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METHODOLOGY

Visualizing statistical significance 
of disease clusters using cartograms
Barry J. Kronenfeld1 and David W. S. Wong2* 

Abstract 

Background: Health officials and epidemiological researchers often use maps of disease rates to identify potential 
disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clus-
ters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for 
epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. 
To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters 
spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework 
that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that 
automated techniques might miss.

Results: On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from 
the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to deter-
mine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under 
certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combin-
ing individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated 
legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested 
assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish 
between statistically significant and insignificant regions.

Conclusion: The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance 
of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual 
exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical signifi-
cance of spatial clusters.
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Background
In epidemiological analysis, there is a long history of 
mapping disease and related health and socio-demo-
graphic data. Maps are used to explore spatial patterns 
and identify potential causal factors, which then may 
warrant further investigation by cohort and case–control 
studies [1]. Because human visual perception is adept at 
spatial pattern recognition, epidemiological maps may 
facilitate detection of clusters that might be missed using 

confirmatory statistical techniques in which potential 
cluster regions must be designated a priori. Maps also 
provide spatial context and present data in a visual form 
that is accessible to the public. The need to respond to 
public concern has spurred development of automated 
systems to construct maps of disease occurrence [2, 3].

Though maps can help identify disease clusters, there 
is much controversy over their use. Map readers likely 
see clusters that may just be the results of random vari-
ation, or a mild degree of clustering of similar values. Yet 
further investigation to determine their statistical sig-
nificance requires substantial resources [4, 5]. For this 

Open Access

International Journal of 
Health Geographics

*Correspondence:  dwong2@gmu.edu 
2 Geography and Geoinformation Science, George Mason University, 
4400 University Drive, Fairfax, VA 22030, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0525-0071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12942-017-0093-9&domain=pdf


Page 2 of 13Kronenfeld and Wong  Int J Health Geogr  (2017) 16:19 

reason, the communication of statistical uncertainty is an 
important problem in disease mapping [1, 2, 6].

Although the problem of visualizing uncertainty is 
broadly recognized by cartographers [7], it is particu-
larly significant in disease mapping due to the rareness of 
disease events and the non-uniform spatial distribution 
of the underlying population. These factors compound 
each other, as a standard map may place disproportion-
ate emphasis on geographically large but sparsely popu-
lated districts, and these same districts will tend to have 
relatively unreliable observed disease rates as reflected by 
their large standard errors or related statistics [1]. Map 
readers will therefore have difficulty visually distinguish-
ing between statistically significant clusters and areas 
that have high disease rates but are not statistically sig-
nificant due to small sample size.

One method to avoid placing disproportionate visual 
emphasis on geographically large but sparsely popu-
lated districts is to use a density-equalizing map, or “car-
togram”. A cartogram is a map in which district shapes 
are altered such that their size is proportional to a des-
ignated variable, typically population. This results in a 
uniform density of the population variable, and so car-
tograms have also been referred to as density-equalizing 
maps [8]. When used as a basis for disease mapping, 
population cartograms reduce the size, and therefore 
the visual prominence, of low-population districts in 
which high disease rates might occur due to chance alone 
[9–12].

While visual emphasis can influence human percep-
tion, a more concrete approach is needed to communi-
cate statistical uncertainty. In this paper, we extend the 
cartogram visualization framework to develop a formal 
visual assessment method for determining the statistical 
significance of observed disease rates over user-defined 
regions. Our approach is based on the fact that statistical 
variance is normally an inverse function of population, 
and therefore statistical significance is determinate from 
the population and observed disease rate of a district. 
Given this, we propose using a cartogram to show popu-
lation combined with standard choropleth symbolization 
to show observed disease rates, thereby visually commu-
nicating the necessary data to determine statistical signif-
icance. The resulting visual framework does not require 
use of coincident or overlapping symbols that have been 
shown to reduce map readers’ ability to effectively per-
form analysis tasks.

An advantage of the proposed geovisual analytics 
framework is that it supports on-the-fly determination 
of statistical significance for user-defined regions con-
sisting of multiple districts or portions of districts. As 
such, it supports truly exploratory analysis, exploiting the 
map reader’s visual perception and spatial cognition to 

identify and assess clusters that are unknown in advance 
and might not be detected by automated search tech-
niques. Most standard tests of statistical significance 
apply to a priori defined districts and are therefore prob-
lematic in an exploratory framework due to the issue of 
multiple hypothesis testing. To support estimation of the 
statistical significance of a posteriori defined districts, 
we use scan statistics that provide a stricter test based on 
the likelihood of a given cluster occurring anywhere on 
the map under the null hypothesis. A measure of com-
pactness is further used to mitigate problems introduced 
when irregularly-shaped clusters are considered.

Statistical significance in maps
The importance of communicating uncertainty and/or 
statistical significance associated with disease rates is 
widely appreciated in the epidemiological community. 
While any location with a high rate represents a poten-
tial area of concern, areas in which the observed rate is 
unlikely the result of random variation should be given 
higher priority than those that fall within statistical con-
fidence intervals [6, 13]. Despite this recognition, con-
structing maps that effectively communicate observed 
rates and associated uncertainty simultaneously has 
proven to be a difficult challenge [7]. Attempts to meet 
this challenge have included both statistical and visual 
approaches, each of which has strengths and weaknesses.

Statistical approaches involve the construction of a sin-
gle variable that communicates some degree of both the 
estimated magnitude of risk (i.e. effect size) and associ-
ated uncertainty (i.e. significance). A simple approach is 
to map statistical significance values rather than crude 
disease rates. The drawback of this approach is that the 
influences of disease rate and sample size cannot be dis-
tinguished [14]. For example, the same significance value 
might indicate a very high disease rate in a small sample 
or a slightly elevated disease rate in a large sample. An 
alternative is to use Bayesian techniques to adjust the 
relative risk estimates on the basis of sample size and/
or neighborhood [14, 15]. In this approach, a prior risk 
ratio estimate is constructed based on either the overall 
rate or the rate observed in a predefined neighborhood 
around each district. This prior value is then updated 
based on the observed rate and sample size in each dis-
trict, again sometimes including neighboring districts, 
resulting in a posterior risk estimate that is moderated by 
sample size and neighborhood effects. Bayesian estima-
tion techniques are now widely used in health mapping 
[2], but map readers must be aware that the smoothing 
effect of these techniques reduces effect size in favor of 
stable estimates [1]. Specifically, the rate estimate shown 
in each district will be a weighted average of the actual 
rate in that district, rates in nearby districts and the 
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overall mean rate [14]. The exact nature of this tradeoff is 
dependent on the underlying model [15].

In contrast to the statistical approach that combines 
information from the observed rate and sample size into 
a single significance value, the visual approach attempts 
to communicate two values (e.g. rates and significance 
levels) simultaneously. Since using two maps to display 
the two sets of values requires additional space or a scale 
reduction of maps, a preferable method is to put both 
sets of values on a single map using symbol overlay. Sev-
eral health agencies produce online maps with texture 
overlays (e.g. stipple marks, diagonal or cross-hatch lines) 
on top of a choropleth (sequential color-coded) map. 
There is, however, significant variation in the type of 
symbol used and their meaning. For example, the United 
Kingdom Small Area Health Statistics Unit’s Rapid 
Inquiry Facility (RIF) and the California Cancer Registry 
(CCR) both use prominent black dot stipple overlay, but 
in the RIF the overlay varies in density and indicates dis-
tricts with rates that are more statistically significant [6], 
whereas the CCR uses a single stipple density to indicate 
districts with less stable estimates [3].

Cartographic studies are mixed in their assessment 
of the effectiveness of maps with overlapping symbols. 
Some studies have found that users perform worse on 
analysis tasks using a single map with uncertainty infor-
mation overlaid onto each district than when uncertainty 
is presented separately on an adjacent map [7]. In addi-
tion, the approach is limited practically by the difficulty 
of placing texture symbols in small polygons/areas. How-
ever, other studies indicate that overlaid maps are more 
effective than adjacent maps to display both the mapped 
values and associated uncertainty statistics [16, 17]. An 
alternative is to take advantage of the multi-dimensional 
nature of color by using desaturation, transparency or 
blurring techniques to adjust an underlying sequential 
(e.g. light-to-dark) color scheme [7]. Some studies have 
found transparency to be effective at communicating 
uncertainty in a qualitative sense [18, 19], but the degree 
of precision with which users can decode transparency 
into a numerical value are still poorly understood.

A related problem is the disproportionate visual empha-
sis of districts based on their geographical area. Statisti-
cal districts that are relatively large in area may be sparsely 
populated, and can dominate visual perception despite 
representing only a small percentage of the population. 
In the USA, for example, 75% of the population resides 
in census tracts that occupy only 3.5% of the land area 
(according to 2010 data from the U.S. Census Bureau). 
This highly uneven distribution exacerbates the problem 
of communicating uncertainty, since random effects will 
be greater in the large but sparsely populated districts 
that tend to dominate visual perception [1]. In a map with 

many such districts, one or more district will inevitably 
appear as a disease hot-spot even when the distribution 
of disease occurrence is random across the population [6]. 
Conversely, heavily populated districts may not be visually 
prominent if they have small areas, even if their disease 
rates are high and statistically significant.

Another limitation of current methods is that they only 
encode uncertainty values at the level of the individual 
district. In practice, disease clusters may encompass mul-
tiple districts. However, it is impossible to visually deter-
mine the uncertainty or statistical significance associated 
with an aggregate region from symbols that encode val-
ues for each district individually.

Methods
Many researchers have proposed cartograms as a solu-
tion to the problem of variable population density in 
health mapping [20, 21]. There have been two distinct 
approaches to cartogram usage in health research. In one 
approach, disease-related events are used as the desig-
nated cartogram variable, creating an event cartogram. 
On an event cartogram, districts with high numbers of 
events appear larger on the map. Recent studies have 
used event cartograms to visualize global incidence of 
drowning [22], mortality from ischaemic heart disease 
[23], as well as global variations in research effort related 
to health issues, including air pollution [24], traffic acci-
dents [25], heat-related illness [26], yellow fever [27], 
influenza [28] and silicosis [29]. The visual effect of resiz-
ing countries on a world map based on the number of 
event occurrences is striking: countries with more events 
appear enlarged, while countries with fewer events are 
visually shrunken.

Unfortunately, many problems emerge with event 
cartograms when one realizes that map readers must 
disentangle the effects of land area, population, event 
frequencies and event rates. Any district with a high fre-
quency of events relative to its land area will be enlarged 
on an event cartogram. This will include not only dis-
tricts with high event rates per population (i.e. event hot-
spots), but also districts with high population per unit 
land area (i.e. population hot-spots). Since usually we are 
interested in detecting event hot-spots, only the former 
cases are of interest. A variation on this approach is to 
use event rates instead of event counts as the cartogram 
variable [22, 28, 29]. However, using rates discards popu-
lation size information and can therefore over-emphasize 
small population districts with high event rates that may 
be the result of random variation. The fact that small 
countries do not appear dramatically enlarged on pub-
lished event rate cartograms is almost certainly due to 
deficiencies in cartogram algorithms that enlarge small 
areas sufficiently on the map [30].
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The second approach differs from the first in that the 
underlying at-risk population, as opposed to the number 
of events, is designated as the cartogram variable, cre-
ating an at-risk population cartogram. Event locations 
or rates are then displayed on the top of the cartogram 
using standard mapping techniques, such as dot-density 
mapping or sequential choropleth color-coding. In this 
manner, the cartogram serves as a base map depicting 
the domain within which health events occur, rather than 
as a measure of the health events themselves. For exam-
ple, in one study sheep scrapie occurrence and sampling 
rates were presented in dot maps and choropleth maps 
on a cartogram of the sheep population by county in 
Great Britain [9]. Although the focus is on scrapie inci-
dence and detection, the cartogram allows map readers 
to quickly discern which counties have more sheep at 
risk. At-risk population cartograms have also been used 
to help contextualize rates of obesity in Canada [10], HIV 
incidence [11] and overall mortality [31] in Japan, and 
lung cancer cases in New York State [8].

Building on the same logic, at-risk population car-
tograms have also been used as a basis for statistical 
methods to detect disease clusters. In an early but illus-
trative example, reported cases of Wilm’s tumor were 
plotted on a population cartogram and the resulting 
pattern was compared with that produced by an equal 
number of randomly placed points [32]. Later research-
ers applied formal tests of statistical significance to test 
the hypothesis that event locations on a cartogram of the 
at-risk population are spatially random [12, 33, 34]. The 
logic of this approach is that the cartogram translates a 
null hypothesis of random distribution within the popu-
lation into a spatially random distribution [35], thus con-
verting a Bernoulli process into an equivalent Poisson 
process. In this manner, at-risk population cartograms 
avoid the need for complex statistical methods to handle 
spatial inhomogeneity [36].

Although the above studies used cartograms as the 
basis for statistical hypothesis testing, these tests have 
been automated and are confirmatory in nature. We are 
not aware of any studies that have employed cartograms 
within a geovisual exploratory framework to visually 
communicate uncertainty or statistical significance. 
This is an important omission, considering that epide-
miological maps are probably more useful in exploratory 
settings than in formal hypothesis testing [1, 37]. With 
this in mind, we seek methods to visually communicate 
uncertainty on a cartogram within a geovisual analytics 
approach that takes advantage of human perception and 
cognitive abilities to identify patterns and relationships in 
spatial data [38].

Our use of cartograms to communicate uncertainty is 
motivated by a natural association between map area and 

a layperson’s (i.e. informal) concept of significance. From 
a cartographic perspective, a given event rate is perceived 
as more indicative of a meaningful pattern if it occurs over 
a larger map area. In formal hypothesis testing, the statis-
tical significance of an observed rate increases monotoni-
cally with and is often (but not always) fully determinated 
by sample size. Thus, a possible approach to visualizing 
uncertainty is to designate sample size as the population 
variable of a cartogram, allowing the map reader to asso-
ciate the area of a region with its statistical significance.

Given this general framework, the process of explora-
tory geovisualization begins with the designation of null 
and alternative hypotheses. In what follows, we assume 
a null hypothesis of equal probability of occurrence of a 
health event among all individuals in a population, and 
a one-tailed alternative hypothesis of higher probability 
of occurrence in a given region. However, the method 
can be extended to other hypothesis testing scenarios 
(e.g. testing for low probability of occurrence, differences 
in non-ratio values, etc.). Next, it is necessary to obtain 
data representing the sample size of each district. In what 
follows, we assume that all cases are reported and there-
fore the effective sample size is equivalent to the at-risk 
population.

Once the hypothesis framework and sample popula-
tion variable have been established, geovisualization is 
supported by two complementary mathematical proce-
dures that allow dynamic visual inference of the statis-
tical significance of arbitrary regions on a cartogram of 
the at-risk population. The first procedure computes the 
minimum size of a region on the cartogram over which 
a user-designated rate would be statistically significant. 
The second and converse procedure computes the mini-
mum rate for which a region of a designated size would 
be statistically significant. Together, these procedures 
support a visual scanning process and related tools in 
which the map reader is able to estimate statistical sig-
nificance of arbitrarily selected regions.

Strictly speaking, both procedures entail the assump-
tion that statistical significance is dependent only on 
sample size and event rate. We begin with a simple sce-
nario in which this assumption holds, and then proceed 
to a more realistic scenario in which it does not.

Scenario one: A priori designated region
We first consider a single region on a map designated 
a priori as a potential cluster. An example would be a 
citizen with no prior belief seeks to determine whether 
or not a disease is prevalent in his or her county of resi-
dence. Under the null hypothesis of random distribu-
tion, the sampling distribution of the number of disease 
occurrences within the designated region can be deter-
mined from its population. Let P and p denote the at-risk 
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populations overall and of the designated region, respec-
tively, and let R and r denote the observed event rates per 
person overall and in the designated region. Since the 
map includes the designated region, we compare the des-
ignated region with its complement rather than with the 
entire map to avoid overlap between the regions under 
comparison. The hypothesis that the actual event rate in 
the designated region is higher than in the complement 
to that region can be tested using a standard difference of 
proportions test, with the following test statistic:

We solve for p to find the minimum population for which 
a given rate is statistically significant:

Since population density is uniform on the cartogram, 
the value of p can be used to determine the minimum 
area on the cartogram for which an observed rate r would 
be statistically significant given a predefined significance 
threshold and corresponding z-score. Alternatively, 
we can also solve for r to determine the minimum rate 
for which a given population, and thus area on the car-
togram, would be statistically significant:

Although this framework has served as the basis for pre-
vious health mapping applications [2, 3], the assumption 
of an a priori designated region seems incompatible with 
visual exploratory analysis, which by definition entails 
searching for undiscovered event clusters that are 
unknown in advance. For this reason, we also develop an 
alternative framework based on a scan statistic, which 
does not assume an a priori designated region.

Scenario two: A posteriori designated region
Consider a scenario in which an investigator actively 
searches a map for clusters of events, with no specific 
region designated a priori. The investigator will naturally 
seek to identify a region in which the event rate and/or 
significance is maximal. Since the investigator is able to 
search all possible regions, an a posteriori test is needed. 
A standard approach is to define a scan statistic as the 
most extreme (i.e. highest) value of a designated cluster-
ing metric observed for a scan window that is moved in a 
continuous fashion across the map, such that all possible 
placements of the scan window are examined. Statisti-
cal significance is defined as the probability, given a map 
constructed under the null hypothesis of random spatial 
distribution, of obtaining a scan statistic as high or higher 
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than the observed scan statistic [39]. Determination of 
this significance is a difficult problem, and most solutions 
require computationally intensive Monte Carlo simula-
tion as well as a priori designation of a large but finite set 
of scan window locations [39, 40]. To support real-time, 
dynamic geovisual analysis, however, we seek an analytic 
method for determining the significance of an a posteri-
ori scan statistic without Monte Carlo simulation.

Alm [41] proposes such a method that estimates the 
significance of a free-moving rectangular scan window 
within a larger rectangular region. Specifically, Alm’s for-
mulae estimate the probability under a spatially random 
Poisson process that there will exist a rectangular window 
of fixed dimensions containing n or more events some-
where within a larger rectangular region containing N 
events. Our use of Alm’s formula is made possible due to 
the fact that the cartogram translates a Bernoulli process 
into a Poisson process. To simplify, we assume a square 
study region with area A and overall event density λ, and 
a square moving scan window with area a. Alm [41] dem-
onstrates that under the assumption of a random Poisson 
process, the probability φ that there exists at least one 
scan window location with n or more events can be esti-
mated by the function f(n), which is defined as follows:

where Fλa denotes the Poisson distribution function with 
mean λa. To support exploratory visual analysis, we seek 
the minimum scan area a for which an observed rate n/a 
would be statistically significant, and also the minimum 
rate n/a for which a scan window with area a would be 
statistically significant. We are unable to find an analytic 
solution to these problems. However, the probability φ 
logically increases monotonically with both n and n/a. 
Therefore, an accurate solution can be obtained quickly 
using a binary search. A slight complication is that while 
Alm’s functional estimate f(n) appears valid for all input 
parameters in which φ  ≪  1, f(n) does not always pro-
duce valid probability estimates when φ ≈  1. Thus, it is 
necessary to check the validity of input parameters to 
avoid computational errors. Details on this process are 
described in the Additional file 1: Appendix.

Aggregate regions and compactness metric
Since sample size is additive, the above techniques may 
be applied to aggregate regions formed from more than 
one district. This is a distinct advantage in exploratory 
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analysis, but in the case of an a posteriori test the free-
dom to form regions dynamically affects interpretation of 
significance values. This is because the distribution of a 
scan statistic is dependent on both the size and shape of 
the moving scan window. This renders the search space 
difficult to define, and also the null distribution of the 
scan statistic difficult to compute. To mitigate this prob-
lem, we support qualitative analysis by supplementing 
reported statistical significance under the assumption of 
a compact (square) scan window with a measure of com-
pactness to assess the squareness of a user-designated 
region. We use existing formulas [42] to calculate a shape 
metric as a function of the moment of inertia Ig(P) of 
polygon P about its centroid g. If one considers a poly-
gon to be composed of infinitely many points, then Ig(P) 
is the average squared distance from these points to g. 
In a compact polygon, all locations in P will be relatively 
close to g, resulting in a small value of Ig(P). A compact-
ness index cmi for a polygon P as:

where C denotes a circle equal in area to P [42]. The value 
ranges from 0 (less compact) to 1 (more compact). Since 
our formulation of statistical significance is based on a 
square scan window, we modify this slightly by using a 
square (S) instead of a circle in the numerator:

The ratio of the moments of inertia of a square and circle 
with equal area is a constant π

3
, so that c′mi =

π
3
cmi. The 

theoretical range of c′mi is 0–1.047, with a value greater 
than one indicating a region that is even more compact 
than the square scan window.

The compactness metric is provided as a check on the 
validity of the test assumption. The reported significance 
estimate is considered more reliable if the value of c′mi is 
closer to 1; to the degree that c′mi < 1, the significance 
value should be treated with caution. For example, if a 
“region” is designated as the aggregate of non-adjacent 
districts located at opposite corners of the study area, the 
resulting value of c′mi would be close to zero. Intuitively, 
this would indicate that the investigator apparently went 
to great lengths to form the region, and therefore the sta-
tistical test has low validity. In this manner, c′mi is used 
as a surrogate variable to reflect the extensiveness of the 
search performed by the human investigator.

Results
A prototype software application was developed to sup-
port geovisual exploratory analysis within the above 
framework. The application was written in C# and Visual 

(5)cmi =
Ig (C)

Ig (P)

(6)c′mi =
Ig (S)

Ig (P)

Basic (Microsoft Corp.), with mapping and statistical 
functions from the DotSpatial and MathNet.Numerics 
open source libraries. The application reads population 
count and rate data from a standard polygon shapefile. A 
choropleth map is then constructed automatically using 
a diverging color scheme in which the central color rep-
resents the overall event rate. At present, the application 
includes three functions for visualization and exploratory 
analysis. All functions are responsive to user selections of 
hypothesis-testing framework (a priori vs. a posteriori) 
and significance threshold (p value).

The first function constructs a custom legend to sup-
port visual scanning and detection of regions with sta-
tistically significant event rates. The legend indicates the 
minimum area over which an observed rate would be 
considered statistically significant given the user-selected 
hypothesis-testing framework and significance threshold.

Second, interactive spatial scan is supported using a 
square scan window that follows the movement of the 
mouse. The size (i.e. population) of the scan window is 
adjustable. As the user scans the map, the event rate in 
the scan window is computed as the weighted average 
of the observed rates in districts that intersect the scan 
window, weighted by the area (i.e. population) of the 
intersection. Statistical significance is then calculated 
based on the scan window population and event rate and 
reported in real time to the user.

Third, exploration of potential clusters is supported 
by tools for defining custom regions through aggrega-
tion. Districts may be aggregated in any manner to form 
contiguous or non-contiguous regions. Once a region is 
constructed, the population, average event rate and shape 
compactness of the region are reported to the user.

To illustrate the geovisual analysis framework, we 
examine the distribution of age-adjusted leukemia inci-
dence rates for California counties from 2008 to 2013. 
Data were extracted from the Surveillance, Epidemiol-
ogy and End Results (SEER 2014-16) program [43]. A 
cartogram of California was constructed from SEER 
age-adjusted populations, reported in person-years, 
using Cartogram Studio software for manual cartogram 
construction [44]. Figure  1 shows the cartogram along-
side a conventional map, with the locations of major cit-
ies labelled for reference. Apportionment error is 0.62%, 
meaning that 99.38% of the population is represented in 
the correct county on the cartogram.

Choropleth representation of incidence rates on a 
conventional map is shown in Fig. 2. Seven classes were 
constructed by (a) assigning all counties with incidence 
rates below the overall state rate of 1.864 per 100,000 to 
a single class, and (b) classifying the remaining counties 
into six classes using the quantile method. Counties with 
significantly high rates according to the a priori test are 
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outlined in blue. As a baseline for comparison, results of 
a Bernoulli spatial scan statistic with circular scan win-
dow computed using SaTScan software [45] are also 
shown in Fig. 2.

There are several limitations to the conventional map. 
The at-risk population of each county is not shown, so 
map readers are likely to place cognitive emphasis on 
counties that are large in area instead of those with high 
populations. Also, only individual counties are con-
sidered as potential clusters, and it is impossible to tell 
visually whether statistically significant regions could be 
formed from aggregating counties. Automatic cluster 
detection using a spatial scan statistic is helpful but idio-
syncratic, as it is influenced by the shape and size param-
eters of the scan window and the spatial arrangement of 
county centroids. For example, the only statistically sig-
nificant cluster detected by SaTScan is centered on Inyo 
County, whose rate is below average. Furthermore, two 
adjacent counties with rates that are high and statistically 
significant (Los Angeles, Ventura) are excluded from the 
cluster (Fig. 2).

Figure  3 shows the same choropleth map on a car-
togram loaded into the geovisual analysis environment 
with a legend built using the a priori significance test 
at a threshold of α =  0.05. The legend shows minimum 

statistically significant areas for counties in each class, 
which can be compared to the actual counties to infer 
significance. For example, it can be inferred that the leu-
kemia incidence rate in Los Angeles County, the larg-
est (most populated) county on the map, is moderately 
higher than the rest of the state but is statistically signifi-
cant because the county is larger than the size of the cor-
responding legend symbol of the same color. Statistically 
significant counties are also highlighted in blue in Fig. 3.

While the geovisual analysis environment allows visual 
inference of statistical significance for individual dis-
tricts, the true power of the framework comes from the 
ability to make inferences about aggregate regions. Note 
that if the component districts are in different categories, 
there are multiple corresponding legend symbols and 
several cases must be considered. If the aggregate region 
is larger than the symbol associated with the lowest rate 
category of the component districts, then the aggregate 
rate is definitely statistically significant. On the other 
hand, if the aggregate region is smaller than the symbol 
associated with the highest rate category of the compo-
nent districts then the aggregate rate is definitely not sta-
tistically significant. If neither of the above is true then 
statistical significance cannot be definitively determined 
from visual analysis alone. In Fig.  3, the combined area 

Fig. 1 Ordinary map (a) and at-risk population cartogram (b) of California counties. County sizes on the cartogram are proportional to SEER data-
base age-adjusted leukemia at-risk population values, reported in person-years. Selected cities are shown for reference
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of (a) is clearly smaller than the legend symbol associated 
with the higher rate (the largest symbol in the legend), 
and so the aggregate rate of the region formed from these 
two counties is not statistically significant.

The choice of hypothesis framework has a large influ-
ence on statistical significance. Figure 4 shows the same 
data using the a posteriori test based on a square scan 
window. It can be seen from the legend in Fig.  4 that 
the area required for each rate category to be statisti-
cally significant increases substantially (as compared to 
Fig. 3). Visually, it seems clear that none of the counties is 
individually larger than their corresponding legend sym-
bol. Even aggregating the six northern counties with the 
highest rates is unlikely to result in a region larger than 
the average size of the corresponding legend squares. In 
the southern portion of the state where rates are lower, 
matching map district colors to the legend suggests that a 
rather large area would be required to form a statistically 
significant region.

Two examples of the interactive scan process are 
shown in Fig. 5 under the a priori test. In these examples, 
scan windows of different sizes have been positioned 
by the user over potential leukemia cluster locations. 
The population, combined rate and significance of each 

scan window are reported dynamically as the mouse is 
moved, and the color of the scan window is modified to 
reflect the combined rate. The statistics for scan window 
A show that the rate in this square region is not statisti-
cally higher than the rest of the state (p =  0.102). Scan 
window B covers an area with a lower rate than scan win-
dow A, but is larger and therefore statistically significant 
(p = 0.016). To aid in interpretation, the scan window is 
outlined in blue when the region it covers is statistically 
significant. It should be noted that the scan windows rep-
resent square regions on the cartogram not the map. It 
would be desirable to transform the scan window into its 
actual shape in the real world, but this capability requires 
complete transformation formulae and is not yet imple-
mented in our software.

Two examples of custom defined aggregate regions are 
shown in Fig. 6, with significance values calculated using 
the a posteriori test. Under this stricter test, region A 
(formed by the six northern counties with above-average 
leukemia rates) is not statistically significant. Further-
more, the compactness measure for this region is low, 
suggesting a large departure from the test assumption of 
a square scan window. However, a statistically significant 
region can be constructed from several combinations 
of counties in the southern portion of the state, includ-
ing the combination comprising region B in Fig.  6. It is 
notable that all such regions include Los Angeles county 
despite the fact that its leukemia rate is lower than many 
nearby counties. This suggests a broad cluster of mildly 
above average leukemia rates, as opposed to a small clus-
ter of highly elevated rates. Region B in Fig. 6 also has a 
high compactness index, indicating that its apparent sig-
nificance is not likely to be due to the relaxation of the 
assumption of a square scan window.

Discussion
The cartogram geovisualization approach presented here 
differs from previous studies on uncertainty visualization 
in that the latter have focused on methods that apply to 
individual districts in isolation, either by applying sym-
bol overlays or computing adjusted estimates of disease 
rates in each district. These approaches do not provide 
a means to determine uncertainty over larger aggregate 
regions. If the power of geovisual analytics lies in the elic-
itation of human cognition and perceptual capabilities, 
then our approach removes the narrow focus on individ-
ual districts and takes full advantage of human cognitive 
abilities to discern visual patterns in complex data.

The ability to form regions from multiple districts or 
parts of districts in a highly flexible manner creates a 
truly exploratory environment that takes full advantage 
of human powers of pattern recognition. Clusters can 
be identified that would not be found by spatial scan 

Fig. 2 Standard choropleth map of leukemia incidence in California 
counties, 2008–2013. Counties highlighted in red outline have rates 
that are significantly higher than the remainder of the state according 
to the a priori test of significance at the 0.05 significance level
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statistics. Alternatively, automatically detected clusters 
can be modified by removing districts with low rates 
or adding districts with high rates that were included/
excluded as an artefact of the circular or elliptical scan 
windows in SaTScan. This is notable because the search 
space for cluster detection problems is large and grows 
exponentially with the number of districts if all possible 
aggregations are considered. If only contiguous regions 
are considered, the number of possible aggregations is 
reduced but is still quite large. For example, using the 
subgraph enumeration algorithm of Wernicke [46], 
2,712,603 contiguous regions can be formed from ten or 
fewer of California’s 58 counties. Thus, relying on algo-
rithmic search may be highly computational intensive 
and, for larger datasets, practically infeasible. Existing 
scan techniques handle this problem by restricting the 

search space based on distance [39] or topological rela-
tions [40], but reducing computation time remains a sub-
stantial research problem and a barrier to adoption.

Furthermore, restrictions on the search space pre-
clude many potential clusters, including those com-
prised of non-contiguous or even distant districts, 
but which share a common property whose relevance 
might be detected by an expert. For example, a clus-
ter of malnutrition formed from the counties of San 
Francisco, Los Angeles and San Diego might suggest 
urban causality, while elevated depression in selected 
non-contiguous coastal counties might arouse suspi-
cion about the influence of fog. In addition to expert 
knowledge on potential causal factors, investigators 
may also carry knowledge of sub-district population 
patterns that could be used to spot possible clusters 

Fig. 3 Geovisual analysis environment with a priori test hypothesis and 0.05 significance threshold selected. Legend shows the minimum area for 
which the observed rate of an a priori designated map region would be significantly higher than the rest of the state
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that cross district boundaries. For example, in our illus-
trated examples a health researcher might have further 
expert knowledge on leukemia rates in different parts of 
Los Angeles County that is not represented in the data, 
which might influence the interpretation of the cluster 
at location B in Figs. 5 and 6. An exploratory framework 
allows such expert knowledge to be brought to bear. 
While the geovisual analytics framework presented here 
has many advantages, it has some drawbacks as well. 
Although we use significance values to communicate 
uncertainty on our epidemiological maps (as do many 
previous researchers), it should be kept in mind that 
imputed statistical significance values in an explora-
tory environment cannot be treated as confirmatory in 
nature. Nevertheless, provision of significance values is 
an effective way to communicate uncertainty and allows 
prioritization of regions for further investigation. This is 
in accordance with the exploratory role of map investi-
gation in epidemiological research, as noted in previous 
studies.

Another well-known drawback of cartograms is that 
they are visually unfamiliar and can be aesthetically 
unappealing. These aesthetics must be weighed against 
the simple logic of equating map area with statistical sig-
nificance, which would not be possible without the use of 
a cartogram. Although we have not yet conducted formal 
human subjects testing, our experience via presenting 
these maps to students and colleagues so far suggests that 
most users are able to quickly learn the fundamental logic 
of the proposed visualization framework. That is, users 
are able to visually identify regions and compare them to 
legend entries to infer statistical significance. However, 
some details of the inferential processes are less likely to 
be fully appreciated, including the effects of classifica-
tion and the appropriate assessment of regions formed 
from combining districts from different legend classes. 
By automating the calculation of weighted averages, the 
interactive tools for scanning and region-building miti-
gate these issues of interpretation, but further testing and 
refinement of the visualization environment is needed.

Fig. 4 Geovisual analysis environment with global scan hypothesis and 0.05 significance threshold selected. Legend shows the minimum area for 
which the presence of a square region with the given rate would indicate a statistically significant event cluster
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Conclusion
Although cartograms have been employed previously 
in health mapping research, the inferential possibilities 
afforded by equalizing the density of the at-risk popula-
tion have not been explored in a geovisualization setting. 
We have demonstrated that cartograms of the at-risk 

population enable visual determination of statistical sig-
nificance. Furthermore, since sample size is additive, this 
determination can be performed for any arbitrary region, 
assuming a homogenous density within each region. 
The legend design and interactive scanning and region-
building tools presented here work by translating 

Fig. 5 Illustration of two dynamically placed moving scan windows. Reported significance is calculated under the assumption of an a priori desig-
nated region. Population sizes of the two regions (A and B) are in person-years
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mathematical into visual relationships, allowing inference 
of statistical significance from the size and observed rate 
of a region.

Authors’ contributions
BK initiated the idea, developed the conceptual framework and tools, per-
formed the test, and drafted the manuscript. DW helped refine the statistical-
visual framework and was consulted and provided inputs at all stages. Both 
authors read and approved the final manuscript.

Author details
1 Department of Geology and Geography, Eastern Illinois University, 600 
Lincoln Avenue, Charleston, IL 61920-3099, USA. 2 Geography and Geoinfor-
mation Science, George Mason University, 4400 University Drive, Fairfax, VA 
22030, USA. 

Acknowledgements
This research was partly supported by the National Institutes of Health (NIH) 
under Award Number R01HD076020. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the NIH.

Competing interests
The authors declare that they have no competing interests.

Additional file

Additional file 1. Appendix: Checking the Validity of Alm’s Functional 
Estimate.

Availability of data and material
Data used for the study are cited in [43] and the tools developed will be avail-
able to the public through a website when the manuscript is accepted for 
publication (the url of the website will be provided upon acceptance).

Funding
This research was partly supported by the National Institutes of Health (NIH) 
under Award Number R01HD076020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 23 January 2017   Accepted: 2 May 2017

References
 1. Elliott P, Wartenberg D. Spatial epidemiology: current approaches and 

future challenges. Environ Health Perspect. 2004;112(9):998–1006.
 2. Aylin P, Maheswaran R, Wakefield J, Cockings S, Jarup L, Arnold R, Wheeler 

G, Elliott P. A national facility for small area disease mapping and rapid 
initial assessment of apparent disease clusters around a point source: the 
UK Small Area Health Statistics Unit. J Public Health Med. 1999;21(3):289–
98. doi:10.1093/pubmed/21.3.289.

 3. California Cancer Registry. Age-adjusted invasive cancer incidence rates 
by county in California, 2009–2013. Based on December 2015 Extract. 
http://cancer-rates.info/ca/. Accessed on Jun 19, 2016.

Fig. 6 Illustration of two user-defined aggregate regions. Reported significance is calculated using the global scan test under the assumption of a 
square scan window

http://dx.doi.org/10.1186/s12942-017-0093-9
http://dx.doi.org/10.1093/pubmed/21.3.289
http://cancer-rates.info/ca/


Page 13 of 13Kronenfeld and Wong  Int J Health Geogr  (2017) 16:19 

 4. Wartenberg D. Analysis and interpretation of disease clusters and eco-
logical studies. J R Stat Soc Ser A Stat Soc. 2001;164(1):13–22.

 5. Quataert PKM, Armstrong B, Berghold A, Bianchi F, Kelly A, Marchi M, Mar-
tuzzi M, Rosano A. Methodological problems and the role of statistics in 
cluster response studies: a framework. Eur J Epidemiol. 1999;15(9):821–31.

 6. Beale L, Abellan JJ, Hodgson S, Jarup L. Methodologic issues and 
approaches to spatial epidemiology. Environ Health Perspect. 
2008;116(8):1105–10. doi:10.1289/ehp.10816.

 7. Kinkeldey C, MacEachren AM, Schiewe J. How to assess visual commu-
nication of uncertainty? A systematic review of geospatial uncertainty 
visualization user studies. Cartogr J. 2014;51(4):372–86.

 8. Gastner MT, Newman MEJ. Diffusion-based method for producing 
density-equalizing maps. PNAS. 2004;101(20):7499–504.

 9. Birch CPD, Chikukwa AC, Hyder L, Del Rio Vilas VJ. Spatial distribution of 
the active surveillance of sheep scrapie in Great Britain: an exploratory 
analysis. BMC Vet Res. 2009;5:23.

 10. Vanasse A, Demers M, Hemiari A, Courteau J. Obesity in Canada: where 
and how many? Int J Obes. 2006;30:677–83. doi:10.1038/sj.ijo.0803168.

 11. Nakaya T, Nakase K, Osaka K. Spatio-temporal modelling of the HIV epi-
demic in Japan based on the national HIV/AIDS surveillance. J Geogr Syst. 
2005;7:313–36. doi:10.1007/s10109-005-0008-3.

 12. Merrill DW. Use of a density equalizing map projection in analysing 
childhood cancer in four California counties. Stat Med. 2001;20:1499–513. 
doi:10.1002/sim.686.

 13. Pfeiffer D, Robinson T, Stevenson M, Stevens K, Rogers D, Clements A. 
Spatial analysis in epidemiology. Oxford: Oxford University Press; 2008.

 14. Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized rela-
tive risks for use in disease mapping. Biometrics. 1987;43(3):671–81.

 15. MacNab YC, Farrell PJ, Gustafson P, Wen S. Estimation in Bayesian disease 
mapping. Biometrics. 2004;60:865–73.

 16. MacEachren AM, Brewer CA, Pickle LW. Visualizing georeferenced 
data: representing reliability of health statistics. Environ Plan A. 
1998;30:1547–61.

 17. MacEachren AM, Robinson A, Hopper S, Gardner S, Murray R, Gahegan M, 
Hetzler E. Visualizing geospatial information uncertainty: what we know 
and what we need to know. Cartogr Geogr Inf Sci. 2005;32(3):139–60.

 18. Viard T, Caumon G, Lévy B. Adjacent versus coincident representations of 
geospatial uncertainty: which promote better decisions? Comput Geosci. 
2011;37:511–20.

 19. Newman TS, Lee W. On visualizing uncertainty in volumetric data: 
techniques and their evaluation. J Vis Lang Comput. 2004;15:463–91. 
doi:10.1016/j.jvlc.2003.09.001.

 20. Sui DZ, Holt JB. Visualizing and analysing public-health data using value-
by-area cartograms: toward a new synthetic framework. Cartographica. 
2008;43(1):3–20. doi:10.3138/carto.43.1.3.

 21. Tao M. Using cartograms in disease mapping. Ph.D. Dissertation, Univer-
sity of Sheffield, School of Geography. 2010.

 22. Groneberg DA, Schilling U, Scutaru C, Uibel S, Zitnik SE, Mueller D, 
Klingelhoefer D, Kloft B. Drowning—a scientometric analysis and data 
acquisition of a constant global problem employing density equalizing 
mapping and scientometric benchmarking procedures. Int J Health 
Geogr. 2011;10:55.

 23. Nowbar AN, Howard JP, Finegold JA, Asaria P, Francis DP. Global geo-
graphic analysis of mortality from ischaemic heart disease by country, 
age and income: statistics from World Health Organisation and United 
Nations. Int J Cardiol. 2014;174:293–8.

 24. Zell H, Quarcoo D, Scutaru C, Vitzthum K, Uibel S, Schöffel N, Mache S, 
Groneberg DA, Spallek MF. Air pollution research: visualization of research 
activity using density-equalizing mapping and scientometric bench-
marking procedures. J Occup Med Toxicol. 2010;5:5.

 25. Groneberg DA, Kloft B, Klingelhoefer D, Zitnik SE, Scutaru C. Traffic 
medicine-related research: a scientific analysis. BMC Public Health. 
2013;13:541.

 26. Boeckmann M, Rohn I. Is planned adaptation to heat reducing heat-
related mortality and illness? A systematic review. BMC Public Health. 
2014;14:1112.

 27. Bundschuh M, Groneberg DA, Klingelhoefer D, Gerber A. Yellow fever 
disease: density equalizing mapping and gender analysis of international 
research output. Parasit Vectors. 2013;6:331.

 28. Fricke R, Uibel S, Klingelhoefer D, Groneberg DA. Influenza: a scientomet-
ric and density-equalizing analysis. BMC Infect Dis. 2013;313:454.

 29. Gerber A, Klingelhoefer D, Groneberg DA, Bundschuh M. Silicosis: geo-
graphic changes in research: an analysis employing density-equalizing 
mapping. J Occup Med Toxicol. 2014;9:2.

 30. Sun S. A fast, free-form rubber-sheet algorithm for contiguous area 
cartograms. Int J Geogr Inf Sci. 2013;27(3):567–93. doi:10.1080/13658816.
2012.709247.

 31. Nakaya T. Featured graphic: ‘Geomorphology’ of population health 
in Japan: looking through the cartogram lens. Environ Plan A. 
2010;42:2807–8.

 32. Levison ME, Haddon W Jr. The area adjusted map: an epidemiological 
device. Public Health Rep. 1965;80(1):55–9.

 33. Merrill DW, Selvin S, Close ER, Homes HH. Use of density equalizing map 
projections (DEMP) in the analysis of childhood cancer in four California 
counties. Stat Med. 1996;15:1837–48.

 34. Selvin S, Merrill D, Erdmann C, White M, Ragland K. Breast cancer detec-
tion: maps of 2 San Francisco bay area counties. Am J Public Health. 
1998;88(8):1186–92.

 35. Bithell JF. A classification of disease mapping methods. Stat Med. 
2000;19:2203–15.

 36. Diggle PJ, Chetwynd AG. Second-order analysis of spatial clustering for 
inhomogeneous populations. Biometrics. 1991;47(3):1155–63.

 37. Neutra RR. Computer geographic analysis: a commentary on its use and 
misuse in public health. In: Lawson AB, Biggeri A, Böhning D, Lesaffre 
E, Viel J-F, Bertollini R, editors. Disease mapping and risk assessment for 
public health. Chichester: Wiley; 1999. p. 311–9.

 38. Chen J, Roth RE, Naito AT, Lengerich EJ, MacEachren AM. Geo-
visual analytics to enhance spatial scan statistic interpretation: an 
analysis of U.S. cervical cancer mortality. Int J Health Geogr. 2008;7:57. 
doi:10.1186/1476-072X-7-57.

 39. Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 
1997;26(6):1481–96.

 40. Cucala L, Demattei C, Lopes P, Ribeiro A. A spatial scan statistic for case 
event data based on connected components. Comput Stat. 2013;28:357–
69. doi:10.1007/s00180-012-0304-6.

 41. Alm SE. On the distribution of scan statistics of a two-dimensional Pois-
son process. Adv Appl Probab. 1997;29(1):1–18.

 42. Li W, Goodchild MF, Church R. An efficient measure of compactness for 
two-dimensional shapes and its application to regionalization problems. 
Int J Geogr Inf Sci. 2013;27(6):1227–50. doi:10.1080/13658816.2012.75209
3.

 43. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.
cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs Research Data, 
Nov 2014 Sub (2000-2012) <Katrina/Rita Population Adjustment>—
Linked to county attributes—Total U.S., 1969–2013 Counties, National 
Cancer Institute, DCCPS, Surveillance Research Program, Surveillance 
Systems Branch, released April 2016, based on the November 2015 
submission.

 44. Kronenfeld BJ. Manual construction of continuous cartograms through 
mesh transformation. Cartogr Geogr Inf Sci. 2017. doi:10.1080/15230406.
2016.1270775.

 45. Kulldorff M, Information Management Services, Inc. SaTScanTM v8.0: 
Software for the spatial and space–time scan statistics. 2009. http://www.
satscan.org/. Accessed 14 Apr 2017.

 46. Wernicke S. A faster algorithm for detecting network motifs. In: Proceed-
ings of the 5th workshop on algorithms in bioinformatics (WABI’05), Mal-
lorca, Spain, vol 3692 in Lecture Notes in Bioinformatics. Springer; 2005. p. 
165–77.

http://dx.doi.org/10.1289/ehp.10816
http://dx.doi.org/10.1038/sj.ijo.0803168
http://dx.doi.org/10.1007/s10109-005-0008-3
http://dx.doi.org/10.1002/sim.686
http://dx.doi.org/10.1016/j.jvlc.2003.09.001
http://dx.doi.org/10.3138/carto.43.1.3
http://dx.doi.org/10.1080/13658816.2012.709247
http://dx.doi.org/10.1080/13658816.2012.709247
http://dx.doi.org/10.1186/1476-072X-7-57
http://dx.doi.org/10.1007/s00180-012-0304-6
http://dx.doi.org/10.1080/13658816.2012.752093
http://dx.doi.org/10.1080/13658816.2012.752093
http://www.seer.cancer.gov
http://www.seer.cancer.gov
http://dx.doi.org/10.1080/15230406.2016.1270775
http://dx.doi.org/10.1080/15230406.2016.1270775
http://www.satscan.org/
http://www.satscan.org/

	Visualizing statistical significance of disease clusters using cartograms
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Statistical significance in maps

	Methods
	Scenario one: A priori designated region
	Scenario two: A posteriori designated region
	Aggregate regions and compactness metric

	Results
	Discussion
	Conclusion
	Authors’ contributions
	References




