each

energy following differentiation with respect to xL,e and xS,e:

RTQ� 1RxL;e þ lC;eB
TATZ� 1

e ABðxL;e þ xS;eÞ þ mL;exL;e

¼ RTQ� 1w þ lC;eB
TATZ� 1

e ye þ mL;eðdL;e � vL;eÞ; ð17Þ

lC;eB
TATZ� 1

e ABðxL;e þ xS;eÞ þ mS;exS;e ¼ lC;eB
TATZ� 1

e ye þ mS;eðdS;e � vS;eÞ: ð18Þ

Due to the large size of the projection operators in these linear equations (R, A; corresponding

backprojection operators, RT, AT), we iteratively solve Eqs 17 and 18 for xL,e and xS,e using the

biconjugate gradient stabilized method (BiCGSTAB, [42]). We have successfully employed

BiCGSTAB for regularized algebraic reconstruction in previous work [36]. Multiple Bregman

iterations (evaluations of Eqs 12 and 16) are typically required to achieve convergence with

respect to the original cost function (Eq 11). The algorithm is terminated when a maximum

number of iterations is reached or when the change in the magnitude of the residual variables

between iterations falls below some tolerance.

One primary difficulty in finding meaningful solutions to Eq 11 is the selection of the regu-

larization parameters λC,e, μL,e, and μS,e (Eqs 12–16), all of which depend on energy. The λC,e

parameter for each energy balances the EID data fidelity term with the corresponding PCD

data fidelity term. For the experiments presented in this work, the field-of-view coverage and

total attenuation were similar enough that λC,e = 1 made a reasonable choice for all energies.

Selection of the μL,e and μS,e parameters for each energy, which balance the data fidelity and

regularization terms of the cost function following splitting (Eq 16), was more complicated

due to significant differences in noise variance between the energy bins of the PCD data.

Assuming approximate spatial uniformity of the noise level within each reconstructed energy

bin, the image domain noise standard deviation can be robustly estimated as the median abso-

lute deviation (MAD) of the component of the redundant Haar wavelet transform high-pass

Hybrid spectral CT reconstruction
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filtered along each dimension (e.g. in 3D: HHH) [43]:

se ¼ MADðxeÞ ¼ 1:4826 �medianðjHHHðxeÞjÞ: ð19Þ

Practically, we note that the accuracy of this noise estimation scheme need only be relative to

other energies, given that the noise estimates are only used as ratios (see below) or after multi-

plication with a user-specified regularization parameter (see Spectral regularization). Further-

more, the requirement of a spatially uniform noise level is relaxed when using weighted least-

squares (Eq 2), since low data-fidelity weights are assigned to the nosiest (largest magnitude)

line integrals. This increases the effective regularization strength in highly attenuating features.

Given MAD-based noise estimates for each energy, μL,e and μS,e are then calibrated with

standard deviation ratios, δe, and with an empirically determined scaling factor, α:

de ¼
ðse=mwater;eÞ

mineðse=mwater;eÞ
; ð20Þ

a 2 ½0:001; 0:01�: ð21Þ

The notation mine denotes that each noise level estimate is normalized relative to the smallest

estimate measured over all energies. Normalization of σe by the expected attenuation of water

in each energy bin, μwater,e, promotes consistent noise levels when the final reconstructed

results are converted to the Hounsfield scale or are used for material decomposition. The con-

venience of achieving good reconstruction results with a predetermined α parameter (Eq 21)

and the rapid convergence of our overall algorithm rely on further internal adaptation of the

regularization strength (see Spectral regularization). Taking inspiration from the right-hand

sides of Eqs 17 and 18 and scaling with respect to these parameters (α, δe), meaningful values

of μL,e and μS,e are analytically estimated with the following formulas:

mL;e ¼ ade
kRTQ� 1w þ lC;eB

TATZ� 1

e yek2

kxL;ek2

; ð22Þ

mS;e ¼ ade
klC;eB

TATZ� 1

e yek2

kxS;ek2

: ð23Þ

Following modifications described in the Spectral regularization sub-section, Fig 1 summarizes

our application of the split Bregman method to the problem of hybrid CT reconstruction.

Component substitution and material decomposition. As shown in Fig 1, the first steps

(1–4) of hybrid reconstruction initialize XL (XL,0) and XS (XS,0). These component substitution

steps are, themselves, initialized with filtered backprojection (FBP) reconstructions. Specifi-

cally, for the experiments in this work we used the FDK algorithm [44] with a ramp filter. FBP

reconstruction (denoted AT
f ) of each column (energy) of Y followed by upsampling (BT) yields

an estimate of the high-resolution PCD data at each energy:

X0 ¼ ½B
TAT

f Z
� 1

e ye¼1
. . . BTAT

f Z
� 1

e ye¼ne �: ð24Þ

Nominally, XS,0 can then be estimated as the difference between X0 and XL,0. In practice, how-

ever, due to initial resolution differences between X0 and XL,0, this strategy was found to intro-

duce high frequency artifacts which were not well addressed by subsequent regularization.

Therefore, following from our previous work [7, 14], we instead used material decomposition

to estimate XL,0 from X0 and then estimated XS,0 as the difference between these resolution-
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matched estimates:

C ¼ XMþ; ð25Þ

XS;0 ¼ X0 � CmEID: ð26Þ

The material sensitivity matrix for the PCD data, M (Rnm�ne), relates the attenuation at each

energy to material specific measurements (e.g. mI,e = 1 is the attenuation of 1 mg/mL of iodine

at energy 1; nm, total number of basis materials). Inversion (ne = nm) or, more generally,

pseudo-inversion (ne > nm) of the material sensitivity matrix (M+) is used to estimate the

material concentrations (fractions) C (Rnx�nm ; Eq 25). Multiplication of these concentrations

by the material sensitivities measured in the EID data, mEID (Rnm�1), yields the required low-

resolution estimate for XL,0. Following from the Introduction, we note this is a form of compo-

nent substitution, a common strategy for pan-sharpening, given that XS will be added to the

high-resolution estimate for XL,0 produced from the EID projection data (step 4). This estima-

tion and substitution procedure is used to condition and accelerate the convergence of the ini-

tial algebraic reconstruction (initialization; Fig 1, step 5) prior to regularized reconstruction

with the split Bregman method.

Following hybrid reconstruction with the split Bregman method, the final resolution-

enhanced material maps, C, are obtained via material decomposition subject to a non-negativ-

ity constraint (Fig 1, step 19):

C ¼
arg min

C

Pne
e¼1
kCme � ðxL;e þ xS;eÞk

2

2
subject to C � 0: ð27Þ

Fig 1. Pseudocode for hybrid CT reconstruction with the split Bregman method. The objective of hybrid CT reconstruction is to

synthesize high-resolution, spectral CT reconstructions from high-resolution, energy-integrated projection data, w, and lower-resolution

and nosier photon-counted projection data, Y. In addition to the projection data, expected material sensitivity values (M, mEID) and user-

specified regularization parameters (λC, h0, α, γ, s) are provided as inputs. FBP reconstruction and component substitution provide

estimates of the reconstructed results (steps 1–4) which are further refined with algebraic reconstruction during initialization (steps 5–12).

Following initialization, the hybrid reconstruction results are refined under low spectral rank and intensity-gradient sparsity constraints

through iterative application of the split Bregman method (step 13–18). Following reconstruction, the hybrid results are used to compute

high-resolution material decompositions (step 19).

https://doi.org/10.1371/journal.pone.0180324.g001
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As before, this problem is readily solved by pseudo-inversion of the material sensitivity matrix,

M (columns: me). Non-negativity is enforced on the least-squares decomposition of each voxel

by orthogonal projection onto the subspace of positive material concentrations [45]. Building

on the approach of Alvarez and Macovski [46], we choose the photoelectric effect (PE), Comp-

ton scattering (CS), iodine (I), and barium (Ba) as material basis functions in this work. Nota-

bly, the K-edges of iodine (33.2 keV) and barium (37.4 keV), the primary features which

discriminate their attenuation from the PE and CS basis functions, are less than 5 keV apart,

providing a rigorous test for the regularization strategy we propose in the next sub-section.

Spectral regularization

In this sub-section we provide a mathematical formalism for our regularization strategies:

rank-sparse kernel regression (RSKR) and dictionary learning and sparse coding. Specifically,

we provide details regarding our implementation of each algorithm, and we establish their

relationship to rank-sparsity constrained hybrid spectral CT reconstruction.

Joint bilateral filtration and bilateral total variation. RSKR is based on the application

of joint bilateral filtration (BF) to spectral CT data. Under the assumption of structural redun-

dancy between energies, joint BF performs non-linear, edge-preserving smoothing to enforce

matching intensity gradient sparsity patterns between energies [7]. Mathematically, we apply

joint BF as follows:

BF xeðoÞð Þ ¼

P
pDðpÞRjointðo;pÞðDKxeðo;pÞÞ
P

pDðpÞRjointðo; pÞ
; ð28Þ

Rjoint o;pð Þ ¼ exp �
1

2

Pne
e¼1

ðDKxeðo; pÞÞ2

ðheseÞ
2

 !

; ð29Þ

DðpÞ ¼
1; kpk

2
� b

0; kpk2 > b
: ð30Þ

(

The Cartesian spatial vectors o and p denote the voxel being filtered and the set of all discrete

spatial offsets within the filtration neighborhood, respectively. BF then takes the form of a 3D

convolution operation (Eq 28) which adapts to the local filtration domain, D(p) (b, domain

radius; Eq 30), with jointly computed range weights, Rjoint(o,p) (Eq 29). The contribution of

each energy to the joint range kernel is scaled by the noise level measured immediately prior to

filtration (σe, Eq 29; measured as the MAD, Eq 19) and a scalar parameter which controls regu-

larization strength, he. The jointly Gaussian range weights are then computed from the inten-

sity differences measured within the filtration domain:

DKxeðo;pÞ≔xeðo � pÞ �
P

tKðtÞxeðo � tÞ: ð31Þ

K(t) is a spatial resampling kernel (domain indexed by t) which improves robustness in band-

limited data and ensures consistent regularization results at edges. In most of our previous

work, we have used a second-order resampling kernel for K(t) [7]. Here, however, we use a

delta function:

KðtÞ ¼
1; t ¼ 0

0; t 6¼ 0
; ð32Þ

(

where 0 denotes the Cartesian spatial position of the kernel’s origin. The motivation for this
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change is for compatibility with a tiling operation we introduce (see below) and to avoid

unnecessary resolution losses prior to the application of sparse coding (see Dictionary
learning).

Comparing this implementation of joint BF with more common, direct sparsity constraints

(e.g. TV), joint BF improves robustness because it operates on multiple scales of image deriva-

tives. Furthermore, the abstraction of gradient information to intensity-independent probabil-

ities enables contrast-independent spectral smoothing, while the adjustment of regularization

strength and range kernel contribution based on the noise level measured at each energy

adapts to the specific problem. These properties of joint BF are encapsulated in the BTV met-

ric. Specifically, within the context of gradient-sparsity constrained, iterative reconstruction

and the split Bregman method, BTV is measured as the application of the joint BF weights to

the intensity gradients measured for each energy [21, 41]:

λS
mS
kDSkBTV≔

Pne
e¼1

lS;e

mS;e

P
o

P
pDðpÞRjointðo;pÞðDKdS;eðo;pÞÞ

P
pDðpÞRjointðo;pÞ

�
�
�
�
�

�
�
�
�
�
: ð33Þ

The application of BF to each column of XS + VS using the jointly computed range weights

reduces BTV, yielding a lower-cost solution for DS in the regularization update step (Eq 13).

Given this formalism for joint BF and BTV minimization, we note that BF performs sub-

optimally in removing low-frequency, correlated noise which is introduced when upsampling

noisy, low-resolution PCD data (BT operator). Low frequency denoising performance of BF

could be addressed by increasing the diameter of the filtration domain (i.e. b> 6, our usual

value; Eq 30); however, computation time scales cubically with kernel diameter. Instead, as

previously mentioned in the Introduction, we take inspiration from the problem of super-reso-

lution, constructing several aliased volumes from each input volume (energy) prior to noise

estimation with the MAD and to the application of joint BF. Given the appearance of these

aliased volumes when they are constructed within the original volume (Fig 2), we call this

operation tiling. Practically, tiling works well for several reasons. First, when a delta function is

used for resampling (Eq 32), BF operates on the intensity of individual voxels. Combining this

property with the high degree of redundancy of x-ray CT attenuation values, BF generally

Fig 2. Bilateral filtration (BF) with tiling. Given a volume to be filtered (1), a tiling operation is first applied to reduce correlation in the noise and to

effectively extend the filtration domain size (2). BF is applied to this tiled volume (3), and then the output volume is recovered by reversing the tiling operation

(detiling, 4). Note the difference in the median absolute deviation (MAD) measured in the input (1) and tiled (2) volumes (bottom), given an input volume

which has been upsampled (BT operator). As with all figures in this work, the window width and level for each panel as well as the appropriate units are as

indicated by the calibration bar (3, bottom; HU: Hounsfield units). The absolute scale is as shown by the scale bar (4, bottom right). All CT reconstructions

and material decompositions in this work are presented as single 2D slices, without averaging between slices, unless otherwise specified.

https://doi.org/10.1371/journal.pone.0180324.g002

Hybrid spectral CT reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0180324 July 6, 2017 13 / 52

https://doi.org/10.1371/journal.pone.0180324.g002
https://doi.org/10.1371/journal.pone.0180324


performs well when applied to tiled volumes. Low-frequency noise in the original volume

appears as high-frequency noise in the tiled volume, more accurately reflecting the amount of

noise that must be removed to match the spatial fidelity of the EID data and more accurately

adapting the regularization strength between iterations of the reconstruction algorithm. The

tiling operation itself negligibly increases computation time, since it involves a simple remap-

ping of voxel spatial locations (see below), followed by BF of the tiled volume with a usual

domain size (here, b = 6). The end effect is that tiled BF tends to quantize local intensity values

to match global intensity modes, readily addressing much lower frequency noise than standard

BF [38]. As illustrated in the Simulations sub-section of the Results, the potential downside to

tiled BF is that intensity bias must be carefully managed to avoid compromising material

decomposition fidelity.

The tiling operation is implemented as a function of the stride parameter, s, which controls

the step size between voxels to be included within the same tiled sub-volume. Intuitively, s

should be larger than the FWHM of the resampling kernel used to upsample the low-resolu-

tion data (measured in high-resolution voxel widths; here, s = 3 voxels is used). Using this

stride, the tiling operation maps intensity values at Euclidean voxel indices within the original

volume, m (intensities x(m)), to tiled voxel indices, n (intensities t(n)), within a constant,

global coordinate system:

tðnÞ ¼ xðmÞ: ð34Þ

The 3D index vectors are themselves indexed by o, denoting the x (o = 0), y (o = 1), and z

(o = 2) axes, respectively. The number of voxels along each axis is contained within the vector

g (padded to integer multiples of s):

mo; no 2 ½0; go � 1�: ð35Þ

Consecutive integer indices are assigned to each axis of n:

no≔½ 0 1 . . . go � 1 �: ð36Þ

Given these definitions, the following coordinate transformation can then be used with Eq 34

to map the input volume intensities to the tiled volume intensities:

mo ¼ s �mod no;
go
s

� �
þ no �

s
go

� �

: ð37Þ

The mod(a,b) function denotes the modulo operator applied to a and b, and b�c denotes

rounding down to the nearest integer. Following BF and reusing the initial m and n indices,

the tiling operation is then reversed with the following inverse mapping operation (detiling):

xðmÞ ¼ tðnÞ: ð38Þ

The tiling and detiling operations and their relation to BF are represented graphically in Fig 2.

RSKR: Joint bilateral filtration of singular vectors. Within the context of the split Breg-

man method and hybrid spectral CT reconstruction, the dual objective of RSKR is to enforce

matching intensity-gradient sparsity patterns and low rank between the EID and PCD recon-

structions. To develop this dual rank-sparsity constraint, we first note that the constraint terms

of the objective function (Eq 11), which are based on a general model for low rank and sparse

matrix decomposition (i.e. robust principal component analysis, [34]), can be further special-

ized for the problem of hybrid spectral CT reconstruction. Specifically, Eq 11 enforces low rank

between the columns of XL and matching intensity gradient sparsity patterns between the col-

umns of XS; however, it does not exploit the fact that XL and XS must exhibit complementary
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intensity gradient sparsity patterns (i.e. they must add to the PCD data). Also, it does not exploit

that the rank of XL + XS should ideally be lower than the number of columns when the number

of sampled energies exceeds the number of unique materials (nm < ne). To incorporate these

additional constraints, we replace Eqs 12 and 13 with the following combined update equation:

DL;S ¼
arg min

DL;S

1

2

P2ne
i¼1
kxL;S;i þ vL;S;i � dL;S;ik

2

2
þ lBTVkDL;SkBTV þ l�kDL;Sk�; ð39Þ

DL;S ¼ ½DL DS �; XL;S ¼ ½XL XS �; VL;S ¼ ½VL VS �: ð40Þ

The bracket notation ([� �]) denotes concatenation of the columns of each component matrix

(Eq 40). As in Eqs 12 and 13, the new regularization parameters, λBTV and λ�, have some energy

dependence; however, they are never explicitly computed or set (see below).

Comparing Eq 39 with the original objective function (Eq 11), the dual constraint terms

appear counter-productive given the apparent difficulty in simultaneously reducing BTV and

the nuclear norm subject to a data fidelity constraint. To alleviate this difficulty and to enforce

matching intensity gradient sparsity patterns and low rank between the columns of XL,S + VL,S,

we first perform a weighted, reduced singular value decomposition:

pe;e ¼ 1=ðdemwater;eÞ; ð41Þ

½U0;E0;V0� ¼ SVDð½ ðXL þ VLÞP ðXS þ VSÞP�Þ: ð42Þ

The diagonal weighting matrix, P, (Eq 41; scalar diagonal elements pe,e) is a function of the

standard deviation ratios computed during the initialization of the algorithm, δe, (Eq 20) and

the expected attenuation of water at each energy, μwater,e. We call this weighting scheme priori-

tization because it encourages the most significant singular vectors, U0, (i.e. the singular vec-

tors with the largest associated singular values, E0) to correspond with significant modes of

spectral contrast rather than noise. Specifically, the water normalization roughly equalizes the

attenuation magnitude at each energy, up to significant spectral differences (e.g. changes in

attenuation over K-edges). The δe weighting factors, which are based on water-normalized

noise measurements (Eq 20), further bias the most significant singular vectors to best fit the

energies with the highest signal-to-noise ratios.

Given the prioritized singular value decomposition of the input data, we then solve for

denoised singular vectors, U (nu columns), under a BTV constraint:

U ¼
arg min

U
1

2

Pnu
i¼1
kui � u0;ik

2

2
þ lBTVkUkBTV: ð43Þ

In terms of the pseudocode for our algorithm, we refer to the process of performing singular

value decomposition and then solving Eq 43 as RSKR (Fig 3). Within a single step of a global

Bregman iteration (Fig 1, step 13), we solve Eq 43 using several internal Bregman iterations

and an independent set of variables which are reset between global iterations (Fig 3):

L ¼
arg min

L
1

2

Pnu
i¼1
kui þ f i � lik

2

2
þ λhkLkBTV; ð44Þ

F ¼ Fþ U � L; ð45Þ
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Fig 3. Pseudocode for regularization with rank-sparse kernel regression (RSKR). The objective of RSKR is to enforce

matching intensity gradient sparsity patterns and low column rank on a matrix of spectral CT data taken as input. To achieve this,

RSKR operates on a weighted singular value decomposition of the spectral data (step 1) and calibrates the regularization strength

for each singular vector based on ratios of the corresponding singular values (step 2). Intensity gradient sparsity patterns are copied

between singular vectors through joint bilateral filtration (jBF; steps 5 and 7). A rank reduction effect is achieved by allowing

proportionally stronger regularization for less significant singular vectors (step 2, step 10) over the course of several internal

Bregman iterations. Within the context of hybrid spectral CT reconstruction, RSKR is embedded as a sub-step within our proposed

algorithm (Fig 1, step 13).

https://doi.org/10.1371/journal.pone.0180324.g003
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U ¼
arg min

U

Pnu
i¼1

1

2
kui � u0;ik

2

2
þ
hi
2
kui þ f i � lik

2

2

� �

: ð46Þ

As before (Eq 13), the cost associated with Eq 44 is reduced through the application of joint

BF to the columns of U + F, including tiling and noise estimation with the MAD prior to filtra-

tion, yielding the regularized output, L (analogous to D in the global Bregman iterations). Eq

45 updates the regularization residuals stored in F (analogous to V in the global Bregman itera-

tions). The data fidelity update equation (Eq 46) is convex and can be solved analytically for

each singular vector following differentiation with respect to ui:

ui ¼
u0;i þ hiðli � f iÞ

1þ hi
: ð47Þ

In the simulation and in vivo experiments detailed later in this work, 3–6 Bregman iterations

were required for convergence of RSKR (<1% change in the regularization residual magnitude

between iterations). After convergence, the regularized estimate of the input data, DL,S, is

recovered using the regularized singular vectors, U:

DL;S ¼ ½DL DS � ¼ UE0V
T
0
: ð48Þ

The relative magnitudes of the columns of DL and DS are then recovered using the priority

weights (Fig 1, step 14):

DL ¼ DLP
� 1; DS ¼ DSP

� 1: ð49Þ

From the description of RSKR, it is not immediately clear how we achieve rank reduction

to enforce structural redundancy between the columns of XL and XS. Perhaps the most direct

method would be to apply soft thresholding to the singular values (E0, [40]) in addition to

denoising the singular vectors. This idea is particularly attractive since it, ostensibly, addresses

the difficulty in reducing the cost associated with the dual rank-sparsity constraint directly (Eq

39). Practically, however, we have found that thresholding singular values based on a static

threshold strikes a difficult balance between performing many iterations with a small thresh-

old, which exacerbates computation for realistically large problems, and accepting a certain

level of spectral bias with a larger threshold, which exacerbates errors in bias-sensitive material

decompositions. An alternative approach for rank reduction that we used in previous work

[35] replaces Eq 48 with the following reprojection step to yield the regularized results, [DL

DS]:

½DL DS � ¼ UðUT½ ðXL þ VLÞP ðXS þ VSÞ P�Þ: ð50Þ

Under the assumption that orthogonality is approximately maintained between the columns

of U [47], this approach intrinsically reduces the nuclear norm as a function of the amount of

noise removed from the columns of U, since U will necessarily deviate from the exact ortho-

normal subspace for the columns of [(XL + VL)P (XS + VS)P], U0. We believe this reprojection

method will be highly effective in certain applications where some level of bias can be toler-

ated. Specifically, within the context of hybrid reconstruction problems, this reprojection step

appears to provide some level of tolerance to missing data, cone-beam artifacts due to differ-

ences in magnification, and to more dramatic resolution differences than we deal with in this

work (see [38]). In this work, however, we strictly use the more conservative method to
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produce the regularized results (Eq 48) because the spectral separation of iodine and barium is

very sensitive to spectral bias (see Contrast and resolution phantom).

Regardless of which equation is used to produce the final, regularized results, apparent rank

reduction is also achieved through manipulation of the scalar noise multiplier parameters used

to scale the contribution of each singular vector to the jointly constructed range weights, hi (he,

Eq 29). Rather than manually choosing values for each hi, however, we choose a single value,

h0, which works well for most problems (h0� 1–2), and then we scale h0 based on ratios of the

singular values and on a scaling parameter, γ (γ� 0.5; Fig 3, step 2):

hi ¼ h0ðe0;1;1=e0;i;iÞ
g
: ð51Þ

The double subscript notation, e0;i,i, refers to the scalar diagonal elements of E0 starting from

1,1 for the first singular value. Notably, this scaling function is closely related to threshold scal-

ing which has been proposed for non-convex soft thresholding of singular values [32]. Using

the scaled hi parameters, joint BF of the singular vectors (jBF(�); Fig 3, steps 5 and 7) places

greater emphasis on preserving edge features in the most significant singular vectors which

have been prioritized to contain comparatively lower levels of noise. When these same multi-

plier parameters are also used to control the balance between regularization and data fidelity

in the data fidelity update step (Eq 46; Fig 3, step 10), RSKR has the effect of smoothing less sig-

nificant singular vectors to match the image structure in more significant singular vectors over

the course of multiple internal Bregman iterations.

Within the context of hybrid spectral CT reconstruction, where copies of the EID data

make up one half of the inputs into RSKR (Fig 1, step 13), the most significant singular vectors

are dominated by the EID data. This produces a unique regularization paradigm which bal-

ances between two extremes. In the one extreme (large γ), the joint BF kernel is entirely deter-

mined by the first singular vector, smoothing all other singular vectors to closely match the

structure in the EID data. This has the benefit of copying high-frequency edge information

from the EID data to the PCD data, potentially enhancing resolution, but may over-smooth

spectral features which have low contrast in the EID data. This approach may also introduce

significant bias between the regularized PCD reconstructions and the PCD projection data. At

the other extreme (small γ), all singular vectors contribute equally to range kernel construc-

tion, preventing efficient regularization due to substantial noise is the less significant singular

vectors. Choosing an intermediate value for γ (here, 0.5), provides a compromise between

copying high frequencies from the EID data to the PCD data, while managing bias. During

later applications of RSKR (later global Bregman iterations), when the noise level has equalized

between the EID and PCD data, over-smoothing of high contrast features in the PCD data is

prevented due to the non-trivial contribution of less significant singular vectors to the joint

range kernel.

Dictionary learning and sparse coding. As we will show, the algebraic model we have

proposed for hybrid spectral CT reconstruction successfully synergizes the reconstruction of

EID and PCD data, yielding improved denoising performance and evidence of resolution

enhancement. However, there is a subtle limitation to enforcing agreement between the EID

and PCD reconstructions under L2 constraints (Eq 1): some amount of correlated noise and

blurring will always bleed back into the EID reconstructions. This trade-off can be managed

through the λC regularization parameters; however, relaxing the data fidelity constraint on the

PCD data will generally lead to spectral bias. Supplementing the objective function with a

rank-sparsity constraint enforced with RSKR provides some robustness to this blurring and

correlated noise through joint filtration, which favors the EID data, and through tiling, which

improves the removal of low frequency noise. However, as previously discussed, the PCD data
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cannot be ignored during the construction of the joint range kernel because of the risk of over-

smoothing features with low spectral contrast in the EID data. A related issue is that the piece-

wise constant image structure enforced by joint BF imperfectly matches the band-limited

(smooth) edge features in both the EID and PCD data, bounding the performance of resolu-

tion enhancement.

To address these limitations, we adapt regularization with dictionary learning and sparse

coding to the problem of hybrid CT reconstruction. Specifically, for dictionary learning we

employ the K-SVD algorithm ([48], KSVD-Box v13), and for 3D sparse coding we employ our

own GPU-based implementation of batch orthogonal matching pursuit (OMP) using progres-

sive Cholesky factorization [49]. In hybrid reconstruction, we apply dictionary learning to the

FBP reconstruction of the EID data (xL,0;e = 1) during the initialization phase (Fig 1, step 11;

KSVD(�)) to minimize the following objective function [48]:

K;F½ � ¼
arg min

K;F
kXL;P � KFk

2

F subject to 8i kϕik0 � n0: ð52Þ

K 2 Rnv�na ;F 2 Rna�np ;XL;p 2 R
nv�np : ð53Þ

XL,P is a matrix of mean-subtracted, radial patches extracted from xL,0;e = 1 (nv: number of vox-

els per radial patch; np: number of patches). The K-SVD algorithm approximates these patches

as sparse, linear combinations of atoms (coefficient matrix: F; k�k0: number of non-zero

entries) drawn from an overcomplete dictionary, K (unit norm, zero-mean, column vectors;

na: total number of atoms). In more detail, the K-SVD algorithm alternates between two

phases: (1) sparse coding (with OMP), to choose and update the non-zero coefficients of each

column of F (n0: maximum allowed number of non-zero coefficients), and (2) dictionary

updating, to improve the fidelity with which the dictionary atoms represent the training

patches which use them. We leave most of the details of dictionary learning to the referenced

work; however, we make note of several parameter choices. First, to learn the dictionary, we

extracted overlapping, 3D, radial patches (domain defined as in Eq 30; b = 4) from the input

volume and stored them as columns of the matrix XL,P. Specifically, 500,000 training patches

with a variance higher than the noise level were extracted from all possible overlapping

patches. The total number of dictionary atoms was chosen to be na = 1024 based on the heuris-

tic criterion that the number of atoms should be four times larger than the number of voxels

per patch [50]. The total number of K-SVD iterations used to learn the dictionary was 25 (one

K-SVD iteration: one sparse coding phase, one dictionary updating phase). A maximum of n0

= 48 atoms with non-zero coefficients were allowed per patch during the sparse coding phase

of the K-SVD algorithm; however, at convergence, far fewer atoms were required to meet the

residual error criterion for most patches (indexed by i):

ε ¼ nv �MAD ðtileðxL;0;e¼1; sÞÞ
2
; ð54Þ

kxL;P;i � Kϕik
2

2
� ε: ð55Þ

For the experiments in this work, the tile(�,s) function performed tiling as discussed in the

Joint bilateral filtration section (stride, s = 3) for the purpose of robust estimation in the pres-

ence of low-frequency, correlated noise. With the exception of noise estimation, the dictionary

learning and sparse coding operations were performed exclusively on untiled data. Additional

details, such as the criterion for replacing under-used dictionary atoms and similar dictionary

atoms, were handled with the default parameters in the referenced code.
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Following convergence of the K-SVD algorithm (Fig 1, step 11), the resultant dictionary,

K, is held fixed. Under the assumption that K provides a robust basis for representing new

patches in related data sets, only sparse coding with OMP is performed for regularization with

respect to the objective function (Eq 52). More specifically, OMP for regularization (OMP(�,K)

function; Fig 1, step 15) involves several sub-steps: (1) noise estimation to calibrate the residual

convergence criterion (Eq 55); (2) extraction of all overlapping radial patches from the input

volume; (3) subtraction of the mean intensity from each patch; (4) sparse coding subject to the

objective function (Eq 52) and the residual convergence criterion (Eq 55); (5) addition of the

original patch mean back to each coded patch; and (6) recovery of the regularized volume

through averaging of the overlapping patches. Our hybrid reconstruction algorithm preforms

sparse coding with OMP on each column of [DL DS] independently following RSKR (Fig 1,

step 15). For regularization, the number of non-zero coefficients (# of atoms used to code each

patch) was determined by the minimum number of atoms required to satisfy the residual error

criterion, up to a maximum of n0 = 5 atoms with non-zero coefficients.

Returning to our motivations for incorporating dictionary learning and sparse coding into

the hybrid reconstruction algorithm, a dictionary learned from a FBP reconstruction of the

EID data encodes contrast-independent prior information about the signal characteristics

which are expected in the final hybrid reconstruction results. Interestingly, there is little risk of

overfitting the EID data during dictionary learning since we expect to recover nearly identical

image structures in the results of hybrid reconstruction. Furthermore, because the dictionary

is trained using the EID data only, any bias introduced during sparse coding with OMP will

ideally make the regularized results more similar to the expected results. Finally, because the

mean of each patch is strictly preserved and because the input to sparse coding should have a

relatively low level of noise following RSKR, the risk of introducing spectral bias is extremely

low.

Rank-sparsity constrained hybrid spectral CT reconstruction. Now that we have

detailed the individual components of our proposed hybrid spectral CT reconstruction algo-

rithm, we briefly summarize how its components fit together into a coherent algorithm. Fol-

lowing the pseudocode in Fig 1, the EID (w) and PCD (Y) projection data as well their

expected material sensitivities (mEID and M, respectively; also, μwater in the PCD data) are pro-

vided as input. The user must specify several parameters (typical values) that influence the

trade-off between EID and PCD data fidelity (λC = 1), the amount of smoothing performed

with joint BF (h0� 1–2), the overall trade-off between data fidelity and regularization (α 2
[0.001,0.01]), the rank reduction effect of RSKR (γ� 0.5), and the bias-variance trade-off in

addressing low-frequency noise (s = 3). Initial estimates for XL (XL,0), the redundant recon-

structions of the EID data, and XS (XS,0), the spectral contrast contributed by the PCD data,

are produced via material decomposition and component substitution (steps 1–4). Prior to

regularized iterative reconstruction, several quantities must be initialized (steps 5–12). Specifi-

cally, algebraic reconstruction with weighted least-squares is performed to satisfy the hybrid

data fidelity constraints and to pre-condition the regularized portion of the algorithm for faster

convergence (step 5). The reconstructed noise level of the data at each energy, σe, is then esti-

mated using tiling operations and MAD computations (step 6). Water-normalized ratios of

these noise estimates, δe, (step 7) are used to calibrate the regularization parameters, μL,e

and μS,e, (steps 8–9) as well as the SVD prioritization weights, pe,e, (step 10) for each energy, e.
Independently, a dictionary of characteristic atoms, K, is learned using a FBP reconstruction

of the EID data, xL,0;e = 1, to serve as prior information for regularization (step 11). Finally, the

residual variables VL and VS are initialized to zero (step 12).

Following initialization, regularized iterative reconstruction of the hybrid CT data is per-

formed using the split Bregman method (steps 13–18). Each global Bregman iteration repeats
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the following steps: (1) serial regularization with RSKR (steps 13–14) and dictionary-based

sparse coding (OMP, step 15); (2) regularization residual updates (steps 16–17); and (3) data

fidelity updates relative to the regularized estimates of XL and XS, DL and DS, at each energy

(step 18). Fewer than six global Bregman iterations were required to achieve convergence (neg-

ligible change in XL and XS between iterations) for both the simulation and in vivo experi-

ments. Convergence is achieved in such a small number of iterations given the initialization of

XL and XS prior to regularized reconstruction and due to the data-adaptive nature of the regu-

larization strategies employed. Following convergence of the hybrid reconstruction algorithm,

material decomposition is performed to obtain maps of the relevant basis materials, C (step

19).

Dual-source, hybrid micro-CT scanner

In this section we provide technical details regarding the setup of our dual-source, hybrid

micro-CT scanner. We also provide details on several supporting algorithms required for cali-

bration and preprocessing prior to hybrid reconstruction.

System configuration, data acquisition, and projection preprocessing. The EID chain

of our hybrid micro-CT scanner consists of an Epsilon high frequency x-ray generator (EMD

Technologies, Saint-Eustache, QC), a G297 x-ray tube (Varian Medical Systems, Palo Alto,

CA; fs = 0.3/0.8 mm; tungsten rotating anode; filtration: 0.7 mm Al, 3 mm PMMA), and a

XDI-VHR CCD x-ray detector (Photonic Science Limited, Robertsbridge, UK; 22 μm2 pixels)

with a Gd2O2S scintillator. The 22 μm2 EID pixels were binned to 88 μm2 prior to image

reconstruction (1002x667 88 μm2 pixels / projection). 360 EID projections were acquired over

a single 360˚ rotation (1 angular increment). The source-detector and source-object distances

were 80 cm and 70 cm, respectively, resulting in a geometric magnification of 1.14 times. Each

projection was acquired with an 80 kVp tungsten spectrum with a 100-mA current and a 10

ms projection integration time (resulting in ~5e4 photons / line integral). The absorbed radia-

tion dose associated with the EID scan was ~48 mGy.

The PCD chain of the hybrid micro-CT scanner consisted of a PXS-10 65W micro-focus x-

ray source (Thermo Fisher Scientific, Waltham, MA; tungsten anode; filtration: 0.25 mm ber-

yllium) and a PILATUS3 CdTe 300K PCD with a single hardware-based energy threshold (on

loan from Dectris AG, Baden-Dättwil, Switzerland; 1 mm CdTe thickness; 487x619 172 μm2

pixels / projection) [51–55]. With this PCD chain, 400 projections were acquired over a single

360˚ rotation (0.9˚ angular increment) for each of five threshold settings: 26, 34, 37, 39, and 45

keV. The source-detector distance was 27 cm and source-object distance was 20 cm, resulting

in a geometric magnification of 1.35 times. Each projection was acquired with an 80 kVp tung-

sten spectrum, a 251 μA current, and a 20 ms projection integration time (resulting in ~4.2e3

photons / line integral prior to considering the energy threshold). The absorbed radiation dose

per PCD scan (per threshold) was ~14 mGy.

For both the simulation experiment and the in vivo experiment, the EID data was recon-

structed with a voxel size of 88 μm3. The PCD data was reconstructed with a voxel size of

127 μm3. At these voxel sizes and magnifications, the FWHM of the point spread function,

estimated from edge-spread measurements in FBP reconstructions, was approximately twice

the voxel width. With respect to the Gaussian kernels used to approximate the point spread

function in the algebraic forward model (Hybrid data fidelity sub-section), this yielded the fol-

lowing parameter values: FWHMPCD = 0.254 mm; FWHMEID = 0.176 mm; σr = 0.078 mm.

For the in vivo experiment and only for the PCD projection data, three preprocessing steps

were performed, in order, prior to reconstruction and following bright-field normalization

and log-transformation (Fig 4): (1) ring artifact prevention, (2) ring artifact correction, and (3)
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detector gap interpolation. (1) To prevent significant ring artifacts, permanently under- and

over-exposed detector pixels were identified in exposure-averaged, bright-field images as

detector pixels with signal values which deviated by more than 25% from the median signal

recorded in air. Within the log-transformed projection data and at each angle, the new inten-

sity values assigned to these outlier pixels were interpolated using a 2D Gaussian kernel (stan-

dard deviation: 1 pixel). (2) More subtle ring artifacts were corrected by estimating the

intensity bias associated with specific detector pixels. Specifically, low-pass filtration of the log-

transformed projection data was applied independently along the projection columns and

along the angular dimension (1D box filter; length: 5 voxels or 5, 0.9˚ angular increments). For

each detector pixel across all angles, the average difference between these two low-pass filtered

sets of projections was used as a correction factor to correct the estimated intensity bias in the

unfiltered projection data. The magnitude of the applied correction was not allowed to exceed

the uncorrected magnitude recorded for each individual detector pixel at each projection

angle. (3) As a final preprocessing step, gaps in the detector were filled in via 1D interpolation

perpendicular to the orientation of the gaps. Specifically, these values were filled in using a 1D

Gaussian kernel with a diameter of 41 pixels and a standard deviation of 8 pixels, with appro-

priate magnitude normalization. The primary vertically oriented gap was interpolated to

Fig 4. Preprocessing applied to the PCD projection data. (A) Example log-transformed PCD projection prior to processing (threshold: 26

keV). The yellow, dotted line denotes a single detector row. The readout of this row is shown as a function of angle in the bottom row of this figure

(sinogram). (B) Corresponding PCD projection following the three forms of correction described in the text. In the single projection (row 1), an

inset (corresponding yellow boxes) and red arrows highlight overly dark pixels before (A) and after (B) ring artifact prevention. In the sinogram

(row 2), similar insets and arrows denote detector pixel readouts notably affected by ring artifact correction. (C) Absolute difference computed

between (A) and (B). Note bright bands where the detector gaps were interpolated (red arrows). Also note the differences in windowing between

columns (A) and (B) (below (A)) and column (C) (below (C)).

https://doi.org/10.1371/journal.pone.0180324.g004
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prevent a ring artifact near the center of rotation. The larger horizontal gaps were interpolated

to mitigate the deleterious impact of reprojecting partial rays during iterative reconstruction.

Geometric calibration and affine registration. While not exclusive to hybrid spectral

CT, two related calibration operations were fundamental to the success of our in vivo experi-

ment: geometric calibration and dual-chain, affine registration. The objective of geometric cal-

ibration is to determine the parameters of the system projection matrix which describe the

view-dependent relationship between the x-ray source and detector positions [56]. Once deter-

mined, these parameters are used to perform projection and backprojection operations in a

highly parallel fashion (e.g. on the GPU) by computing elements of the projection matrix as

needed. In past work with dual chain micro-CT (i.e. with two independent sets of sources and

detectors; [57]), we have applied geometric calibration to each imaging chain independently.

Given well-calibrated reconstructions from each imaging chain, data from both chains can be

combined in the image domain by computing an affine registration matrix. This matrix maps

voxels from the secondary imaging chain into the space of the primary imaging chain. Resolu-

tion-losses due to interpolation associated with this affine transform can be mitigated by incor-

porating the inverse of the affine transform directly into the system projection matrix for the

secondary imaging chain.

Specific to the problem of hybrid spectral CT, the geometric calibration and affine registra-

tion operations are complicated by fundamental differences between the EID and PCD data:

noise level, spatial resolution, geometric magnification, field-of-view coverage, etc. Consider-

ing these differences, the precision with which the PCD data is calibrated and registered rela-

tive to the EID data will directly limit the potential for resolution enhancement through hybrid

reconstruction. To achieve high-fidelity geometric calibration and registration between the

EID and PCD imaging chains, we first performed geometric calibration for each chain inde-

pendently at the native resolution of each imaging chain (EID: 88 μm2 pixels, 88 μm3 voxels;

PCD: 172 μm2 pixels, 127 μm3 voxels). Then, using the previously described upsampling oper-

ator, BT, the projection matrix for the EID data, R, and the FBP operator for the PCD data, AT
f ,

we refined the geometric calibration and affine registration of the PCD imaging chain using

the EID projection data, w:

MIðw;RBTAT
f yavgÞ: ð56Þ

The fit between the two sets of data was evaluated with the mutual information similarity met-

ric (MI, [58]). The geometric parameters for the PCD data as well as the affine transform

parameters to register the PCD data into the space of the EID data (six free parameters describ-

ing translation and rotation) were directly incorporated into the PCD backprojection matrix,

AT (AT
f ). To reduce noise, the energy dimension of the PCD projection data was reduced with

a variance-weighted average (variance measured in air). This resulting energy-averaged pro-

jection data, yavg, was used solely for calibration and registration. Similar to the approach in

[59], geometric and affine parameters, which maximized the MI between the PCD and EID

projections, were found using the covariance matrix adaptation evolution strategy (CMA-ES,

[60]). Practically, the MI similarity metric appeared to be very robust to the interpolated gaps

in the projection data and to the lower resolution of the reprojected PCD data.

Digital simulation experiment

The objective of our digital simulation experiment was to establish upper bounds on the per-

formance of the proposed hybrid spectral CT reconstruction algorithm, free from potential

complications such as imperfect geometric calibration and spatial registration. The simulation
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experiment also allowed quantitative comparison with the expected reconstruction results for

both the EID and PCD data.

Contrast and resolution phantom. Fig 5 details the digital contrast and resolution

phantom we constructed to assess the fidelity of hybrid reconstruction. The digital phantom

is a variation on the ACR 464 phantom used for quality assurance in clinical CT scanners

[61]. Specifically, the phantom consists of a cylinder of water with a diameter scaled to

match the diameter of the cradle we use for scanning adult mice, 3.4 cm. The cylinder is

divided into three segments (disks) along the z-axis. Each disk is dominated by a single con-

trast material we aim to separate in vivo: iodine (red), calcium (blue), and barium (green).

The materials are present in realistic concentrations for small animal micro-CT—15 mg/ml

of iodine, 75 mg/ml of calcium, and 15 mg/ml of barium in water (material fraction = 1.0).

To assess spatial resolution, each disk contains a set of line pairs which discretely represent

spatial frequencies from 0.71 to 5.68 line pairs per mm (lp/mm). To assess the trade-offs in

feature detection with feature size and material concentration, a grid of spheres is included

within each disk. Along the y-axis, the diameters of these spheres vary from 2.0 mm to 0.5

mm in increments of 0.5 mm, with some truncation due to discretization. Along the x-axis,

the concentrations of each disk’s material take on the following fractions of the maximum

concentration: 1.0, 0.66, 0.33, and 0.20. To monitor spectral fidelity during iterative recon-

struction, volumetric measures are taken in cylindrical “vials” which contain 0.5 times the

maximum concentration of each material in all three disks along the z-axis. An additional

vial of water, also used for monitoring spectral fidelity, is positioned to the right of the vials

visible in Fig 5.

Using this digital phantom and the previously defined scanning configurations (System con-
figuration sub-section), projection measurements, I, were synthesized with the following spec-

tral model:

I ¼
R

eIDðeÞ exp½�
R

rmðr; eÞ dr� de; ð57Þ

Fig 5. 3D digital simulation phantom. The phantom we constructed for assessing our proposed hybrid spectral CT reconstruction algorithm

consists of three key features: line pairs to assess spatial resolution, spheres to assess detection, and vials to make volumetric spectral

measurements. These features are arranged in three disks along the z-axis. The line pairs and spheres in each disk exclusively contain one of

the three contrast materials: iodine (red), calcium (blue), and barium (green). The phantom is synthesized from material fraction maps which

denote fractions of the maximum concentration of each contrast material (1.0: 15 mg/ml, iodine; 15 mg/ml, barium; 75 mg/ml calcium). Here,

and elsewhere in this paper, material decompositions are shown as overlaid material maps, coded by basis function (color) and concentration

(intensity; multiple relative to water). The window width and level for the CT data and for each material map are as shown.

https://doi.org/10.1371/journal.pone.0180324.g005
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m r; eð Þ ¼
Pnm

m¼1

m

r
m; eð Þ � cmax mð Þ � frac m; rð Þ

� �

: ð58Þ

Specifically, given the maximum concentration, cmax(m), for each material,m (nm = 4 basis

materials), and the material fraction maps used to construct the phantom, frac(m,r) (Fig 5),

the linear attenuation coefficients (Eq 58) were integrated as a function of position, r, and

energy, e (Eq 57). The mass attenuation coefficients, m

r
m; eð Þ, were derived from Spektr [62].

For the EID projection data, the detected signal in the absence of the phantom, ID(e), was

modeled as follows:

IDðeÞ ¼ I0;EIDðeÞ � SEIDðeÞ � e: ð59Þ

I0,EID(e) denotes the 80 kVp source spectrum previously described in the System configuration
sub-section. SEID(e) denotes the normalized detector sensitivity function, which includes the

response of the Gd2O2S scintillator and additional PMMA filtration. For the PCD projection

data, the detected signal model included a single hardware-based energy threshold, t, consis-

tent with the specifications of the PILATUS3 detector:

IDðeÞ ¼ I0;PCDðeÞ � SPCDðeÞ �
R

g ½recttðe � gÞ � Gesfðg; sesfÞ�; ð60Þ

recttðeÞ ¼
0; e < t

1; e � t
: ð61Þ

(

Again, the 80 kVp source spectrum, I0,PCD(e), was as described in the System configuration
sub-section. The normalized PCD sensitivity function, SPCD(e), included the expected quan-

tum efficiency of detection with 1 mm of CdTe (Fig 6B; [63]), but did not model more complex

physical phenomena such as charge sharing and pulse pile-up. Rectangular (rect) functions

(Eq 61) were used to represent idealized spectral bins. The components of the PCD spectral

model are summarized in Fig 6.

Given these basic spectral models for the EID and PCD data acquisition, additional steps

were taken to better match the (1) image noise, (2) spatial resolution, and (3) energy resolution

characteristics of the in vivo data (In vivo experiment sub-section). To reproduce the observed

noise levels (1), the total number of counts associated with I0,EID (5e4 photons / line integral)

and I0,PCD (4.2e3 photons / line integral) were empirically determined. Specifically, these val-

ues were adjusted such that when the recorded counts, I, (Eq 57) were drawn from a Poisson

distribution with a mean equal to I, the resultant FBP reconstructions reproduced the expected

noise standard deviations measured in water. For the EID data, the noise standard deviation in

water was ~80 HU (88 μm3 voxels). For the PCD data, the noise standard deviations ranged

from ~200 HU (26 keV threshold) to ~450 HU (45 keV threshold; 127 μm3 voxels). Prior to

the computation of the projection data and to approximately reproduce the observed spatial

resolution (2), the material density maps (cmax(m) � frac(m,r), Eq 58), discretized with 88 μm3

voxels, were resampled with the B operator. As previously reported, the Gaussian FWHM for

the approximated point spread function of the EID data was 176 μm, while the FWHM for the

PCD data was 254 μm. The B operator applied to the PCD data also resampled the voxel size

from 88 μm3 to 127 μm3.

Finally, to better model the limited energy resolution of the PCD (3), the rect function used

for ideal spectral binning (Eq 61) was convolved with an energy-invariant, Gaussian energy

spread function, Gesf (Eq 60), parameterized by g, the energy offset from e, and σesf, the
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standard deviation of the energy spread function. The energy (e) dependence of the energy

spread function for CdTe-based PCDs is well documented [16]; however, in the absence of a

precise model for this dependence in the PILATUS3 detector, we used an alternative approach

to make the simulation more realistic. Specifically, we chose a fixed value for the σesf parameter

such that the resultant material sensitivity matrix derived from the simulated data had a condi-

tion number closely matching that of the material sensitivity matrix derived from the in vivo
data. Mathematically, the condition number is computed as the ratio of the largest and smallest

singular values of a matrix, and it quantifies the potential for error amplification in solving lin-

ear inverse problems (e.g. material decomposition). Fig 6E plots the simulated material

Fig 6. Spectral modeling of PCD data acquisition. (A) 80 kVp tungsten source spectrum. (B) Quantum efficiency for 1 mm of CdTe in the

PILATUS3 detector. (C) Idealized spectral binning (rect functions) applied to the element-wise product of the source spectrum and the

detector sensitivity function for each of the energy thresholds used for imaging in this paper. (D) Spectral basis functions considered in this

work. Note that the PE and CS basis functions are scaled to sum to the attenuation of water (each with a coefficient of one). The attenuation

coefficient curves for iodine and barium are scaled to a density of 20 mg/ml for display purposes. (E) Unit-norm material sensitivity vectors

for each of the basis materials, as predicted by the spectral model. (F) Unit-norm material sensitivity vectors as predicted by the spectral

model, including a Gaussian energy-spread function with a standard deviation of 3.25 keV, to match the conditioning of sensitivity vectors

derived for our in vivo experiment (G).

https://doi.org/10.1371/journal.pone.0180324.g006
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sensitivities, following magnitude normalization per material and using ideal (rectangular)

spectral bins (condition number = 40). By contrast, Fig 6F plots the same simulated, normal-

ized material sensitivities when an energy-invariant Gaussian energy spread function is

included in the forward model (σesf = 3.25 keV; condition number = 100). While not identical

to the material sensitivities derived from the real data (Fig 6G), the degradation of iodine

(34 keV threshold) and barium (37, 39 keV thresholds) K-edge contrast is convincingly

reproduced.

Note that the phantom is constructed from calcium, water, barium, and iodine, but the

phantom is decomposed into basis functions for the PE, CS, barium, and iodine. Our PE and

CS basis function were derived using the analytical, energy-dependent expressions for the PE

and CS [46] and energy-effective attenuation calculations using our forward model (Eq 57).

These derived PE and CS basis functions were then modified to exactly describe the derived

basis functions for calcium and water across all five PCD thresholds and the EID data. Specifi-

cally, we projected the derived PE and CS basis functions onto the orthonormal subspace

defined by the basis functions for calcium and water (<3% difference before and after projec-

tion). This fitting procedure was important to maximize the separation of the PE and CS basis

functions from the basis functions for iodine and barium (i.e. to minimize the condition num-

ber of the material sensitivity matrix). For convenience, the PE and CS basis functions were

also scaled to each decompose to a coefficient of one in pure water. Setting the lower bound of

the PE display window to one then visually differentiated calcium from water in overlaid mate-

rial decompositions (Fig 5).

Quantitative evaluation. Several metrics were used to quantitatively evaluate the results

of hybrid spectral CT reconstruction using the digital phantom. To globally assess the fidelity

of the reconstructed results at a single energy, xe, we computed the root-mean-square error

(RMSE) relative to the expected reconstruction results, �xe:

RMSE xe; �xeð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx

Pnx
i¼1
ðxe;i � �xe;iÞ

2

s

: ð62Þ

Here, i indexes all nx voxels of the reconstructed volume at a single energy. To assess spectral

fidelity independent of denoising performance, we also computed the absolute bias within vol-

umetric regions of interest expected to have constant intensity, k:

bias x; kð Þ ¼
1

nroi

P
rðxðrÞ � kÞ

�
�
�
�

�
�
�
�: ð63Þ

The spatial vector r indexes the nroi total voxels within the defined volumetric region of inter-

est. To assess spatial resolution in the reconstructed results, we computed the modulation

transfer (MT) at each spatial frequency sampled by the bar patterns in the digital phantom:

MT a; bð Þ ¼
ja � bj
aþ b

: ð64Þ

The variables a and b correspond with average attenuation measurements taken from the

expected locations of a set of contrast-enhanced lines and from the corresponding, expected

gaps between the lines, respectively. Prior to the MT calculation, the expected attenuation of

water was subtracted from each measurement. Any negative values of MT were set to zero.

Given a vector of 120 independent MT measurements, n, taken in the digital phantom (nl =

120; 8 sets of line pairs, 3 disks, 5 thresholds; Fig 5), a Gaussian modulation transfer function
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(MTF) was fitted to match the observed measurements under a least-squares penalty:

MTF li; sð Þ ¼ exp �
li

2

2s2

� �

; ð65Þ

s ¼
arg min

s

Pnl
i¼1
ðMTFðli; sÞ � niÞ

2
: ð66Þ

The standard deviation of the MTF, σ, is the only free parameter. The vector l contains the spa-

tial frequencies in lp/mm for each corresponding measurement.

Finally, the detectability index was computed to assess the visibility of the spherical lesions

within the digital phantom under a non-prewhitening observer model [64]:

Detectability ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
P

jðMTF3Dðj;sÞWðjÞÞ
2
Þ

2

P
jNPSðjÞðMTF3Dðj;sÞWðjÞÞ

2

v
u
u
t : ð67Þ

Specifically, the detectability index was computed over a cubic region of interest defined

around each spherical lesion (side length: 32 voxels; no overlap between regions). All voxels

within each cubic region were indexed by the Cartesian offset vector, j. Specific to our imple-

mentation of the detectability index calculation, MTF3D denotes the 1D MTF from Eq 65

extrapolated to 3D in an isotropic fashion based on the Euclidean distance of each voxel

center from the origin of each region of interest. We defined the task function, W, as the

discrete Fourier transform of the same cubic region of interest within the expected recon-

struction following the subtraction of the attenuation of water from each voxel. The local

noise power spectrum, NPS, was approximated as the power spectral density of the residuals

computed between the hybrid reconstruction results and the expected reconstruction re-

sults within each cubic region of interest.

Our primary use of the detectability index is to compare the results of hybrid spectral CT

reconstruction with the results of a second control reconstruction where the EID projection

data is not used. We refer to the results of this control experiment as “PCD only” results. The

algorithm applied for PCD only reconstruction is very similar to the algorithm applied for

hybrid reconstruction, which includes the EID data (compare the pseudocode in Fig 7 with

Fig 1). However, there are two significant differences. First, the PCD data is reconstructed

directly (X) rather than indirectly as a function of the EID reconstruction (XL) and the spectral

contrast provided by the PCD data (XS). Second, during initialization, the dictionary is trained

using a variance (s2
e ) weighted average of the initialized reconstruction results (avge(X), step 7)

rather than using a FBP reconstruction of the EID data (Fig 1, step 11). Given these changes,

the purpose of the PCD only control experiment is to establish a base-line for the resolution

enhancement and denoising performance improvements afforded by the incorporation of EID

data into the PCD reconstruction problem.

In vivo experiment

To validate the proposed hybrid spectral CT reconstruction algorithm and to justify several

simplifying assumptions made in its derivation (e.g. spatially-invariant Gaussian point spread

function, log-transformation of energy-dependent line integrals, etc.), we acquired in vivo
mouse data using the hybrid micro-CT system and data acquisition parameters described in

System configuration sub-section. Notably, the image reconstruction and regularization code

used to reconstruct the simulated data was identical to the code used to reconstruct the in vivo
data, for both hybrid spectral CT reconstruction and for PCD only reconstruction. The in vivo
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experiment was conducted in an adult mouse model of soft-tissue sarcoma (LSL-KrasG12D/+

Trp53FL/FL conditional mutants) with sarcoma tumor growth initiated by intramuscular injec-

tion of adenovirus expressing Cre recombinase (see [65]). Three days prior to scanning, the

mouse was injected with the barium-based nanoparticle contrast agent ExiTron nano 12000

(Miltenyi Biotec, Bergisch Gladbach, Germany) at a dose of 0.15 ml per 25 g mouse. Immedi-

ately prior to scanning, the same mouse was injected with blood pool, liposomal iodine con-

trast agent [66] at a dose of 0.3 ml per 25 g mouse. Following the paradigm we established in

previous work [6], the purpose of delayed-phase imaging was to the allow the barium contrast

to accumulate within the sarcoma tumor based on the enhanced permeability and retention

effect [67]. Given three days for the ExiTron nano to clear from the vasculature, iodine lipo-

somes were then injected to allow differentiation of tumor vasculature from extravasated bar-

ium via spectral CT and material decomposition.

Referring back to the material sensitivity fitting procedure performed in the digital phan-

tom (Contrast and resolution phantom sub-section), a similar procedure was used to derive

spectral basis functions for the in vivo data (Fig 6G), as a prerequisite for material decomposi-

tion. Specifically, the model-derived PE and CS basis functions were projected onto a subspace

defined by attenuation measurements taken in water, polylactic acid (mouse cradle material),

and cortical bone in the EID and PCD data. The material subspace was defined by performing

a singular value decomposition on the attenuation measurements following unit normalization

of each material sensitivity vector. Given two degrees of freedom (PE, CS), only the first two

singular vectors were used to define the subspace (<4% difference before and after projection).

For robustness to measurement variability, the rank two approximation for the attenuation of

water was subtracted from the aqueous iodine and barium attenuation measurements to derive

spectral basis functions for iodine and barium. The iodine and barium attenuation measure-

ments were taken in separate calibration vials included within the field-of-view of the in vivo
scans (10 mg/ml iodine, 6.5 mg/ml barium).

Fig 7. Pseudocode for PCD only reconstruction with the split Bregman method. As a control experiment for the

proposed hybrid spectral CT reconstruction algorithm (Fig 1), which uses both EID (w) and PCD (Y) projection data,

we performed a second iterative reconstruction using only the PCD projection data. This PCD only reconstruction

algorithm is largely analogous to the hybrid reconstruction algorithm, with two main exceptions. First, the PCD data is

reconstructed directly (X) rather than indirectly as a function of the EID reconstruction (XL) and the spectral contrast

provided by the PCD data (XS). Second, during initialization, the dictionary is trained using a variance (s2
e) weighted

average of the initialized reconstruction results (avge(X), step 7) rather than using a FBP reconstruction of the EID

data (Fig 1, step 11).

https://doi.org/10.1371/journal.pone.0180324.g007
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Ethics statement

The in vivomouse experiment in this work was conducted in accordance with the governing

protocol approved by the Institutional Animal Care and Use Committee of Duke University

Medical Center (protocol A251-14-10). Specifically, the sarcoma tumor mouse was bred in the

laboratory of our collaborator, Dr. David Kirsch (Duke University Medical Center, Radiation

Oncology). The animal was housed in an American Association for Assessment and Accredita-

tion of Laboratory Animal Care (AAALAC) approved barrier facility managed by Duke’s Divi-

sion of Laboratory Resources. Sarcoma tumor growth was initiated by intramuscular injection

of adenovirus expressing Cre recombinase at approximately one month of age. Micro-CT

scanning was performed approximately three months after injection. During micro-CT scan-

ning, the mouse was free breathing under anesthesia using 2±0.5% isoflurane delivered by a

nose cone. Following scanning, the mouse was sacrificed by anesthetic overdose (250 mg/kg

pentobarbital sodium; Euthasol from Virbac AH, Inc. of Fort Worth, TX), followed by

thoracotomy.

The Duke University Medical Center animal management program is accredited by the

AAALAC and meets National Institutes of Health standards as set forth in the “Guide for the

Care and Use of Laboratory Animals” (NIH Publication No. 85–23). Duke University Medical

Center also mandates compliance with the ‘‘Public Health Service Policy on Humane Care and

Use of Laboratory Animals by Awardee Institutions” and the NIH “Principles for the Utiliza-

tion and Care of Vertebrate Animals Used in Testing, Research and Training.”

Results

In this section we summarize the results of applying the proposed hybrid CT reconstruction

algorithm to simulated and in vivo spectral micro-CT data. We also summarize the computa-

tional resources and time required to execute the proposed algorithm.

Simulations

Following the pseudocode in Fig 1, Fig 8 summarizes the component substitution and alge-

braic initialization steps of hybrid reconstruction, which are performed prior to regularized,

iterative reconstruction. Specifically, Fig 8A shows a single 2D slice through the iodine disk of

the FBP reconstruction of the EID data. A magnified inset (yellow box) highlights a set of line

pairs (2.84 lp/mm) that is clearly resolved in the EID data, but is not resolved in the upsampled

PCD reconstructions (Fig 8B). Following component substitution (Fig 8C), the objective of fus-

ing the spatial resolution of the EID data with the spectral contrast of the PCD data is apparently

achieved, as the line pairs are again visually obvious (following intensity averaging over 21 con-

secutive slices in the inset); however, the noise level in the reconstructed results increases sub-

stantially. This increase in noise is a consequence of the poor conditioning of the material

sensitivity matrix used to synthesize and subtract a low-resolution estimate of the EID data (Fig

1, steps 2–3), motivating the need for regularized, iterative reconstruction. Prior to regularized,

iterative reconstruction, the estimates for XL and XS are algebraically refined (Fig 1, step 5) to

reconcile them with both sets of projection data under the hybrid data fidelity terms. Interest-

ingly, this algebraic initialization step reduces the global RMSE for the reconstruction with a

threshold of 26 keV, but increases it for the data with a threshold of 45 keV. This discrepancy is,

presumably, explained by larger attenuation differences between the EID and PCD reconstruc-

tions when a high-energy threshold is used.

Given a clear need for robust regularization to reduce noise while preserving the enhanced

spatial resolution, Fig 9 summarizes the application of RSKR and sparse coding with OMP

during the first iteration of regularized reconstruction (Fig 1, steps 13–15). In the first column,
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the algebraic initialization results are shown in a single 2D slice through the iodine disk of the

37 keV threshold data. To highlight the transfer of image structure from the EID data to the

PCD data, X is broken down into its constituents, XL and XS, by row. Columns (B)-(D) com-

pare three variations of RSKR, each independently applied to the initialization (A). Specifically,

(B) shows the results of applying RSKR without tiling (i.e. no stride; s = 1). Comparing XS

between (A) with (B), there is an obvious and dramatic improvement in the signal-to-noise

ratio and the visual correspondence in image structure between XL and XS. Looking at the

absolute residual image (row 3), which is computed relative to the expected reconstruction of

X, further reveals that the bias in the regularized result is negligible relative to the amount of

noise removed. Comparing XS between (B) with (C), illustrates the impact of applying RKSR

with tiling (s = 3). Significant additional noise reduction is observed because of the higher

MAD measured in the tiled data (Fig 2) and used to scale the regularization strength (Rjoint, Eq

29). Furthermore, low frequency background noise is significantly removed as a function of

effectively increasing the size of the filtration domain. Unfortunately, RSKR with tiling intro-

duces significant additional bias due to non-local intensity averaging (red arrows) and subtle

artifacts associated with the phase of the tiling operations (red box in (C), row 2).

To achieve a compromise between the spectral fidelity of RSKR without tiling (Fig 9B) and

the superior denoising performance of RSKR with tiling (C), we adopted a simple, yet ulti-

mately effective, averaging scheme. Specifically, we performed both tiled and untiled joint BF

(“jBF”) and then averaged the results together during each iteration of RSKR (Fig 3, steps 4–8).

Visual inspection of the regularized results for XS illustrate that this averaging scheme

Fig 8. Simulated results of component substitution and algebraic initialization in hybrid reconstruction. (A) Initial FBP reconstruction

using the EID projection data. A magnified inset (yellow box) shows the set of line pairs with a spatial frequency of 2.84 lp/mm. Note that the

magnified inset (only) is intensity averaged over 21 consecutive, 2D slices for improved visibility. (B) Initial upsampled, FBP reconstructions using

the PCD projection data corresponding with thresholds of 26 (lowest noise level) and 45 (highest noise level) keV by row (Fig 1, step 1). (C) The

results of component substitution (XL,0 + XS,0; Fig 1, steps 3–4). (D) Results of algebraic initialization (Fig 1, step 5). The RMSE, computed over

the entire reconstructed volume, is reported in HU at the bottom-left corner of each panel. Note that all simulation results in this paper are shown

with a voxel size of 88 μm3.

https://doi.org/10.1371/journal.pone.0180324.g008
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effectively suppresses the most significant outliers remaining in (B) at a lower level of bias than

the results in (C) (red arrows). Outlier suppression and the attenuation of low frequency noise

prove to be effective preconditioning steps for sparse coding with OMP (E), which is applied

to the output of RSKR (D). Notably, while the visual differences between the three forms of

RSKR applied to XL are subtle due to the dominance of XL in the most significant singular vec-

tor (RSKR sub-section), improvements in image homogeneity and in the definition of edge fea-

tures are clear for both XL and XS following OMP. Furthermore, because the mean of each

patch is explicitly preserved during OMP, no substantial increase in intensity bias is observed

in the absolute residual images.

The plots in Fig 10 quantitatively confirm the observations made with respect to Fig 9 and

extend the analysis to all five PCD thresholds. The scalar values plotted in Fig 10 are the aver-

ages of independent, volumetric measurements taken in each of the spectral calibration vials of

Fig 9. Regularization during the first iteration of hybrid reconstruction. (A) Initialization results for the 37 keV threshold in the iodine disk.

Rows show XL (EID reconstruction), XS (PCD contrast), and the absolute difference between XL + XS and the expected reconstruction result (|

Residual|). In the first row, yellow boxes denote three regions of interest which are concatenated and magnified at the bottom of each panel for

improved visibility. Note that these regions of interest represent a single 2D slice. (B) RSKR applied to (A) without tiling (s = 1). (C) RSKR applied

to (A) with tiling (s = 3). A contrast-enhanced and 21-slice averaged inset in the second row (red box) highlights striping artifacts introduced

because of tiling. (D) RSKR applied to (A) and following the steps outlined in Fig 3 steps 4–8 (“Average”). Red arrows denote intensity bias

introduced when striding is used (row 2: contrast inversion in XS; row 3: localized bias in XL + XS). (E) OMP applied to (D).

https://doi.org/10.1371/journal.pone.0180324.g009
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the digital phantom (4 material vials in each of 3 disks; Fig 5). The first 5 sets of bars (“Iteration

1”) correspond with the experimental conditions presented visually in Fig 9A–9E, comparing

the algebraic initialization results with three variations on RSKR and sparse coding with OMP

applied during the first iteration of hybrid reconstruction. Notably, RSKR without tiling

(“RSKR 1”, s = 1) is seen to introduce a negligible level of bias relative to the algebraic initiali-

zation (Fig 10A) considering that it removes several hundred HU of noise (Fig 10B). RSKR

Fig 10. Quantitative analysis of the simulated regularization and reconstruction results. These measurements were taken in each of the

phantom’s calibration vials and then averaged to yield a single value per energy threshold ((A) absolute bias, Eq 63; (B) standard deviation; (C)

RMSE, Eq 62). The first five sets of bars (“Iteration 1 (Hybrid Reconstruction)”) match the experimental conditions of the results summarized in Fig

9. The last two sets of bars (“Final Reconstruction”) represent the final reconstruction results after 6 iterations of the split Bregman method (“PCD

Only”: Fig 7, steps 9–13; “Hybrid”: Fig 1, steps 13–18). Borrowing from the layout in Fig 9, the bar plots are accompanied by a visual comparison of

the results (right column; 37 keV threshold; XL + XS).

https://doi.org/10.1371/journal.pone.0180324.g010
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with tiling (“RSKR 3”, s = 3) is seen to further reduce the noise standard deviation at the

expense of a significant increase spectral bias. Interestingly, the proposed averaging strategy

(“RSKR Avg.”) markedly reduces the resultant spectral bias with little change in the achieved

denoising performance. The RMSE plot confirms this synergy (RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ SD2
p

; Fig

10C), reporting the lowest error for each threshold using the averaging approach. Consistent

with the previous visual assessment, applying sparse coding with OMP following RSKR with

averaging further reduces noise without increasing spectral bias, lower the RMSE further.

Following OMP, the regularized results are reconciled with the original projection data in

the data fidelity update step (Fig 1, step 18). With respect to the plots in Fig 10, the purpose of

the data fidelity update step is to strike a balance between the spectral bias introduced by regu-

larization and the noise (rank) reduction achieved through regularization. Thanks to regulari-

zation residual tracking (Fig 1, steps 16–17) and the data-adaptive nature of our regularization

scheme, proportionally less spectral bias is introduced during subsequent Bregman iterations.

Using the previously described regularization parameters (Rank-sparsity constrained sub-

section), convergence with respect to the original objective function was achieved within 6

Bregman iterations for all regularized iterative reconstructions in this work. For the digital

simulation experiment, the last set of bars in Fig 10 corresponds with these “Final” “Hybrid”

reconstruction results. The spectral bias introduced by regularization is virtually eliminated

in the final reconstruction results, while additional gains are made in reducing the noise

level and the RMSE. Impressively, the proposed iterative reconstruction scheme reduces the

RMSE in the final reconstructed results by more than an order of magnitude relative to the

algebraic initialization.

The last two sets of bars in Fig 10A–10C compare the final hybrid reconstruction results

(EID and PCD projection data; Fig 1) and the control reconstruction results (PCD projection

data only; Fig 7). The inclusion of the higher-fidelity, and higher-resolution EID projection

data in the hybrid reconstruction problem reduces the noise standard deviation and RMSE by

approximately three times at each energy threshold without increasing the level of spectral bias

in the final results. This result is particularly interesting considering the substantial increase in

noise originally associated with component substitution, which is performed for hybrid recon-

struction only (Fig 8). As visually summarized in Fig 11A–11E for the 37 keV threshold, these

improvements apply uniformly over all three material disks of the phantom. Closer analysis of

the set of line pairs with a spatial frequency of 2.84 lp/mm (magenta box in (A)) reveals that

the resolution enhancement first introduced by component substitution (Fig 8) is at least par-

tially preserved in the hybrid reconstruction results. The PCD only reconstruction does not

resolve this set of line pairs in any of the material disks. Quantitatively, these observations are

justified in Fig 11F, which compares the expected MTF derived from the Gaussian point

spread function ((A), black) with fitted Gaussian MTFs derived from measurements in the

hybrid (red) and PCD only reconstruction results (blue; measurements fitted over all 3 materi-

als disks and 5 thresholds). Interestingly, the MT values measured for 1.89 and 2.84 lp/mm are

more highly variable in the hybrid results than in the PCD only results (error bars: ±1 SD).

Fig 11G further compares the hybrid and PCD only results using the detectability index

computed over cubic regions of interest defined around each spherical lesion (red box, (A);

Quantitative evaluation sub-section). Specifically, panel (G) displays energy-averaged ratios of

the detectability index computed for the hybrid and PCD only reconstructions as a function of

material disk, lesion diameter, and material concentration. According to these plots, the hybrid

reconstruction results exhibit significantly improved low-contrast detectability relative to the

PCD only reconstruction results, with detectability improvements as high as 2.6x for the lowest

contrast material disk (calcium). While the hybrid reconstruction results exhibit some level of

Hybrid spectral CT reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0180324 July 6, 2017 34 / 52

https://doi.org/10.1371/journal.pone.0180324


Fig 11. Comparison of hybrid and PCD only reconstruction results using identical PCD projection data. (A) Expected reconstruction results in a

single 2D slice through the center of each material disk (37 keV threshold). The magenta box denotes a set of line pairs that are magnified and contrast-

enhanced for comparison (single 2D slice; 2.84 lp/mm). The red box denotes the spherical lesions used for detectability analysis in (G). (B) Final PCD only

reconstruction results (X). (C) Absolute difference between (A) and (B). (D) Final hybrid reconstruction results (XL + XS). (E) Absolute difference between

(A) and (D). (F) Gaussian MTFs fitted from MT measurements taken in all 3 material disks and all 5 energy thresholds (error bars: ±1 SD). (G) The increase

in the detectability index associated with hybrid reconstruction over PCD only reconstruction for each of the spherical lesions. The results are organized by

material disk, diameter, and material concentration (in mg/ml) and are averaged over all 5 energy thresholds.

https://doi.org/10.1371/journal.pone.0180324.g011
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detectability improvement for all of the spherical lesions, improvements in detectability as a

function of decreasing feature size appear to be more modest (� 2.0x for the highest contrast

lesions).

Fig 12 summarizes the results of material decomposition, which is performed following reg-

ularized, iterative reconstruction (Fig 1, step 19; Fig 7, step 14). Specifically, the resultant mate-

rial maps are overlaid and coded by color (material) and intensity (concentration, fraction of

water). Each column corresponds with the central 2D slice through a different material disk.

Comparing the expected material maps (A) with the PCD only material maps produced fol-

lowing algebraic initialization (B) (produced for reference only), there is a clear need for regu-

larization to separate the component materials. Comparing (B) with (C), the fidelity of the

material decomposition results improves dramatically following regularized, iterative recon-

struction. Further improvement is seen in the final hybrid reconstruction results (D), with an

appreciable reduction in background contamination from the barium map (green) and

improved visibility of the spherical lesions.

Insets specific to a single material map (yellow boxes in column 1; single 2D slices) compare

the set of line pairs with a frequency of 2.84 lp/mm between the expected decomposition

results (top) and the final hybrid decomposition results (bottom). Given that this set of line

pairs is not resolved in the PCD only data (C), a fusion of the EID spatial resolution and the

PCD spectral contrast is required to resolve this feature in the material decomposition. Visu-

ally, the calcium line pairs are well resolved; however, the iodine and barium line pairs are

somewhat degraded relative to the expected results. Specifically, the iodine line pairs appear to

represent the correct spatial frequency but, on close inspection, reverse the expected positive

and zero lines (i.e. the enhanced lines are out of phase). The barium bars appear to represent

the correct phase, but the bars are not uniformly resolved. Notably this inconsistency by mate-

rial disk likely explains the variability in the aggregated MTF measurements shown in Fig 11F.

The final part of Fig 12(E) shows line profiles drawn through the expected material maps

(dashed white line in (D) through 2.0 mm lesions). The line profiles are compared between the

expected (A), PCD only (C), and hybrid decomposition results (D). The calcium line profiles

closely match the expected line profiles in the PCD only reconstruction across all concentra-

tions, with a modest improvement in the hybrid reconstruction results. Notably, the PCD only

and hybrid decomposition errors appear correlated, which is expected given that the same

PCD projection data was used for both reconstructions. For iodine, the noise level in the

hybrid line profile is significantly reduced relative to the PCD only line profile; however, the

concentration is clearly underestimated at 15 mg/ml and 3 mg/ml. The barium line profile is

the most degraded relative to the expected results; however, the PCD only line profile is appre-

ciably noisier than the hybrid line profile. In both profiles, the reliability of the barium mea-

surements appears to fall off significantly below 10 mg/ml. This is likely related to cross-

contamination with the iodine map (D) and to the greater noise level in the energy thresholds

used to sample the barium K-edge contrast (37, 39 keV vs. 34 keV for iodine).

In vivo experiment

Fig 13 summarizes the results of applying the hybrid spectral CT reconstruction algorithm to

the EID and PCD projection data acquired in a mouse model of soft tissue sarcoma (In vivo
experiment sub-section of theMethods). Concentrating on the energy thresholds with the low-

est (26 keV) and highest (45 keV) noise levels (columns), Fig 13A displays algebraic initializa-

tion results in matching, 2D sagittal slices through the sarcoma tumor (located on the flank of

the mouse, yellow oval). Notably, this comparison is analogous to Fig 8D, which compares

algebraic initialization results in the digital phantom for the same thresholds. As in the
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Fig 12. Material decomposition results for the phantom simulation experiment. (A) Expected material

decomposition shown in the central 2D slice of each material disk. (B) Reference material decomposition performed
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simulation experiment, the need for regularization following component substitution and ini-

tialization is clear. Fig 13B shows matching slices through the final reconstruction results using

the PCD data only. Finally, Fig 13C and 13D show matching slices through the final hybrid

reconstruction results for the EID data (XL) and the PCD data (X = XL + XS). In Fig 13D,

magenta arrows point to attenuation artifacts visible around dense bone. Careful inspection

reveals that these artifacts are visible in the initialization (A), the PCD only reconstruction (B),

and in the hybrid reconstruction results (D), but are less obvious in the hybrid EID reconstruc-

tion (C). There are several possible explanations for this artifact. The most likely relate to

imperfect modeling and inversion of the blurring operator and to log-transformation of

energy-dependent line integrals. Red boxes in Fig 13A denote a region of interest (ROI)

defined around a high contrast feature which is magnified at the right of each row. Comparing

the PCD only results (B) with the hybrid results (C, D) within this ROI, red arrows denote

apparent improvements in spatial resolution achieved through hybrid reconstruction. Notably,

this magnified ROI also highlights the success of the proposed regularization strategy in

enforcing redundancy between energies, despite differences in attenuation and significant ini-

tial differences in noise level (A).

Fig 14 continues the comparison between the final PCD only reconstruction results (left)

and the final hybrid reconstruction results (right) following material decomposition. The sagit-

tal slices and the ROI in Fig 13A match the sagittal slices and ROI analyzed in Fig 14. While

the differences between the PCD only and hybrid decomposition results are subtle, careful

inspection of the barium accumulation within the tumor reveals lower apparent concentra-

tions in the hybrid barium map (magenta arrows, 1). Within the magenta ROI, the apparent

resolution differences between the PCD only and hybrid data are seen to appear in a feature

composed of extravasated barium nanoparticles within the sarcoma tumor. The visibility of

the differences in this feature is significantly enhanced in the color-coded decomposition

results (magenta arrows, 2). Fig 14B compares, axial 2D slices through the left kidney, liver,

spleen, and spine of the mouse in the PCD only (left) and hybrid (right) decomposition results.

This particular slice shows a cross-section through the barium, water, and iodine vials used to

calibrate the material sensitivity matrix for the in vivo data (In vivo experiment sub-section of

theMethods). It also shows material decomposition errors near the spleen resulting from phys-

iological motion between scans (magenta arrows, 3). As expected for larger nanoparticles

which are slowly cleared via the liver and spleen, significant barium accumulation is observed

in these organs three days after injection [68]. Similar to the phantom simulation results in Fig

12, some degree of cross-contamination is observed between the barium and iodine maps

within the calibration vials and in the vasculature within and around the kidney.

Fig 15 continues the analysis of the in vivomaterial decomposition results in maximum

intensity projections (MIPs) computed through the sarcoma tumor following manual segmen-

tation. For reference, Fig 15A shows MIPs computed through the XL component of the final

hybrid reconstruction results in coronal, axial, and sagittal orientations. Panels (B) and (C)

show analogous MIPs through material decomposition maps computed using the PCD only

and hybrid reconstructions, respectively. Comparing the EID reconstruction with the material

decompositions, the value of spectral CT in separating extravasated barium from vascular

following algebraic initialization (PCD only reconstruction; Fig 7, step 2). (C) Final PCD only material decomposition

results (Fig 7, step 14). (D) Final hybrid material decomposition results (Fig 1, step 19). The global RMSE computed for

each expected material map is shown in the upper-left of each panel in the assigned units (see calibration bars, upper-

right). Insets (yellow boxes in column 1) compare the expected decomposition results (inset, top) with the final hybrid

results (inset, bottom; 2.84 lp/mm; expected material only, by column). (E) Line profiles (white, dotted line in (D)) for

each expected material. Note the PCD only line profile is taken from (C).

https://doi.org/10.1371/journal.pone.0180324.g012
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Fig 13. Hybrid, spectral CT reconstruction in an in vivo mouse model of soft tissue sarcoma. (A) 2D, sagittal slice

through the algebraic initialization results shown for the least noisy data set (26 keV threshold) and the most noisy data set (45
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iodine and in separating bone from exogenous contrast is made clear. The tumor’s heterogene-

ity and local vascular permeability are highlighted by the accumulation of barium nanoparti-

cles, approaching measured concentrations as high as 30 mg/ml in certain regions. Iodine is

present in lower concentrations, ranging from 8–15 mg/ml, and highlights tumor vasculature

with a range of diameters from ~0.3–1.2 mm. Notably, reliable (though possibly bias) detection

of these concentrations of iodine and barium is expected based on the simulation results sum-

marized in Fig 12. Accurate separation of iodine and barium in the smaller diameter vessels is

questionable, however, based on the simulation results. Magenta arrows in Fig 15B and 15C

(1) point to two small vessels which appear to be misclassified as containing barium rather

than the expected iodine. Further sources of uncertainty are similarly highlighted by magenta

arrows. Comparing the PCD only results with the hybrid results, an artifact is seen in the

iodine map of the hybrid decomposition which is not present in the PCD only decomposition

(2). The source of this artifact is localized misregistration due to motion between the sequential

EID and PCD scans. Another set of arrows (3) points to apparent material decomposition

errors around bone which are likely related to some real amount of vascularity within the bone

and to the attenuation artifacts around the bone (Fig 13). Given these apparent errors, some

amount of morphological dilation would be required to use the PE map to automate the sepa-

ration of bone from contrast material.

Computational considerations

As previously mentioned, the reconstruction code used for the simulation experiment was iden-

tical to the reconstruction code used for the in vivo experiment. The reconstruction code was

executed from MATLAB (The MathWorks, Inc., Natick, MA) and called GPU-based CUDA

kernels (NVIDIA Corporation, Santa Clara, CA; CUDA toolkit v6.5) for all distance-driven pro-

jection and backprojection operations [69] and for all resampling, BF, and OMP operations. The

code was executed on a stand-alone workstation with a Core i7 processor clocked at 3.00 GHz

(Intel Corporation, Santa Clara, CA), 64 GB of RAM, and a GeForce GTX Titan X graphics card

with 12 GB of onboard memory (NVIDIA Corporation, Santa Clara, CA). For the in vivo results,

the total computation times were 22.4 for the PCD only reconstruction and 36.2 hours for the

hybrid reconstruction. Specifically, these computation times correspond with the time required

to perform component substitution (hybrid only), initialization, and 6 iterations of regularized

reconstruction with the split Bregman method. Negligible additional computation time was

associated with material decomposition. For the PCD only reconstruction, 5 total volumes were

reconstructed, corresponding with each PCD energy threshold (dimensions: 608x608x816 vox-

els). For the hybrid reconstruction, 5 additional volumes of the same dimensions were recon-

structed from the EID projection data, one for each energy threshold (columns of XL).

Notably, regularization with BF and OMP accounted for less than 5% of the total computa-

tion time for both the PCD only and hybrid reconstructions. The bulk of the execution time

was associated with the data fidelity update steps and execution of the BiCGSTAB solver (Fig

1, steps 5 and 18; Fig 7, steps 2 and 13). During initialization, the BiCGSTAB solver was run

for 30 iterations per energy threshold. During regularized, iterative reconstruction, the BiCG-

STAB solver was run for 25 iterations per energy threshold and per Bregman iteration. For

keV threshold) by column (Fig 1, step 5; XL + XS). A yellow oval denotes the location of the sarcoma tumor on the flank of the

mouse. Red squares denote a region of interest (“ROI”) which is magnified, at right, for both thresholds. (B) Final PCD only

reconstruction results (X; 6 iterations of regularized reconstruction). (C) Final hybrid reconstruction results for XL (6 iterations of

regularized reconstruction). Red arrows within the magnified region of interest denote high-contrast features which appear to

be better resolved in the hybrid reconstruction. (D) Final hybrid reconstruction results for X = XL + XS. Magenta arrows denote

attenuation artifacts around bone.

https://doi.org/10.1371/journal.pone.0180324.g013
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Fig 14. In vivo material decomposition. (A) PCD only (left) and hybrid (right) decomposition results for the 2D sagittal slice shown in each

panel of Fig 13. Magenta arrows in the main panels (1) denote a region of barium enhancement within the tumor where the concentration

appears lower in the hybrid results than in the PCD only results. Magenta boxes and the arrows within them (2) refer to the same ROI and

features as in Fig 13. (B) Axial slice through the left kidney, liver, spleen, and spine of the mouse. Yellow labels and arrows denote three

material calibration vials used to calibrate the material sensitivity matrix. A magenta arrow near the spleen (3) denotes material decomposition

errors which result from physiological motion between scans.

https://doi.org/10.1371/journal.pone.0180324.g014
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Fig 15. In vivo material decomposition (continued). (A) Maximum intensity projections (MIPs) computed through the segmented

sarcoma tumor using the XL component of the final hybrid reconstruction results. The same tumor is shown in coronal, axial, and sagittal
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reference, reconstruction of the digital phantom took 5.5 hours for the PCD only data and 8.9

hours for the hybrid data (volume dimensions: 440x440x308 voxels).

Discussion

In this work we have proposed a hybrid spectral CT reconstruction technique designed to fuse

the spatial resolution and signal-to-noise properties of EID data with the energy resolution and

spectral contrast of PCD data. The objective is to benefit from the superior material discrimina-

tion provided by PCD hardware while overcoming some of the physical limitations on PCD

pixel size and photon flux. Theoretically, the proposed algebraic reconstruction technique com-

bines a novel, hybrid data fidelity constraint, which enforces agreement between the two sets of

projection data, with a dual constraint on spectral rank and joint intensity gradient sparsity. This

rank-sparsity constraint is enforced with a simplified version of our previously proposed regular-

ization scheme, RSKR. Further regularization with respect to an empirically learned signal

model for the high-resolution EID data is achieved through the application of dictionary learn-

ing and sparse coding. Practically, the proposed technique is made possible through several sup-

porting algorithms, including those for high-fidelity geometric calibration between the EID and

PCD imaging chains and for preprocessing the projection data. Equally important for this tech-

nique are continuing advancements in hardware and software for massively parallel computing.

Stages of hybrid spectral CT reconstruction

A significant property of the proposed technique is that it can be executed in three distinct

stages depending on the difficulty of the reconstruction problem, the allowable computation

time, and the ultimate objective of hybrid reconstruction. As demonstrated in Fig 8, the first

stage, component substitution, visually combines the high-resolution details of the EID data

with the spectral contrast of the PCD data. The computational cost associated with this step is

trivial, requiring only FBP reconstruction and least-squares material decomposition. Given a

sufficiently well-conditioned material decomposition problem and low levels of noise in the

reconstructed data, this strategy is a natural extension of analytical reconstruction to the prob-

lem of hybrid spectral CT. While potentially suitable for contrast enhancement and for over-

coming field-of-view limitations, this approach will not reliably improve resolution in material

decomposition results, since no deblurring is performed, and it is prone to noise amplification

based on the conditioning of the material decomposition problem.

The second stage refines the results of component substitution with unregularized iterative

reconstruction to reconcile the EID and PCD projection data in the image domain. Given a

model for the spatial resolution differences between the EID and PCD data, some combination

of deblurring and post-reconstruction regularization would be performed to address noise and

to improve spatial resolution in the results of material decomposition. In our proposed algo-

rithm, preliminary deblurring is performed during algebraic initialization, while “post-recon-

struction” regularization is performed during the first iteration of regularized reconstruction.

This second stage may strike an appropriate balance between computation time and diagnostic

value in future clinical applications.

The third stage, which we have demonstrated in this work, uses regularized, iterative recon-

struction to perform deblurring and denoising, managing spectral bias through data fidelity

orientations. (B) Comparable MIPs through the material decomposition of the final PCD only reconstruction results. (C) Comparable MIPs

through the material decomposition of the final hybrid reconstruction results. Magenta arrows in (B) and (C) denote features of interest: (1)

potentially misclassified vessels; (2) iodine artifact resulting from localized misregistration between the EID and PCD data; and (3)

apparent material decomposition errors around bone.

https://doi.org/10.1371/journal.pone.0180324.g015
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updates. While computationally expensive for realistic CT reconstruction problems, this third

stage may be necessary for working with PCD projection data with highly variable levels of

noise between thresholds. It may also be necessary to achieve satisfactory material decomposi-

tion results when attempting to separate two or more K-edge contrast agents near the energy

resolution limits of the detector hardware (e.g. iodine and barium). In vivomicro-CT data in

preclinical imaging applications, which is often an order of magnitude noisier than clinical CT

data, will also greatly benefit from regularized, iterative reconstruction.

Regularization of spectral CT data

Spectral CT imaging applications stand to benefit greatly from an emerging class of regulariza-

tion schemes which synergize the power of sparse representation with the power of structural

redundancy. Experimenting with this synergy to perform the largely unprecedented separation

iodine and barium at in vivo concentrations, we employed two regularization schemes: RSKR

and dictionary learning with sparse coding. Each of these regularization strategies has unique

properties which are highly attractive for spectral regularization. RSKR is an extension of joint

BF, which enforces matching intensity gradient sparsity patterns between spectral data sets

with robustness to contrast differences and variable noise levels between data sets. Exploiting

the expectation of a low-rank material basis for spectral contrast, RSKR iteratively applies

joint BF to weighted singular vectors, prioritizing the preservation of high fidelity data while

regressing poorly resolved data to be structurally dependent. Though powerful, RSKR has two

notable weaknesses: (1) the domain size of the filter limits the spatial frequencies in which

noise is addressed, and (2) the piece-wise constant signal model implied by intensity-gradient

sparsity does not strictly model smooth edges in band-limited CT data. In this work, we

attempted to address the domain size limitation (1) through a simple and effective multi-reso-

lution strategy we call tiling. To overcome the inexact match between the results of RSKR and

the intrinsic signal model of the data (2), we performed sparse coding with OMP. RKSR served

as a preprocessing step for sparse coding, improving redundancy at the level of whole volumes

prior to fitting the data with 3D structural patches from the pre-trained dictionary. For the

problem of hybrid spectral CT reconstruction, we further exploited the power of dictionary

encoding to reproduce an empirically learned signal model by enforcing the expected EID sig-

nal model on the reconstructions of the PCD data.

Based on the success of this sequential application of RSKR and OMP, we believe the next

advancements in spectral regularization will be derived from a formalized, multi-resolution

approach to jointly enforcing sparse representation and structural redundancy. The multi-reso-

lution aspect of this approach will be key to simultaneously exploiting redundancy at the level of

whole volumes, where there is a high degree of statistical power in grouping linearly dependent

voxels, and at the level of localized patches, where the rank of the data will tend to be much

lower than the number of spectral samples. Drawing from existing literature, we believe this

advancement will combine the strengths of multi-resolution spatial transformation in sparse

representation (e.g. wavelet transforms, tight-frame transforms [27]), of empirical learning of

the relationships between spatial and spectral intensity variation and artifacts (e.g. tensor dictio-

naries [50], discriminative feature representation [70, 71]), and of computationally and memory

efficient methods for processing volumetric image data (e.g. neural networks [72]).

Parameter selection

A strength of the proposed hybrid spectral CT reconstruction technique is that it provides ana-

lytical formulas for deriving many of its parameters (e.g. regularization parameters in Eqs 22

and 23; regularization strength scaling in Eq 51). These scaling formulas should allow the
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technique to achieve good performance in a range of hybrid reconstruction problems with

minimal effort spent on parameter tuning. That said, the performance of the technique can

still be fine-tuned for specific applications through user-specified parameters which govern

trade-offs between denoising performance, spatial resolution preservation and enhancement,

and material decomposition fidelity. Table 1 summarizes these parameters along with the sub-

sections of the paper in which they are introduced or otherwise defined. Notably, the parame-

ter values in Table 1 were used for both the simulation and in vivo experiments presented in

this work.

To guide future optimizations, adaptations, and modifications of our technique, several

parameters in Table 1 deserve special attention (in addition to the points already raised in

their respective subsections). The weighted least-squares parameters listed underHybrid data
fidelity, η and gi, (Eq 4) are nominally calibrated based on repeated measurements taken with

specific detector hardware [39]. Practically, however, an undesirable side-effect of such calibra-

tion appears to be some loss of spatial resolution around highly attenuating features. There-

fore, instead of using detector calibrated hardware parameters (i.e. η� 0.5 in this work), we

used a much more conservative parameter for both the EID and PCD data (η = 3). As in our

previous work [36], when this more conservative value is used, the results of algebraic initiali-

zation are largely unchanged relative to unweighted least-squares. What does change is the

effective regularization strength as a function of attenuation. In other words, least-squares

Table 1. User-specified parameters.

Manuscript Subsection Parameter Description Value Used

Hybrid data fidelity

η weighted least-squares (EID & PCD) 3

gi for all i (EID & PCD) 1

Penalized algebraic reconstruction

λC,e hybrid data fidelity; for all e 1

α regularization scaling factor 0.01

Joint bilateral filtration

b BF domain radius 6

RSKR

h0 noise multiplier 1.5

γ regularization scaling exponent 0.5

s voxel stride used for tiling 3

Dictionary learning

b 3D patch radius 4

s voxel stride for noise measurement 3

na dictionary atom count 1024

K-SVD algorithm

n0 max non-zero coefficients 48

number of patches used 500,000

K-SVD iterations 25

regularization with OMP

n0 max non-zero coefficients 5

Computational considerations

initialization (Fig 1, step 5) BiCGSTAB iterations, per energy 30

each Bregman iteration (Fig 1, step 18) BiCGSTAB iterations, per energy 25

(Fig 1, steps 13–18) total number of Bregman iterations 6

https://doi.org/10.1371/journal.pone.0180324.t001
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weighting indirectly adjusts the scalar regularization parameters (μL,e, μS,e; Fig 1, step 18) on a

per-line-integral basis.

As previously discussed, the RSKR parameters listed in Table 1 control the denoising

strength (h0), the relative contributions of the EID and PCD data to the jointly constructed

range kernel (γ), and the balance between the potential for spectral bias and the suppression of

correlated noise (s). The values for these parameters were chosen empirically, based on past

work [14, 36, 38], and quantitatively through the type of RSME analysis presented in Figs 10

and 12. These parameter values should serve as a good starting point for most spectral denois-

ing applications; however, future work should focus on better optimizing these parameters for

spatial resolution transfer between EID and PCD data and between the EID data and the resul-

tant material decompositions. In contrast to RSKR, which was developed specifically for regu-

larization of multi-dimensional CT data, the Dictionary learning methods and parameters

employed in this work were largely based on a growing body of literature demonstrating the

value of learned dictionaries in denoising and signal enhancement applications. We believe

that some of the specifics of our approach such as regularization strength scaling based on the

algorithmically measured noise level (Eq 54) and the application of a dictionary learned on the

EID to denoising lower-resolution PCD data represent valuable contributions; however, future

work should focus on adapting more recent concepts from dictionary learning literature (e.g.

tensor dictionaries [50], discriminative feature representation [70, 71]) to the problem of reso-

lution enhancement in hybrid spectral CT reconstruction.

Limitations and future work

In this work, we have made several assumptions and simplifications to derive our hybrid spec-

tral CT reconstruction technique and to apply it to in vivo data. With respect the EID and

PCD data, we have assumed that a single set of EID projections is acquired at a higher spatial

resolution and a lower level of noise than each threshold of the PCD data. While we have dem-

onstrated that this paradigm can improve material decomposition results (Fig 12), practical

radiation dose constraints will require a compromise between the fidelity of the EID and PCD

data for in vivo applications. A prime example of this consideration in practice is the field-of-

view extension strategy employed with the Mayo clinic prototype scanner [9]. Future work in

the area of hybrid CT reconstruction should consider appropriate dose allocation between the

EID and PCD imaging chains for applications such as field-of-view extension to overcome

limitations in PCD detector size, signal-to-noise ratio enhancement for improved material

decomposition, and spatial resolution enhancement.

To make iterative, hybrid reconstruction computationally tractable in large 3D data sets, we

adopted simple models for the energy dependence of x-ray attenuation and for spatial resolu-

tion in cone-beam CT reconstructions. For the spectral model, we employed log-transforma-

tion to linearize the CT reconstruction problem. For EID data acquisition and reconstruction,

the consequences of representing attenuation coefficients using the monoenergetic form of

Beer’s law are well documented and often accepted in practice [73]. For PCD data, however,

where the response of the detector is known to vary significantly with energy [16], this

assumption is questionable, particularly when the ultimate goal is to perform quantitative

material decomposition. Component substitution and hybrid iterative reconstruction will

undoubtedly benefit from extensions that incorporate more precise, energy-dependent for-

ward models of the imaging process. A similar simplification was the treatment of the point

spread function as a spatially-invariant Gaussian in both the EID and PCD data. While this

may be a reasonable approximation for the in-plane spatial resolution of the EID data, it

undoubtedly limited deblurring performance for the PCD data which was acquired at higher
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geometric magnification. Notably, we did minimize the impact of the loss of resolution on our

in vivo results by aligning the sarcoma tumor with the central ray of the x-ray source and

detector and with the center of rotation for both imaging chains.

Advancements in the implementation of hybrid reconstruction and in parallel comput-

ing will make the incorporation of more complex and accurate energy and spatial resolu-

tion models feasible. For now, however, the computation time and memory allocation

associated our proposed hybrid algorithm is significant (Computational considerations
sub-section). To make the current implementation more tractable in terms of system

memory requirements, we made an algorithmic simplification which deviates from the

formalism of the split Bregman method. Specifically, rather than track independent sets of

regularization variables (D) and residuals (V) for each form of regularization (RSKR,

OMP), we only tracked one set after applying both forms of regularization. With respect to

the computation time, more than 95% of the total time was associated with the algebraic

initialization and the data fidelity update steps. Therefore, in future work hybrid recon-

struction can be significantly accelerated using state-of-the-art iterative solvers [74] and

more efficient implementations of the distance driven projection and backprojection oper-

ators [75]. Given that the data fidelity update steps are evaluated for each energy indepen-

dently within the split Bregman framework, further computational speed-ups will be

derived from multi-GPU parallelization.

On a final note regarding the limitations of our in vivo experiment, we point out two subtle,

but potentially significant, details. First, while one goal of this paper is to present a regulariza-

tion scheme applicable to hardware-binned PCD data, the PCD detector we simulated and

used in our in vivo experiment has a single hardware threshold (PILATUS3 CdTe 300K; Dec-

tris AG, Baden-Dättwil, Switzerland). We collected and used PCD data acquired at several dif-

ferent thresholds, without the subtraction between thresholds which is typically performed to

yield binned data. This means that there was no explicit correlation in the number of counts

per bin (per threshold) in our data as there would be for a single scan acquired with multiple

hardware-based energy thresholds. Second, our primary motivation for pursuing hybrid spec-

tral CT reconstruction is to overcome limitations in photon counting hardware through joint

reconstruction with energy integrated data. In this work we focused on a realistic material

decomposition problem with modest differences in spatial resolution and detector pixel sizes

between the PCD and EID data (PCD: 172 μm2 pixels; EID: 88 μm2 pixels). Future work

should characterize the performance of hybrid reconstruction over larger resolution and pixel

size differences, with a particular focus on the adaptation of clinical PCD hardware (i.e. pixel

size ~0.5 mm2) to preclinical imaging applications through joint reconstruction with high-res-

olution, EID projection data [14]. Establishing a link between PCD hardware developed with

the financial incentive of clinical applications and existing EID-based preclinical micro-CT

will promote translation between the two domains while advancing the state of the art in pre-

clinical imaging.

Conclusions

In this paper, we have proposed a novel technique for the joint reconstruction of projection

data acquired with EIDs and PCDs, nominally overcoming differences in spatial resolution

and noise through forward modeling and rank-sparse regularization. We believe that this and

related techniques will be invaluable to overcoming several of the physical limitations on cur-

rent PCD technology, facilitating validation and widespread adoption. Additionally, we believe

that hybrid reconstruction techniques will be crucial for translating advancements in PCD

data acquisition and processing between clinical and preclinical applications.
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