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ABSTRACT

Alternative polyadenylation (APA) has been widely
recognized as a crucial step during the post-
transcriptional regulation of eukaryotic genes. Re-
cent studies have demonstrated that APA exerts key
regulatory roles in many biological processes and
often occurs in a tissue- and cell-type-specific man-
ner. However, to our knowledge, there is no database
incorporating information about APA at the cell-
type level. Single-cell RNA-seq is a rapidly evolv-
ing and powerful tool that enable APA analysis at
the cell-type level. Here, we present a comprehen-
sive resource, scAPAatlas (http://www.bioailab.com:
3838/scAPAatlas), for exploring APA across different
cell types, and interpreting potential biological func-
tions. Based on the curated scRNA-seq data from 24
human and 25 mouse normal tissues, we systemati-
cally identified cell-type-specific APA events for dif-
ferent cell types and examined the correlations be-
tween APA and gene expression level. We also esti-
mated the crosstalk between cell-type-specific APA
events and microRNAs or RNA-binding proteins. A
user-friendly web interface has been constructed to
support browsing, searching and visualizing multi-
layer information of cell-type-specific APA events.
Overall, scAPAatlas, incorporating a rich resource for
exploration of APA at the cell-type level, will greatly
help researchers chart cell type with APA and eluci-
date the biological functions of APA.

INTRODUCTION

Alternative polyadenylation (APA) is emerging as an impor-
tant regulatory mechanism that contributes to transcrip-
tome complexity and sophisticated dynamics of gene reg-
ulation across eukaryotic species (1,2). Most eukaryotic
genes harbor multiple polyadenylation (polyA) sites, lead-
ing to generation of distinct APA isoforms with different
coding regions or 3′ untranslated regions (3′UTRs) (3,4).
Since the 3′UTRs contain key RNA regulatory elements
interacting with regulatory RNA-binding proteins (RBPs)
or microRNAs (miRNAs), APA could modulate RBPs or
miRNAs targetability, and ultimately regulating the RNA
cellular localization, translation efficiency and degradation
rates (5–8). Increasing evidences have revealed that APA
plays vital roles in diverse biological processes, such as
cell proliferation, differentiation and tumorigenesis (2,9–
11). APA often occurs in a tissue-specific manner as doc-
umented in previous studies (12,13). Furthermore, recent
studies have detailed the existence of cell-type-specific APA
preference within the same tissue (14–16). For example, the
long isoform of Itsn1 is restricted to neurons while the short
isoform is expressed in astrocytes and microglia of the adult
mouse brain (14).

Several databases have been developed to character-
ize genome-wide APA in different species. For instance,
early databases could annotate limited polyA sites based
on expression sequence tags, such as polyA DB 2 and
PACdb (17,18). The advent of next-generation sequenc-
ing technology provides an unprecedented opportunity to
detect genome-wide APA events. Several databases, such
as PolyA DB 3, PolyAsite and APADB (19–21), have cu-
rated genome-wide polyA sites in different species using
3′ sequencing datasets. Recently, several databases, such as
TC3A and APAatlas (22,23), were constructed to not only
annotate but also quantify APA events in different tissues
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based on large-scale RNA-seq datasets. However, to our
knowledge, no database has been developed to systemati-
cally explore APA across different cell types. The recent de-
velopment of single-cell RNA-seq methods, such as Smart-
seq, 10x Genomics and CEL-seq2, has provided opportuni-
ties for studying APA in different cell types (24–26). Several
bioinformatics methods, such as scAPA, have been devel-
oped to identify polyA sites and quantify APA using 3′-tag
based scRNA-seq data (27).

Here, we aim to profile the APA landscape of differ-
ent cell types and identify cell-type-specific APA events for
each cell type from a certain tissue. We first collected and
uniformly processed about 150TB 10x Genomics scRNA-
seq data from 49 studies, incorporating 305 scRNA-seq
datasets of 24 human and 25 mouse normal tissues (Sup-
plementary Table S1). We then applied the scAPA method
to these datasets to identify polyA sites and quantify the
relative polyA site usage (27). Thus, we could identify cell-
type-specific APA events for different cell types in a cer-
tain tissue. Moreover, we also examined the correlations
between polyA site usage and the corresponding gene ex-
pression level to explore the effects of polyA site choice
on gene expression. In addition, we predicted the putative
binding sites of miRNAs and RBPs on the alternative re-
gions regulated by cell-type-specific APA events. By design-
ing an interactive user interface, we constructed a versatile
database, scAPAatlas, which allows users to browse, search
and visualize cell-type-specific APA events and other infor-
mation. To our knowledge, scAPAatlas is the first compre-
hensive resource for exploring APA at the cell-type level,
which could benefit researchers in understanding biologi-
cal functions of APA. ScAPAatlas is freely available at http:
//www.bioailab.com:3838/scAPAatlas or http://47.100.223.
144:3838/scAPAatlas.

MATERIALS AND METHODS

scRNA-seq data collection and processing

The scAPAatlas was designed for users to explore APA
at the cell-type level in human and mouse. We manu-
ally collected recently published 10x Genomics scRNA-
seq data from the Gene Expression Omnibus (GEO), Se-
quence Read Archive (SRA), ArrayExpression and NCBI
BIOPROJECT (Supplementary Table S1 and Supplemen-
tary Figure S1). Several datasets are publicly available with
alignment results, so we could directly download the aligned
reads in BAM format. For the other datasets, we down-
loaded the sequencing reads in FASTQ format. Then we
processed and aligned the sequencing reads to the reference
genome using Cell Ranger (version 5.0.1) CellRanger count
pipeline with default parameters to generate the BAM files
containing the cell barcodes and unique molecular identi-
fiers (UMIs) (26). The reference genome sequence of human
(hg38) and mouse (mm10) were downloaded from Ensembl
(28). The gene expression matrices generated by Cell Ranger
were further filtered and normalized using Seurat package
(29).

As the cell-type annotation for each single cell is re-
quired for downstream APA analysis at the cell-type level,
we downloaded the cell-type annotation information di-
rectly if it is available in the original publications. If the

cell-type annotation information was not available, we em-
ployed the Seurat package to perform cell clustering and
assign each single cell to the corresponding cell cluster with
the standard pipeline described in Seurat implementation
(29). Each cell-type cluster was annotated using marker
genes provided in the original publications. In addition,
we applied t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm to visualize the cell clustering result
and count the number of single cells per cell type. The
marker gene expression pattern was visualized using dot-
plot heatmaps in which the color intensity represents the
average level of expression and the size of dots represents
the percentage of cells within each cell-type cluster express-
ing the marker genes.

Alternative polyadenylation analysis

To systematically explore the cell-type-specific APA regula-
tion, we applied the scAPA pipeline to analyze the compiled
10x Genomics scRNA-seq datasets (27). For each dataset,
we first employed the Drop-seq tool (version 2.4.0) to filter
the BAM files using FilterBAM function, and then removed
PCR duplicates using the UMI-tools dedup function (ver-
sion 1.1.1) (30,31). We next employed the scAPA pipeline
to identify APA peaks with default procedures described in
the scAPA implementation using Homer findPeaks (32). For
each tissue, we could identify the APA peaks in BED for-
mat. Then, we merged all APA peaks from different tissues
using bedtools merge to generate APA peaks annotation for
human and mouse, respectively (33).

In further, we applied the scAPA pipeline to profile the
APA landscape based on the defined APA peaks. At first,
we utilized the Drop-seq tool FilterBamByTag and SAM-
tools merge to merge all processed reads from single cells
assigned to the same cell-type cluster to generate an indi-
vidual BAM file for each cell type based on the cell-type
annotation (30,34). We next used featureCounts to count
reads aligned to defined APA peak regions for each cell type
to generate an APA peak counts matrix for each scRNA-
seq dataset (35). In each dataset, the resulting count ma-
trix was normalized into the expression level measured in
counts per million (CPM), and the APA peaks were further
filtered with the procedures implemented in scAPA pipeline.
To quantify the relative usage of polyA sites, we calculated
the relative expression level of an APA isoform over the to-
tal expression level of all APA isoforms in a gene, defined
by a metric called PolyA site Usage (PAU):

P AUig = Cig
∑n

i Cig

Where g is a given gene, Cig is the CPM value of APA
isoform i in gene g and n is the number of APA isoforms of
the gene.

In addition, to visualize the reads coverage of scRNA-
seq data for each cell type, we took the BAM file as input
and generated coverage tracks in bedGraph format for dif-
ferent cell types as output. The coverage is calculated us-
ing bedtools genomecov and normalized in counts per mil-
lion. Then, we converted the bedGraph files to bigWig files
using the bedGraphToBigWig utility from UCSC Genome
Browser.
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Identification of cell-type-specific APA events

In each dataset, only genes with counts >10 in a cell type
were considered for analysis. Here, we defined that an APA
event is cell-type-specific in a certain cell type, when the
PAU of the APA event in the cell type is significantly higher
than in other cell types. Chi-squared test was used to calcu-
late the P-value of differential usage of polyA sites across
different cell types. The resulting P-values were adjusted
for multiple comparisons into Q-values by the Benjamini–
Hochberg procedure to control the false discovery rate
(FDR). For a specific gene, the PAUs of the polyA site i
in all k cell types are Pi1, Pi2, Pi3, . . . , Pik. Then, to decide
whether the PAU of the polyA site i in cell type j is higher
than in other cell types, we calculate the differences between
Pijand other PAU respectively to get a set of PAU difference
(Pij − Pi1, Pij − Pi2, Pij − Pi3, . . . , Pij − Pik). Here, we refer
to the minimal value of the set of PAU difference (Pij − Pi1,
Pij − Pi2, Pij − Pi3, . . . , Pij − Pik) as the difference of PAU.
Thus, if the difference of PAU > 0.2 and Q-value < 0.05, the
APA event with polyA site i is defined as a cell-type-specific
event in cell type j (Supplementary Figure S2).

Correlation analysis between APA and gene expression level

To identify the APA event whose PAU is significantly cor-
related with its gene expression level, we used Spearman’s
rank correlation to calculate the correlation coefficient (Rs)
between PAU and corresponding gene expression level. The
significant correlations between PAU and gene expression
level were defined by the absolute value of Rs > 0.3 and P-
value < 0.05. In total, 2444 and 2223 APA events signifi-
cantly correlated with their gene expression level were iden-
tified in human and mouse, respectively.

miRNA-binding sites prediction analysis

The miRNA-binding sites on 3′UTR in human and mouse
were predicted using TargetScan (Release 7.2) (36). Then we
could obtain the names of miRNA family, genomic coor-
dinates of miRNA-binding sites and context++ score per-
centiles. To identify miRNA-binding sites potentially al-
tered by cell-type-specific APA events, we took the proxi-
mal and distal polyA sites to define the alternative regions
regulated by cell-type-specific APA events. Then, intersect-
ing the miRNA-binding sites with the defined alternative
regions using bedtools intersect function, we could iden-
tify miRNA binding sites potentially altered by cell-type-
specific APA events. The resulting miRNA-binding sites
were prepared in BED format for displaying using JBrowse
in scAPAatlas (37).

RBP-binding sites prediction analysis

We downloaded computationally predicted RBP-binding
sites from the MotifMap-RNA database (http://motifmap-
rna.ics.uci.edu), and obtained the RBP names and genomic
coordinates of RBP-binding sites (38). We then identified
RBP-binding sites potentially altered by cell-type-specific
APA events through intersecting the RBP-binding sites with
previously defined alternative regions regulated by the cell-
type-specific APA events. In addition, we downloaded the

binding peaks of 122 RBPs identified by eCLIP-seq exper-
iments in HepG2 and K549 human cell lines from the EN-
CODE data portal (https://www.encodeproject.org/) (39).
Then we could label each predicted RNA-binding site in hu-
man with eCLIP-seq support evidence by intersecting them
with the eCLIP-seq peaks. The resulting RBP-binding sites
were prepared in BED format for displaying using JBrowse
in scAPAatlas.

RESULTS

The APA landscape across different cell types in human and
mouse tissues

To construct a comprehensive database for exploring APA
at the cell-type level, about 150TB 10x Genomics scRNA-
seq data were manually curated from publications through
literature searching (Supplementary Table S1). These pub-
lications were obtained by searching for key words, includ-
ing the name of tissue and ‘scRNA-seq’ or ‘10x Genomics’,
from the PubMed database (https://pubmed.ncbi.nlm.nih.
gov). We manually collected scRNA-seq datasets of human
and mouse normal tissues from 49 studies (Supplementary
Table S1). Specially, the human data contain 194 scRNA-
seq datasets of 24 diverse human normal tissues, involv-
ing a total of 385 964 single cells, while 111 scRNA-seq
datasets, covering 25 mouse normal tissues, were included
in the mouse data with 428 225 single cells in total (Fig-
ure 1A; Supplementary Figure S1 and Supplementary Ta-
ble S1). Furthermore, the cell-type annotation for each tis-
sue was obtained from original publications or estimated
based on known marker genes. Finally, 299 human cell types
and 286 mouse cell types were annotated in the compiled
scRNA-seq dataset.

Applying the scAPA method to these datasets, we identi-
fied 38 687 APA events in human, while 35 375 APA events
were identified in mouse (Figure 1B). To demonstrate the
reliability of the identified polyA sites, we computed the ge-
nomic distributions of the identified polyA sites and com-
pared them with the annotated polyA sites in polyA DB3
(19). The results showed that the identified polyA sites are
congruent with annotated polyA sites (Supplementary Fig-
ures S3–6). In addition, we have conducted motif enrich-
ment analysis on the identified polyA sites in introns and
intergenic regions. The results showed that the canonical
polyA motif (AAUAAA) is top significantly enriched for
each tissue (Supplementary Figures S7 and S8). The APA
events could be classified into two types according to the
genomic positions of the polyA sites, including tandem
3′UTR-APAs and upstream regions APAs (UR-APAs). We
have classified the identified APA events into two differ-
ent types and computed the prevalence of tandem 3′UTR-
APAs and UR-APAs in each tissue (Supplementary Figures
S9 and S10).

Through profiling the APA landscape, we could identify
cell-type-specific APA events for each cell type in a certain
tissue (Figure 1B; Supplementary Figure S11A and Sup-
plementary Tables S2 and S3). The correlations between
APA and corresponding gene expression level were also
estimated in human and mouse, respectively (Supplemen-
tary Figure S11B). Additionally, potential miRNA-binding
sites and RBP-binding sites on alternative regions regulated
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Figure 1. Framework to construct the scAPAatlas database. (A) The scAPAatlas database incorporates scRNA-seq data of 24 human and 25 mouse normal
tissues. (B) The flowchart depicting the construction pipeline of the scAPAatlas database.

by cell-type-specific APA events were identified to connect
miRNAs or RBPs to APA events (Figure 1B).

Web design and interface

Based on the above results, we constructed a versa-
tile database with user-friendly interface, scAPAatlas, for
browsing, searching and visualizing multi-layer information
of cell-type-specific events in different human and mouse
tissues. This database could also be used to explore the cor-
relations between APA and gene expression, crosstalk be-
tween APA and miRNAs or RBPs (Figure 2). In scAPAat-
las, we designed six function modules, including (i) ‘Tax-
onomy’ module, (ii) ‘APA landscape’ module, (iii) ‘Spe-
cific APA’ module, (iv) ‘Expression Correlation’ module, (v)
‘miRNA-APA’ module and (vi) ‘RBP-APA’ module (Fig-
ure 2). In addition, we designed a ‘Home’ page to give a

brief description of this database and summary statistics of
each function module. Besides, scAPAatlas also provides a
‘Download’ page for researchers downloading all data in
batches. The ‘Help’ page was designed to provide sufficient
guidelines so that first-time users could easily access and ob-
tain information from the database. The ‘About’ page pro-
vides a detailed description of the database, including the
introduction to scAPAatlas, the pipeline of database con-
struction and the data resources used.

Function modules

The ‘Taxonomy’ module provides the taxonomy of cell
types in each tissue (Figures 2 and 3A). Users could choose
a species and a tissue to search within. The scAPAatlas will
return a 2D representation of various cell types based on
the t-SNE mapping of single cells. In addition, A dot-plot
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Figure 2. The overall design of function modules in scAPAatlas. The scAPAatlas database provides six function modules: (i) ‘Taxonomy’ module; (ii)
‘Landscape’ module; (iii) ‘Specific APA’ module; (iv) ‘Expression Correlation’ module; (v) ‘miRNA-APA’ module; (vi) ‘RBP-APA’ module.

heatmap depicting the expression level and distributions of
representative marker genes for each cell type is provided
in the ‘Marker Gene’ panel. To further detail the cellular
taxonomy in each tissue, users could select the ‘Summary’
panel to retrieve a table with the number of single cells per
cell type. For example, we can choose ‘Human’ for species
and ‘Heart’ for tissue to retrieve the cell taxonomy of heart
comprising nine different cell types, including endothelial
cells, pericytes, fibroblasts, atrial cardiomyocytes, ventricu-
lar cardiomyocytes, lymphoid cells, myeloid cells, neuronal
cells and smooth muscle cells (Figure 3A).

The ‘Landscape’ module enables users to query the APA
landscape in different cell types within tissue or across tis-
sues (Figures 2 and 3B). Users could choose a species and
enter a gene symbol to query the APA landscape in differ-
ent cell types within a certain tissue by selecting the tissue
from the drop-down list. Details about the polyA sites with
gene symbol, APA ID and APA position will be displayed
in a table. For each polyA site, a bar chart is provided to
depict the landscape of APA in different cell types within
the tissue. When users select ‘All’ from the drop-down list
of ‘Tissue’ box, the bar chart will be rebuilt to display the
APA landscape in different cell types across tissues. For ex-
ample, the APA landscape of the gene CLOCK in human
heart could be retrieved by entering the gene symbol and
selecting ‘Human’ for species and ‘Heart’ for tissue (Figure
3B).

The ‘Specific APA’ module enables users to interrogate
cell-type-specific APA events identified for each cell type
(Figures 2 and 3C). Users could choose a species and a tis-
sue to search within. The scAPAatlas returns a table with
the cell type, gene symbol, gene position, specific APA ID,
specific APA position, PAU, difference of PAU and q-value

(Figure 3C). When users choose a different cell type, the ta-
ble will be rebuilt to display the query results. Besides, users
could also query cell-type-specific APA events for a spe-
cific gene by entering the gene symbol. In addition, when
users click the ‘Display’ button in the ‘JBrowse’ column
for a cell-type-specific APA event, an easy-to-use genome
browser implemented in a modal window will be displayed.
The reads coverage of each cell type will be displayed as a
track in the genome browser with annotation tracks of gene
models and identified polyA sites. Thus, users could nav-
igate easily to particular genomic coordinates to view the
cell-type-specific pattern of APA events (Figure 3C). This
module could benefit researchers in charting cell types with
APA and understanding APA at the cell-type level. For in-
stance, by browsing and searching cell-type-specific APA
events in human heart, we observed that the gene CLOCK
which plays an important role in regulation of circadian
rhythms exhibits a cell-type-specific APA pattern in human
heart. The atrial cardiomyocytes predominantly use the dis-
tal polyA site of CLOCK to express the long isoform, while
other cell types express both the long and short APA iso-
forms (Figure 3C).

In the ‘Expression Correlation’ module, the genes whose
APA events are significantly correlated with their gene ex-
pression level are provided (Figures 2 and 3D). When users
choose a species, a table containing gene symbol, APA ID,
APA position, the Spearman’s correlation coefficient (Rs),
P-value of each significantly expression-correlated APA
events will be displayed (Figure 3D). Users could search for
a gene by entering a gene symbol in the search box. Besides,
clicking the ‘Plot’ button in the table opens a gene-wise scat-
ter plot that displays the correlation between PAU and gene
expression level, accompanied by their Spearman’s correla-
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Figure 3. The schematic features in each function module of scAPAatlas. (A) In the ‘Taxonomy’ module, users can choose ‘Human’ for species and ‘Heart’
for tissue to visualize the t-SNE mapping of 9 different cell types and the dot-plot heatmap of representative marker genes. Additionally, the table with
the number of single cells per cell type is also provided. (B) Example of the ‘Landscape’ module showing the APA landscape of the gene CLOCK in
human heart. The bar chart showing the APA landscape in different cell types. (C) Example of the ‘Specific APA’ module showing the cell-type-specific
APA events of CLOCK in atrial cardiomyocytes of heart. The table provides the detailed information of the APA events and the genome browser view
showing cell-type-specific patterns of APA events across cell types in heart. (D) Example of the ‘Expression Correlation’ module showing that the polyA site
(ENSG00000162959 3) usage of MEMO1 is positively correlated with its gene expression. (E) Example of the ‘miRNA-APA’ module showing miRNA-
binding sites on alternative regions regulated by cell-type-specific APA event of CLOCK. The table provides the detailed information of miR-17–5p,
miR-107 and miR-206 binding sites on CLOCK, which also be visualized in genome browser view. (F) Example of the ‘RBP-APA’ module showing RBP-
binding sites on alternative regions regulated by cell-type-specific APA event of CLOCK. The table provides the detailed information of A2BP1, RBFOX2
and MBNL1 binding sites on CLOCK, which also be visualized in genome browser view.
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tion coefficients and P-value (Figure 3D). The correlations
between APA and gene expression will help researchers rec-
ognize the effects of APA on gene expression. As an exam-
ple, the PAU of the short isoform of MEMO1 is positively
correlated with its gene expression level, which may be in
line with previous studies that 3′UTR shortening through
APA may upregulated its gene expression level by escaping
post-transcriptional repression (40) (Figure 3D).

The ‘miRNA-APA’ module allows users to browse,
search and visualize miRNA-binding sites on alternative re-
gions regulated by cell-type-specific APA events (Figures 2
and 3E). Details with the cell type, gene symbol, specific
APA ID, specific APA position, miRNA name, miRNA-
binding sites and context++ score percentile estimated from
TargetScan will be displayed in a table (Figure 3E). To
search results of a certain cell type, users can choose a cell
type from the drop-down list. Entering a gene symbol in the
search box will return the result of a certain gene. A modal
window with the genome browser is embedded for each row
to display the crosstalk between miRNAs and APA events,
so that users could click the ‘Display’ button to bring it to
front (Figure 3E). In addition, users could click the miRNA
name to open a webpage from miRBase describing detail in-
formation of the miRNA, including miRNA sequence, re-
lated scientific literature and word cloud representing the
functional roles of the miRNA. This module could facilitate
a deep understanding of biological functions of APA at the
cell-type level. As an illustration, several miRNA-binding
sites were discovered on the alternative regions regulated
by APA events of CLOCK gene, which are cell-type-specific
in atrial cardiomyocytes of heart (Figure 3E). Among these
miRNAs, some miRNAs such as miR-17–5p, miR-107 and
miR-206 were reported previously to be involved in regula-
tion of circadian rhythms through interacting with CLOCK
gene (41–43).

Moreover, the ‘RBP-APA’ module provides RNA-
binding sites on alternative regions regulated by cell-type-
specific APA events (Figures 2 and 3F). As in ‘miRNA-
APA’ module, users could choose a species and a tissue
to retrieve a table with the cell type, gene symbol, specific
APA ID, specific APA position, RBP and RBP-binding
sites (Figure 3F). Specially, additional eCLIP-seq data sup-
port evidence is denoted for each RBP-binding site in the
table for human data. The select box for cell type and
search box for gene symbol were designed for users to
search data of a certain cell type or a certain gene, re-
spectively. Users could click the ‘Display’ button to open
a modal window with the genome browser to visualize
the crosstalk between RBP and APA events (Figure 3F).
Moreover, each RBP name provides a link to the web-
page from CISBP-RNA, which enables users to conve-
niently get the detailed information of the RBP, includ-
ing RBP-binding motif, RNA-recognition motif (RRM)
and orthologs. This module could help researchers deci-
pher cell-type-specific APA regulation. For example, sev-
eral RBP-binding sites were discovered on the alternative re-
gions regulated by cell-type-specific APA events of CLOCK
gene (Figure 3F). Among these RBPs, some RBPs such as
A2BP1, RBFOX2 and MBNL1 are reported previously to
be implicated in regulation of alternative polyadenylation
(44,45).

Download of tables and figures

All the tables generated in the modules of ‘Taxon-
omy’, ‘Landscape’, ‘Specific APA’, ‘Expression Correla-
tion’, ‘miRNA-APA’ and ‘RBP-APA’ can be downloaded
by clicking the ‘Download’ button below the table. More-
over, the ‘t-SNE’ plot of cell-type clustering and the dot-
plot heatmap of representative marker genes in each tissue
of ‘Taxonomy’ module could be downloaded by clicking
the ‘Download’ sign on the bottom left corner of the corre-
sponding plot. The bar charts depicting the APA landscape
could be downloaded by clicking the camera icon on the top
right corner. Additionally, on the ‘Specific APA’, ‘miRNA-
APA’ and ‘RBP-APA’ page, the genome browser view incor-
porating genome tracks of alignment data, miRNA-binding
sites and RBP-binding sites, could be downloaded by using
the built-in plugin ‘Export SVG’ of JBrowse. In addition,
users could download all data in batches from the ‘Down-
load’ page. Users can freely utilize the plots and explore the
tables they downloaded from scAPAatlas in their studies.

DISCUSSION AND FUTURE DIRECTIONS

Here, we present a user-friendly database, scAPAatlas, for
exploring APA at the cell-type level in diverse human
and mouse tissues. Through collecting and processing 305
scRNA-seq datasets from 49 studies, scAPAatlas provides
the APA landscape in different cell types. Cell-type-specific
APA events were estimated for each cell type in a certain
tissue, which provides an additional layer of information in
charting cell identity and help researchers find out potential
functional APA events. The scAPAatlas also examined the
correlations between APA and gene expression level, bene-
fiting researchers recognizing those APA events which af-
fect gene expression level. In addition, putative miRNA-
binding and RBP-binding sites on alternative regions reg-
ulated by APA events are also estimated for each cell-type-
specific APA event, which could give a hint of the underly-
ing mechanisms of post-transcriptional regulation.

As advances in high-throughput sequencing technology,
scRNA-seq will be applied to more tissues and more species,
we will continue to collect new incoming scRNA-seq data.
Besides, we will further integrate other types of functional
genomic data, such as RNA modification data and RNA
degradome data, with the APA landscape. We will keep
maintaining scAPAatlas to ensure it remains a valuable re-
source for the research community.
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ScAPAatlas is publicly and freely available at http://
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could be freely downloaded.
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