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A B S T R A C T

One of the most robust approaches to the prediction of causal driver genes of complex diseases is 
to apply reverse engineering methods to infer a gene regulatory network (GRN) from gene 
expression profiles (GEPs). In this work, we analysed 794 GEPs of 1117 human whole-blood 
samples from Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects reported in the 
GSE112681 dataset. GRNs for ALS and healthy individuals were reconstructed by ARACNe-AP 
(Algorithm for the Reconstruction of Accurate Cellular Networks - Adaptive Partitioning). In 
order to examine phenotypic differences in the ALS population surveyed, several datasets were 
built by arranging GEPs according to sex, spinal or bulbar onset, and survival time. The designed 
reverse engineering methodology identified a significant number of potential ALS-promoting 
mechanisms and putative transcriptional biomarkers that were previously unknown. In partic
ular, the characterization of ALS phenotypic networks by pathway enrichment analysis has 
identified a gender-specific disease signature, namely network activation related to the radiation 
damage response, reported in the networks of bulbar and female ALS patients. Also, focusing on a 
smaller interaction network, we selected some hub genes to investigate their inferred pathological 
and healthy subnetworks. The inferred GRNs revealed the interconnection of the four selected 
hub genes (TP53, SOD1, ALS2, VDAC3) with p53-mediated pathways, suggesting the potential 
neurovascular response to ALS neuroinflammation. In addition to being well consistent with 
literature data, our results provide a novel integrated view of ALS transcriptional regulators, 
expanding information on the possible mechanisms underlying ALS and also offering important 
insights for diagnostic purposes and for developing possible therapies for a disease yet incurable.
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1. Introduction

A major challenge in transcriptomic research involves inferring the relationships among transcription factors (TFs) and their targets 
from gene expression profiles (GEPs) by making use of reverse engineering methods [1–3]. Reverse engineering is the process of 
deconstructing and analysing a pre-existing system (natural or artificial) to elucidate its underlying design, functionality, and com
ponents, with the aim of comprehending its design principles, functionality, and/or structure. It is often also for the purpose of 
replicating, enhancing, or redesigning the system. In the field of genomics, reverse engineering refers to the analytical process of 
deducing the regulatory networks and functional relationships among genes, proteins, and other molecular components within a given 
biological system. This computational approach involves the integration of experimental data, computational pipelines, and statistical 
techniques to infer the complex interactions that govern gene expression, protein-protein interactions, and metabolic/developmental 
pathways. Genomics-oriented reverse engineering aims to uncover the underlying biological mechanisms and signalling cascades, 
often with the goal of understanding pathological states and processes, identifying therapeutic targets, or elucidating the dynamics of 
cellular systems. This process is fundamental to unravelling the complexities of biological systems and advancing precision medicine.

Through this approach, the connectivity among naturally occurring genes is reconstructed in a large-scale gene regulatory network 
(GRN). Inferring a GRN from GEPs is useful not only for approximating patterns of gene regulation, but also for characterizing the 
impact that changes in gene expression may have on the structural and functional control of the GRN in response to certain cellular and 
environmental stimuli [4–6]. GRN analysis involves the reconstruction of the GRNs that represent interactions (the edges) between TFs 
and target genes (the nodes), enabling researchers to infer regulatory relationships and identify key drivers of disease processes. To 
date, GRN inference has yielded important insights into the molecular mechanisms of some complex and multifactorial diseases, such 
as cancers and neurodegenerative diseases [7–12]. In particular, the use of GRNs offers particular advantages for the elucidation of the 
mechanisms of some rare diseases such as amyotrophic lateral sclerosis (ALS). These present severe problems for clinicians, such as 
misleading or late diagnosis, high mortality rates, lack of therapy, or poor data management and patient selection. We contend that the 
use of GRNs to study complex and multifactorial diseases such as ALS offers great opportunities, allowing deregulated pathways, 
biomarkers, and potential therapeutic targets to be identified [13]. ALS is a heterogeneous neurodegenerative disorder caused by the 
degeneration of motoneurons [14]. The majority of cases (90 %), have no familial correlation (sALS) while the remaining 10 % of ALS 
cases are hereditary (fALS) [14]. One of the hallmarks of ALS is the presence of several inclusions formed by apparently disparate 
misfolded proteins, which are unrelated in sequence, structure, function, and localization [15]. ALS predominately affects rather than 
women (3:1 ratio) with survival rates depending on clinical manifestations and genetic defects. In fact, survival ranges from 2 to 5 
years from onset in most patients to 10 years or more in about 10 % of cases [16]. Currently, more than 30 candidate genes have been 
identified as being involved in ALS pathogenesis (http://alsod.iop.kcl.ac.uk/). Four major genes are associated with the onset of ALS: 
SOD1, TDP-43, FUS and C9orf72 [17]. These are joined by more than 20 other minor genes (e.g. ALS2, SETX, VAPB, FIG4, ERBB4, 
MATR3, ANG, OPTN, VCP, UBQLN2, CHMP2B, PFN1, hNRPA1 A2/B1, TUBA4A, NEK1, UNC12A, ANXA11) [18–20]. Mutations in 
these genes are responsible for about 70 % of fALS and about 12 % of sALS [18]. ALS can have a spinal onset (SALS), which is more 
frequent and has better survival prospects, or a bulbar onset (BALS), which is less frequent, and results in shorter survival times [21]. 
However, the two forms are difficult to distinguish in the early stages of the disease. In addition to these issues, and genetic variability 
between the sporadic and familial forms of ALS, there is a lack of definite information on factors influencing risk, rate of disease 
progression, and survival. These problems are compounded by gender differences and site of disease onset (SALS and BALS) [21]. It is 
likely that not all genes directly and/or indirectly involved in the disease have been identified to date. Also to be considered the 
limitations of preclinical animal models in advancing our understanding of ALS, a disease that in 90 % of cases has sporadic onset. 
Among the criticisms raised of animal models those of not taking into account the multifactorial nature of the diseases and thus not 
recapitulating the complexity of human neurodegenerative diseases [22]. However, most of our mechanistic knowledge about ALS 
comes from studies in animal models with a specific and well-defined genetic cause. The proteins encoded by ALS genes have 
apparently different functions, which prevents drawing a single picture representing the pathological mechanism of ALS. Therefore, 
targeting predictive methods to find links between the known mechanisms of ALS may represent a great opportunity for the expansion 
of mechanistic knowledge about the disease.

By reconstructing networks from diverse patient samples (and control samples), GRN analysis can identify regulatory modules that 
are consistently altered in ALS, regardless of the specific genetic mutations involved [23]. To appreciate and assess the value of GRN 
analysis in ALS study, it is important to compare it with other commonly used methods, such as differential expression analysis, 
weighted gene co-expression network analysis (WGCNA), and genome-wide association studies (GWAS). While differential expression 
analysis identifies individual genes that are up- or down-regulated, it lacks insight into gene interactions and is often noisy due to ALS 
heterogeneity. WGCNA analysis reveals gene clusters but does not capture causal relationships, leading to potential misinterpretations. 
GWAS identifies genetic variants linked to ALS but struggles to explain their functional role in disease progression. In contrast, GRN 
analysis uncovers regulatory interactions between genes, providing a systems-level view of gene regulation. This enables the identi
fication of key regulatory nodes and understanding how genetic variants influence gene expression and disease pathways, com
plementing GWAS findings. Hence, compared with to traditional methods like differential expression analysis, co-expression network 
analysis and GWAS, our approach, based on GRN analysis by ARACNe-AP, provides a more mechanistic and comprehensive under
standing of gene regulation in ALS [8,23,24].

The aim of this research work was to elucidate some still poorly understood aspects of the ALS by focusing on as yet unknown gene 
interconnections. Using a reverse engineering approach, we performed a large-scale in silico analysis [25,26] that allowed us to map 
the network of interactions between TFs that control ALS gene expression and identify novel gene interactions in the ALS transcrip
tional program.
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2. Results

2.1. Characterization of ALS phenotypic networks

The workflow to build the GRNs and subnetworks (subGRNs) from 794 ALS blood GEPs reported in GSE112681 dataset [25,26] is 
schematically represented in Fig. 1a–f.

All gene regulatory networks and subnetworks identified from ARACNe-AP were produced by processing data on 1635 human TFs 
(Table S1) [27]. The GO database was then used to compare the activity of the pathways associated with the different ALS phenotypic 
networks, obtained by ARACNe-AP and filtered with 95th percentile (perc) of mutual information (MI) (see 5. Materials and Methods). 
We thus identified seven lists of hub genes (Table S2) and the following ALS-associated networks: the ‘pathological’ (GRN1) versus the 
‘healthy’ (GRN2), the “disease-control’ (GRN3), the ‘spinal onset – SALS” (GRN4), the ‘bulbar onset - BALS’ (GRN5), the ‘female’ 
(GRN6) and the ‘male’ (GRN7) network. More details can be found in the hub gene lists (Table S2) and GRN1-7 plots (Figs. S1–S2).

The GO pairwise comparison between the pathological and healthy network revealed protein metabolism and radiation damage 
response among the top pathways in the pathological network (GRN1) (Fig. 2; Table 1a–b). In contrast, the biological processes in the 
healthy network (GRN2) (Fig. 2; Table 1a) were related to vascular biology involving several immune responses, platelet aggregation 
and apoptosis, transcription and translation, glucose and energy metabolism. These findings are consistent with the GO terms of 
another study focused on characterizing the normal heterogeneity of gene expression in blood cells [28]. Furthermore, as the char
acteristics of the data used to train the ARACNe-AP model have a huge influence on the information that can be obtained from the gene 
relationships [23], we separated ALS samples of both sexes in two groups, spinal-SALS and bulbar-BALS, to prepare GRN4-5 (Table 1b), 
and then we analysed the opposite clustering of GEPs, assembling female and male patients of both at disease-onset, respectively in 
GRN6-7 (Fig. 2; Table 1c).

In these four networks (GRN4-7), GEPs of ALS patients were further arranged for survival time (<1 year, from 1 to 3 years, from 3 to 
5 years, from 5 to 10 years), as schematically represented in Figs. S1a–b (see 5. Materials and Methods). The stratification of ALS 
patients was aimed at identifying the most different pathways mediating the spinal and bulbar ALS phenotypes, as well as the 
otherwise undetectable gender response to disease onset. Another issue to consider when interrogating eventual gender modulation or 
gender prevalence in spinal or bulbar ALS trajectories is the possible bias of qualitative analysis of biochemical pathways related to sex 
hormones regulation [29]. For this reason, the hub gene lists of GRN6-7 (Table S2) were cleared of genes implicated in gonadal 
differentiation [29] (see 5. Materials and Methods). Interestingly, the pathway analysis showed no significant differences between 
female and male patients (Table 1c), with the exception of the radiation response in the female network (Fig. 2). Furthermore, the hub 
genes (Table S2) were compared with the pattern of ALS survival-associated upregulated genes identified by Swindell et al. [25], to 
identify a functional link between survival risk markers and our transcriptional regulators. We thus found in the spinal, bulbar and 

Fig. 1a–f. Research pipeline of ALS consensus network building. The algorithm ARACNe-AP used as input files: (a) 794 GEPs from GSE112681 
dataset, and (b) a list of regulators comprising human TFs (see Table S1) to build: (c) GRN1-7, pruned by 95th percentile of mutual information; and, 
(d) four subnetworks of some hub genes selected among top 5 % (TP53) and among 30 % (SOD1, ALS2, VDAC3) of the GRN1 and GRN2. Data 
analysis and interpretation was carried out by genomic approaches of (e) biological process enrichments for GRN1-7 and (f) functional gene 
clustering for hub genes to investigate underlying pathophysiological mechanisms and their normal counterparts.
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female networks (GRN4-6) two genes (SLC40A1, CLEC7A) out of the 30 upregulated genes associated with worse prognosis and no 
targets among the 31 upregulated genes associated with good prognosis. The male network (GRN7) was represented only by the 
SLC40A1 gene. Double crossover was detected in GRN1 and GRN3, while in the ’healthy network’ GRN2 the VRK3 gene was evaluated 
as associated with good prognosis.

A first analysis performed by comparing the filtered hub gene lists (Table S2) shows numerical variation between the different 
groups: GRN1 (n = 1313), GRN2 (n = 1305), GRN3 (n = 1381), GRN4 (n = 1339); GRN5 (n = 1239); GRN6 (n = 1415), GRN7 (n =
1259). As expected, most genes are shared between GRNs, with some genes specific to GRN1 (n = 7), GRN2 (n = 251), GRN3 (n = 23), 
GRN4 (n = 18); GRN5 (n = 46); GRN6 (n = 91), GRN7 (n = 21). These differences could underlie the observed variations in GRN 
morphology (Figs. S1–2). Specifically, the shape of the pathological gene regulatory pattern (GRN1) looks like an inverted ’L’ with an 
oblong central stem and a small upward folded leg. Several small lateral branches of nodes are also evident, including a more 
descending branch of genes. Some large nodes (red circles) are scattered in the central stem. The shape of the normal pattern (GRN2) 
results from a mainly horizontal distribution, with a rounded central body, nodes on the inside and a flexed lateral tail. The disease 
control network (GRN3) retains the pathological shape and healthy branches appear to have been lost or heavily pruned (Fig. S1).

The spinal (GRN4) and bulbar (GRN5) networks appear similar, both having a symmetrical division with a cluster of hubs on each 
side, but the bottleneck is more densely connected in the spinal network than in the bulbar network (Fig. S2). Comparing the graphical 
view of the female (GRN6) and male (GRN7) networks, a number of differences become apparent: (i) a dividing line and a narrower 
constraint point in the male network (GRN7); (ii) in the female network (GRN6) the branches are mirrored, with a more regular 
distribution than in the male SLA ALS network developed on one side only (Fig. S2). The analysis of geometric differences in the spatial 
organization of GRNs may suggest concepts describing the pairwise relationship between the shape of network and their gene con
nections associated with ontological enrichments.

2.2. Analysis of TP53, SOD1, ALS2 and VDAC3 sub-networks

Surprisingly, in the top 5 % of hub genes in networks generated from ALS patient data, we found no known ALS-associated genes 
except for the tumour suppressor gene TP53 (OMIM#191170). Although the TP53 function has been extensively associated to 
neoplastic processes, this gene is also known to play a role in neurodegeneration, resulting in neural apoptosis in response to several 
insults [30,31]. In addition, recent studies showed that TP53 is a central driver in ALS associated with mutant SOD1 or C9orf72 [32,33] 
and, more broadly, that it is included in the ALS transcriptional signature [34]. Next, searching among hub genes for known 
ALS-associated genes, we found, in the top 30 % of the GRNs, the superoxide dismutase 1 gene (SOD1; OMIM#147450) and the Alsin 
Rho guanine nucleotide exchange factor ALS2 gene (ALS2; OMIM#606352) [35]. The plot of SOD1 subnetwork revealed no common 
targets between pathological and healthy conditions. In particular, subGRN1 showed 14 new putative disease targets, all strongly 
implicated in morphological development and cell viability, while several known SOD1-interacting partners involved in mitochondrial 
metabolism were found in the healthy subGRN2. In contrast, most of the ALS2-interacting genes found in both sub-networks have 
never been associated with ALS. To sum up, we identified 8 new genes out of 11 in subGRN1 and another 4 new genes, encoding 

Fig. 2. Representation of key findings of pathway analysis of GRN hub genes. In shaded boxes, it is highlighted the most significant difference 
obtained from the GO pairwise comparison (see Table 1a–c) associated with the ‘response to light/radiation’ emerged in certain phenotypic cluster 
assembled in GRNs.
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Table 1a-c 
Pathway analysis of: a. Pathological (GRN1), healthy (GRN2) and disease-control network (GRN3); b. spinal-onset (GRN4) and bulbar-onset ALS 
network (GRN5); c. female (GRN6) and male ALS patients’ network (GRN7). GO analysis of hub gene list (Table S2) calculated with 95th perc of MI of 
ARACNe-AP algorithm was performed using Fisher’s exact test and Bonferroni correction for P < 0.05; Panther Overrepresentation test (release 
20210224; Panther v.16.0 released 2020-12-01). In bold, the first ranked GO pathways of interest.

GO Biological Process Ref. list Our list Expected Fold Enrichment +/− P value

A
Pathological network (GRN1) response to light stimulus 317 46 19,81 2,32 + 1,20E-02

response to radiation 453 59 28,31 2,08 + 7,56E-03
negative regulation of metabolic process 2952 249 184,47 1,35 + 1,70E-02
negative regulation of biological process 5187 405 324,14 1,25 + 8,08E-03
regulation of metabolic process 6586 496 411,57 1,21 + 1,46E-02
cellular protein metabolic process 3219 268 201,16 1,33 + 1,75E-02
cellular macromolecule metabolic process 4442 353 277,58 1,27 + 1,43E-02
cellular process 15074 1060 941,99 1,13 + 5,55E-10
protein metabolic process 3807 308 237,9 1,29 + 2,20E-02
primary metabolic process 6869 511 429,25 1,19 + 3,43E-02

Healthy network (GRN2) regulation of transport 1732 158 107,98 1,46 + 4,34E-02
regulation of biological process 11528 806 718,72 1,12 + 1,52E-02
biological regulation 12249 848 763,67 1,11 + 2,72E-02
multicellular organismal process 6584 494 410,48 1,2 + 1,67E-02
regulation of cellular process 11076 777 690,54 1,13 + 2,25E-02
cellular process 15074 1054 939,79 1,12 + 3,08E-09

Disease-control network (GRN3) response to light stimulus 317 47 20.84 2.26 + 1.38E-02
response to radiation 453 60 29.78 2.01 + 1.54E-02
cellular protein metabolic process 3219 281 211.63 1.33 + 1.20E-02
cellular macromolecule metabolic process 4442 371 292.04 1.27 + 9.11E-03
cellular process 15074 1122 991.03 1.13 + 3.63E-12
macromolecule metabolic process 5743 458 377.57 1.21 + 3.53E-02
primary metabolic process 6869 538 451.60 1.19 + 1.83E-02
negative regulation of biological process 5187 420 341.01 1.23 + 2.73E-02
regulation of biological process 11528 849 757.90 1.12 + 1.16E-02
biological regulation 12249 899 805.30 1.12 + 3.58E-03
regulation of metabolic process 6586 521 432.99 1.20 + 1.05E-02
regulation of cellular process 11076 820 728.18 1.13 + 1.13E-02

B

Spinal network (GRN4) cellular protein metabolic process 3219 274 205,85 1,33 + 1,29E-02
cellular macromolecule metabolic process 4442 367 284,06 1,29 + 1,85E-03
cellular process 15074 1087 963,95 1,13 + 8,27E-11
macromolecule metabolic process 5743 451 367,25 1,23 + 1,02E-02
protein metabolic process 3807 317 243,45 1,3 + 9,56E-03
primary metabolic process 6869 530 439,26 1,21 + 3,90E-03
negative regulation of metabolic process 2952 251 188,77 1,33 + 4,77E-02
regulation of metabolic process 6586 507 421,16 1,2 + 1,21E-02

Bulbar network (GRN5) response to light stimulus 317 44 18,69 2,35 + 1,03E-02
response to radiation 453 55 26,7 2,06 + 2,63E-02
response to abiotic stimulus 1125 108 66,31 1,63 + 2,39E-02
response to organic substance 2688 219 158,45 1,38 + 1,52E-02
negative regulation of metabolic process 2952 235 174,01 1,35 + 3,01E-02
negative regulation of biological process 5187 389 305,75 1,27 + 1,91E-03
regulation of metabolic process 6586 472 388,22 1,22 + 8,69E-03
negative regulation of cellular process 4785 353 282,06 1,25 + 4,54E-02
regulation of primary metabolic process 5707 412 336,41 1,22 + 3,69E-02
cellular process 15074 996 888,56 1,12 + 1,81E-08

C

Female network (GRN6) response to radiation 453 60 30,42 1,97 + 3,02E-02
negative regulation of biological process 5187 426 348,32 1,22 + 4,67E-02
multicellular organismal process 6584 525 442,13 1,19 + 4,93E-02
cellular process 15074 1143 1012,25 1,13 + 9,27E-12
negative regulation of biological process 5187 426 348,32 1,22 + 4,67E-02
multicellular organismal process 6584 525 442,13 1,19 + 4,93E-02
cellular process 15074 1143 1012,25 1,13 + 9,27E-12

Male network (GRN7) cellular protein metabolic process 3219 263 193,5 1,36 + 4,04E-03
cellular macromolecule metabolic process 4442 342 267,02 1,28 + 1,09E-02
cellular process 15074 1010 906,12 1,11 + 1,89E-07
protein metabolic process 3807 302 228,85 1,32 + 5,47E-03
primary metabolic process 6869 495 412,91 1,2 + 2,24E-02
cellular protein metabolic process 3219 263 193,5 1,36 + 4,04E-03
cellular macromolecule metabolic process 4442 342 267,02 1,28 + 1,09E-02
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zinc-finger proteins in subGRN2. Within the same cut-off point as the SOD1 and ALS2 genes, we also identified VDAC3 
(OMIM#610029), a gene encoding an important mitochondrial protein also thought to be related to neurodegeneration due to its role 
as a sensor of redox state and protection of mitochondria from oxidation [36,37]. Moreover, a putative impact of VDAC3 in ALS has 
recently been highlighted by our group [37]. Briefly, the regulatory scenario related to VDAC3 showed 12 genes in subGRN1, an 
additional 12 genes in subGRN2 and two common nodes. Considering the still limited knowledge about the regulation and tran
scriptional interactions of VDAC3, the inferred GRNs provide important information to define the role of this gene in the pathological 
context. Data produced by these analyses summarize the plot information of molecular interactions related to the first-neighborhood of 
four hub genes, distinguishing two types of results, red for the pathological sub-network (subGRN1) and blue for the healthy 
sub-network (subGRN2), further grouped as ‘known’ and ‘novel’ target genes, based on the available literature.

2.2.1. TP53 sub-networks
Consistent with the TP53 gene’s functions as both a transcriptional regulator (Table S1) and effector, two types of connections were 

deduced from this hub as incoming edges, i.e. a set of putative upstream genes acting as TFs, and outgoing edges representing p53 
downstream targets (Fig. 3a–b). The analysis of TP53-related subGRN1 and subGRN2 revealed the articulated transcriptional dynamics 
of the disease. Moreover, most of the p53 targets in both sub-networks are unique and describe poorly investigated activities of TP53 
with respect to known mechanisms. Regarding the upstream genes identified by our analysis, 4/7 TFs have never been associated with 
ALS (PURA, ZFP90, ZNF410, ZNF717) (Fig. 3b), nor have their 43 downstream interactors. In the subGRN2 sub-network, 24/26 new 
downstream targets were identified and only one gene was a common target between the two sub-networks; this had also not been 
detected previously (Fig. 3b).

Seven TFs (FOXM, FLYWCH1, KLF13, PURA, ZFP90, ZNF410, ZNF717) whose transcripts have been identified in studies of ALS 
patients are found in our TP53 sub-network (Fig. 3a–b). In addition to some zing-finger factors, we detected the PURA (Purine Rich 
Element Binding Protein A) gene, encoding a highly conserved protein with regulatory roles in replication and transcription, RNA 
transport and mRNA translation. PURA is also involved in RNA foci formation, as recently found in ALS/FTD [38]. All downstream 
pathological targets observed were novel and most of their functions are associated with some neurodegeneration mechanisms, 
including ALS-related ones. For instance, we detected the genes encoding a-Raf, Bclaf1 and Ppm1m, known mediators of p53-related 
oncogenic signalling [39]. Other predicted interactions, although not directly related to TP53, are known to play a role in ALS. One of 
these involves the DAGLA gene, encoding diacylglycerol lipase alpha, the main enzyme involved in the biosynthesis of endocanna
binoids, important for their antioxidant properties and action in multiple neurotoxic pathways and also related to ALS [40]. Another 
interesting finding concerns NUP54, the gene encoding nucleoporin 54 - a member of the nuclear pore complex, which mediates the 
shuttling of RNA cargoes, proteins, and TFs from the cytoplasm to the nucleus. Indications for the pathological cytoplasmic accu
mulation of RNA-binding proteins have been addressed due to defects in the nuclear import and Nup abnormalities in ALS and related 
neurodegenerative diseases [41].

In addition, the SEMA3E gene, belonging to the semaphorin gene family, encodes extracellular signalling proteins involved in the 
cytoskeleton organization and development of many tissues, especially in the nervous system for axonal growth. In particular, sem
aphorins have been extensively investigated in ALS pathobiology as candidates of axonopathy and muscle denervation [42]. Another 
member of the TP53 downstream group, the CSTF1 gene, encodes one of three subunits of the cleavage stimulation factor implicated in 
the polyadenylation and 3′-end cleavage of pre-mRNAs. In this regard, upregulation of CSTF1 linked to altered RNA metabolism was 
revealed in the SOD1G86R mouse model [43]. Recently, it has been reported that CSTF1 expression is significantly elevated in the 
peripheral blood of Alzheimer’s disease (AD) patients compared with controls, proving its potential diagnostic value [44]. Also of 
interest is that XPR1 was identified as a novel susceptibility locus for progressive supranuclear palsy, whose clinical manifestations 
overlap with ALS and Parkinson’s disease (PD) [45]. In addition, in a study in an ALS Drosophila melanogaster model with defects in FUS 
protein, it was shown that knockdown of Xrp1 in motor neurons rescues the phenotypes of ALS-mutant FUS flies [46].

For a clear presentation of the data, targets sharing some functional properties and cooperate in the same pathway were clustered in 
two main groups: the cytoskeleton and crosstalk between intracellular vesicles (ELFN2, ERLIN2, FGD4, FPGT, FYCO1, IL5F/IL36 R N, 
LRRC7, MAGEA2B, MRPS18A, PPP3CA, RABEPK, TCTN1, TTC4) and the endosomal-lysosomal pathway (FN1, NAGPA, REP15, 
RNASE1, VWC2, WFDC9). Both pathways, already associated with ALS, have recently come to attention, showing a synergistic 
connection between mechanisms and organelles (vesicular transport, Golgi, endolysosomal and mitochondrial systems) involved in 
the regulation of neuronal trafficking [47].

Overall, we can speculate that TP53 interaction maps are congruent with altered blood-specific transcriptional regulation for two 
main reasons: (i) the impairment of the endolysosomal system implies a dysfunction of autophagy, considered one of the key p53- 
mediated signalling events, as already reported for several neurodegenerative disorders [48]; (ii) the accumulation of extracellular 
vesicles as vehicles of misfolded proteins detectable in ALS patients’ biological fluids, such as in blood and cerebrospinal fluid; 

Panther classification system: The 2nd column contains the number of genes in the reference list that map to this annotation data category. The 3rd 
column contains the number of genes in your uploaded list that map to this annotation data category. The 4th column contains the expected value, 
which is the number of genes you would expect in your list for this category, based on the reference list. The 5th column shows the Fold Enrichment of 
the genes observed in the uploaded list over the expected (number in your list divided by the expected number). If it is greater than 1, it indicates that 
the category is overrepresented in your experiment. Conversely, the category is underrepresented if it is less than 1. The 6th column has either a + or -. 
A plus sign indicates over-representation of this category in your experiment: you observed more genes than expected based on the reference list (for 
this category, the number of genes in your list is greater than the expected value). Conversely, a negative sign indicates under-representation. The 7th 
column is the raw p-value as determined by Fisher’s exact test.
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Fig. 3a–b. The TP53 subnetwork. (a) The TP53 subnetwork was obtained by including all the genes that have P < 1.0 × 10-8 based on their 
pairwise MI with TP53. For representation purposes, only the first neighbors are shown. Red nodes indicate the target genes interacting with TP53 in 
the pathological network. Blue nodes represent the predicted interactions in the healthy network. Grey node is referred to common target in both 
networks. Red lines indicate the upstream inferred arcs in the pathological network (i.e. putative TP53-related TFs). The size of each circle is 
proportional to the number of the gene interactions. For hubs with more than 100 interactions, the exact number of first neighbors is shown beside 
the gene symbol. 
In subGRN1, TP53 shows to be modulated by seven putative TP53-related TFs (FLYWCH1, FOXM1, KLF13, PURA, ZFP90, ZNF410, ZNF717), and in 
turn, to modulate 43 genes (ARAF, BCLAF1, C6orf201, C9orf135, CARTPT, CSTF1, DAGLA, DDX19-DDX19L, ELFN2, ERLIN2, FGD4, FN1, FPGT, 
FYCO1, IL1F5, KRT33B, LRRC7, MAGEA2B, MAT2A, MRPS18A, NAGPA, NUP54, ODF4, OR13F1, PHYHIP, PPM1M, PPP3CA, PRPF6, PSTK, RABEPK, 
REP15, RGS9BP, RNASE1, ROM1, SEMA3E, SLC2A8, SNORA65, TCTN1, TSPYL6, TTC4, VWC2, WFDC9, XPR1). 
The subGRN2 contains 26 genes (AP2B1, C16orf56, CD86, CD99L2, CDC42SE2, CDCA5, CDH24, COMMD1, COQ5, DBT, DHRS1, EYA4, FRAG1, 
GOSR1, GTF3C2, LIMD1, MS4A4A, NUDT11, NUMB, PCDH9, REXO2, SAA4, SPG21, SUOX, ULK1 and UST). The only common target (grey node) 
between subGRN1 and subGRN2 is a non-coding RNA gene, LCAP (L1CAM-AS1). (b) Analysis of known (book symbol) and novel (flag symbol) 
interacting partners in the pathological and healthy subnetworks were schematically summarized. n/a = not available information.
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suggesting their use as clinical biomarkers [49].
As for the healthy subnetwork, although most of the TP53-interacting partners were unknown to date, the identified signalling 

pathways correlate well with many responses evoked by p53. Among these are indeed found autophagy, tumour suppression, cell cycle 
and chromatin assembly, dysregulation of RNA polymerase III gene and inflammation [39]. We also found the expected enrichment of 
interplaying organellar-secretory pathways, demonstrating the relevance of p53 in controlling survival mechanisms involving auto
phagy and endocytosis. An interesting target was the COMMD1 gene, whose functions range from copper homoeostasis and sodium 
transport to regulation of the NF-κB pathway and expression of hypoxia-inducible factor-1α (HIF-1α)-mediated genes [50]. Although 
there is no evidence for a direct interaction with p53, several COMMD1-influenced factors may induce activation of the p53 pathway, 
such as neurotoxicity due to copper accumulation, copper-mediated oxidative stress through protein aggregation between COMMD1 
and mutated SOD1, and altered modulation with nuclear lamin A, leading to premature senescence [51]. Therefore, the failure to 
identify the TP53-COMMD1 interaction in the pathological subnetwork allows us to postulate that altered regulation of copper ho
meostasis may be one of the main contributors in ALS pathogenesis, as well as one of the most studied mechanisms in SOD1 mutant 
mice to reverse the signs of ALS disease by copper therapy [52]. The common downstream target of both subnetworks was 
LCAP/L1CAM-AS1 (lung carcinoma-associated 10), a novel long intergenic non-coding RNA (lncRNA). As few studies have investi
gated lncRNA-disease associations, we found only one transcriptional analysis (E-GEOD-59612) in the Open Targets Platform (https:// 
platform.opentargets.org/), showing significant downregulation (Log2 -1.9; p-value 2.28 × 10-3) in controls compared with glioma 
patients [53].

Fig. 4a–b. The SOD1 subnetwork. (a) The SOD1 subnetwork was obtained by including all the genes that have P < 1.0 × 10-8 based on their 
pairwise MI with SOD1. For representation purposes, only the first neighbors are shown. Red nodes indicate the target genes interacting with SOD1 
in the pathological network (subGRN1). Blue nodes represent the predicted interactions in the healthy network (subGRN2). The size of each circle is 
proportional to the number of the gene interactions. For hubs with more than 100 interactions, the exact number of first neighbors is shown beside 
the gene symbol. In subGRN1, SOD1 shows to interact with 14 genes (ALX4, CREB3, FOXA1, NEUROG3, PAX5, RORB, SOX13, ZNF2, ZNF280A, 
ZNF513, ZNF555, ZNF594, ZNF747, ZNF93), and with 4 genes (BCL6, ETV4, TBX6, TSHZ1) in the subGRN2. (b) Analysis of known (book symbol) 
and novel (flag symbol) interacting partners in the pathological and healthy subnetworks were schematically summarized.
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2.2.2. SOD1 sub-networks
In the SOD1 pathological subnetwork, we found a remarkable enrichment of genes associated with pathways related to neuronal 

development, namely: ALX4, FOXA1, NEUROG3, PAX5, RORB/NR1F2, SOX13, ZNF2, ZNF280A, ZNF513, ZNF555, ZNF594, ZNF747 
and ZNF93 (Fig. 4a–b). In contrast, genes involved in the role of counteracting oxidative stress, which relate to the main physiological 
function performed by the SOD1 gene, are mostly found in the healthy subnetwork (Fig. 4a–b). This evidence is compatible with the 
notion that supersaturated proteins, like SOD1, may be are involved in ALS due to their propensity to aggregate, rather than because of 
their biological function [15]. In this regard, it is known that wild-type SOD1 produces misfolded aggregates in spinal cord of ALS 
patients [54].

Considering FOXA1, this gene is known to regulate midbrain dopaminergic neuron development [55], and the NEUROG3 gene 
controls the spinal cord gliogenesis [56].

Evidence of their interaction has been provided and, in particular, co-expression of Neurog3 and Foxa2 has been observed in the 
mouse ventral spinal cord, probably aimed at controlling the correct specification of ventral progenitors of serotonergic neurons.

[57]. The PAX5 gene, known for its involvement in the maintenance of neural progenitors in the human brain, has been identified 
as a marker of selectively vulnerable excitatory neurons in the entorhinal cortex, also expressed in neurofibrillary inclusions of AD 
patients [58]. Regarding the CREB3 gene, it is strongly associated with the expression of several genes involved in endoplasmatic 
reticulum (ER) and Golgi stress response [59]. In contrast, ALX4 and SOX13 are genes implicated in embryonic development and cell 
fate determination [60]. Taken together, these findings underscore a lesser known activity of SOD1 as a putative neuromodulator of 
synaptic transmission and activation of the transduction pathway involving muscarinic acetylcholine receptors, the most abundant 
receptors type in the CNS [61]. Moreover, it is noteworthy that the calculated interactive pattern was not based on the mutated form of 
SOD1, but the gene relationships detected involved the SOD1 wild type, as a hub gene, and its binding partners that are presumably 
affected in the pathological condition. This could help to understand the possible steps that SOD1 is able to move in the molecular 
chessboard, especially in light of the pathogenic implication of wild-type SOD1 in ALS cases not linked to SOD1 mutations [62].

In contrast, genes involved in the role of counteracting oxidative stress, which is consistent with the main physiological function 
performed by the SOD1 gene, are mostly found in the healthy subnetwork (Fig. 4a–b). Among them, we found the BCL6 and ETV4 

Fig. 5a–b. The ALS2 subnetwork. (a) The ALS2 subnetwork was obtained by including all the genes that have P < 1.0 × 10− 8 based on their 
pairwise MI with ALS2. For representation purposes, only the first neighbors are shown. Red nodes indicate the target genes interacting with ALS2 in 
the pathological network (subGRN1). Blue nodes represent the predicted interactions in the healthy network (subGRN2). The size of each circle is 
proportional to the number of the gene interactions. For hubs with more than 100 interactions, the exact number of first neighbors is shown beside 
the gene symbol. ALS2 shows to interact with 11 genes (ADNP, E2F2, FOXP3, SP6, TCF7, ZBTB5, ZFP90, ZIC1, ZNF268, ZNF620, ZNF780B) in 
subGRN1, and with 4 genes (GLIS3, ZNF439, ZNF687, ZNF763) in subGRN2. (b) Analysis of known (book symbol) and novel (flag symbol) 
interacting partners in the pathological and healthy subnetworks were schematically summarized. n/a = not available information.
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genes, which have not yet been identified as SOD1 partners. The authors of the GSE112681 dataset [25,26] used in this study, 
identified the BCL6 gene among the upregulated genes associated with hypoxia and inflammation. BCL6, in the context of inflam
matory and cell death pathways, can determine both activation and inhibition of TP53 transcription and/or p53 translation, depending 
on genomic instability [63]. The potential BCL6-SOD1 complex could therefore represent a novel intermediate of p53-mediated 
mitochondrial apoptosis [64]. The role of ETV4 has been more documented in the pathological than in the normal context. In 
particular, apoptosis seem to be triggered by upregulation of ETV4 in response to lipid signalling defects, as observed in oligoden
drocytes of SOD1G37R mice [65].

Therefore, we cannot exclude that the unusual interplay among these genes is an information inferred by ARACNe-AP simulations. 
In fact, not all impaired gene interactions lead to up or down-regulation, but sometimes they are missed in the pathological condition.

Fig. 6a–b. The VDAC3 subnetwork. (a) The VDAC3 subnetwork was obtained by including all the genes that have P < 1.0 × 10− 8 based on their 
pairwise MI with VDAC3. For representation purposes, only the first neighbors are shown. Red nodes indicate the target genes interacting with 
VDAC3 in the pathological network (subGRN1). Blue nodes represent the predicted interactions in the healthy network (subGRN2). Grey nodes are 
the two common targets shared by both networks. The size of each circle is proportional to the number of the gene interactions. For hubs with more 
than 100 interactions, the exact number of first neighbors is shown beside the gene symbol. VDAC3 shows to interact with 12 genes (BACH1, E4F1, 
HOXD1, HOXD10, LMX1B, PLAGL1, POU4F3, ZBED5, ZHX2, ZNF491, ZNF70, ZNF786) in subGRN1, and with 12 genes (ESR2, FOXN4, HES4, 
HOXB3, IRF5, POU3F3, REXO4, TCF21, ZNF197, ZNF420, ZNF648, ZNF85) in subGRN2. Only two common targets (grey nodes) between GRN1 and 
GRN2 are found (THRA, ZNF546). (b) Analysis of known (book symbol) and novel (flag symbol) interacting partners in the pathological and healthy 
subnetworks were schematically summarized. n/a = not available information.
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2.2.3. ALS2 sub-networks
The regulatory framework obtained for the ALS2 gene (Fig. 5a–b) shows that both subnetworks are enriched mainly in zinc-finger 

transcription factors (ZF-TFs) which control the expression of multiple genes involved in cell proliferation and cell fate.
Although the identified ZF-TFs are not all well characterized, we found some of them associated with a highly CNS-specific 

expression pattern. In particular, the ZIC1 gene (expressed in the cerebellum [66]) and the ZFP90 gene (expressed in the caudate 
nucleus and substantia nigra [67]) are found in subGRN1; while the ZNF687 gene (expressed in the amygdala, corpus callosum, 
cerebellum, caudate nucleus, and spinal cord [67]) is located in subGRN2. Furthermore, the ALS2 network analysis revealed at least 
three genes known to be associated with pathological events (ADNP, FOXP3, TCF7), supporting the validity of the predictions. In fact, 
there is ample evidence of the neurotrophic function of the ADNP (activity-dependent neuroprotective protein) gene, which is 
implicated in many neurodegenerative disorders (AD, PD and ALS) but also in neuropsychiatric disorders, such as schizophrenia and 
autism [68,69]. With regard to FOXP3, its upregulation in the T-helper cells of ALS patients has been defined as a potential marker of 
the early phase of the disease [70]. In our case, however, the original datasets did not distinguish ALS samples according to clinical 
progression, and so we were unable to prepare more time-specific matrices (see 5. Material and Methods). Nevertheless, this observation 
could be interpreted as a useful confirmation of blood-specific regulatory signals. Finally, the TCF7 (Transcription Factor 7) gene has 
been described as one of the “23 potential master regulators in ALS motor neuron degeneration” [13].

2.2.4. VDAC3 sub-networks
The networks obtained for the VDAC3 gene (Fig. 6a–b), represent the first attempt to characterize and interpret the regulatory 

pathways related to this gene.
In the pathological subGRN1 subnetwork, we found some genes specifically implicated in defining the characteristics of the spinal 

motor neurons (HOXD1, HOXD10, LMX1B) and in the development of the oculomotor system (BRN3A/POU4F, ZHX2) [71]. Indeed, 
HOXD1 and HOXD10 genes are known to coordinate the dorsal and lumbar specification of motor neurons [72] (Fig. 6a–b). LMX1B is 
an evolutionarily conserved TF that, in association with LMX1A, orchestrates the complex temporal and spatial gene expression of 
spinal cord dorsal horn neurons and midbrain dopaminergic neurons [73]. The POU4F1 gene (also known BRN3A) regulates the 
morphology and functional diversity of retinal ganglion cells [74], while the ZHX2 gene functions as a transcriptional repressor of the 
developing retina [75]. In addition, a small group of genes in the VDAC3 network (BACH1, E4F1, PLAGL1) has been recognized to be 
part of the p53 pathway. In particular, BACH1 is a transcriptional suppressor that heterodimerizes with small Maf proteins and binds to 
Maf recognition elements in the promoters of target genes related to the oxidative stress response [76]. E4F1 is another transcriptional 
repressor, which can also function as a ubiquitin ligase mediating the ubiquitination of chromatin-associated p53 and directly con
trolling genes involved in mitochondrial functions and cell-cycle checkpoints [77], its deficiency results in oxidative stress-mediated 
cell death. The PLAGL1 gene, also known as Zac1, seems to be implicated in neural plasticity mechanisms in the mouse model [78,79] 
as well as in the mitochondrial apoptosis, being a direct target of p53 [80]. In the healthy subGRN2 subnetwork, we found three genes 
(ESR2, HES4, IRF5) functionally related to neuroinflammatory mechanisms. ESR2 gene encodes a member of the estrogen receptor 
family that influences mitochondrial membrane permeabilization in response to toxic events, such as ischemic brain injury and 
neurodegeneration [81]. Epigenetic alteration of the HES4 gene promoter is associated with striatal degeneration in post-mortem 
brains of Huntington disease patients [82]. The IRF5 gene is a known key mediator of innate and acquired immunity able to regu
late numerous immune cells and pro-inflammatory cytokines [83]. Interestingly, its involvement in mediating neuronal injury was 
identified in a recent work, showing that knockdown of IRF5 in NSC-34 cells inhibits apoptosis and mitochondrial redox homeostasis 
[84].

The subGRN2 also showed a group of genes associated with CNS development, such as FOXN4, implicated in retinogenesis and 
spinal neurogenesis [85]. In the same network the following genes have been also found: HOXB3, mainly investigated in PD mice 
models for its role in the development of dopaminergic neurons [86]; POU3F3, also named Brain-1, a well-known inhibitor of apoptosis 
and involved in neural development; it appears to play a central role in developmental delays and/or intellectual disability [87]. 
Moreover, the ZNF197 gene regulates the DNA methylation pattern in the placenta, which is influenced by copper metabolism [88], 
and ZNF420 (also named Apak) is a KRAB-type zinc-finger protein that negatively regulates p53-mediated apoptosis [89]. Also, the 
involvement of the THRA gene in human cortical development has recently been discovered, with neurocognitive and sensory-motor 
deficits in cases of its downregulation [90]. These results support the known role of mitochondrial ROS sensor attributed to VDAC3 
[36] together its involvement in the organelle functions. These VDAC3 functions are well correlated with the oxidative stress linked to 
mitochondrial dysfunction and neurodegeneration [91]. Specifically, the presence of overoxidized cysteines in VDAC3 from ALS 
samples is reported [37] while in physiological contexts the single cysteines of VDAC3 are devoid of such modifications, thus able to 
form S-S bonds with protein interactors [36,37]. This would suggest that oxidative damage typical of ALS produces structural and 
functional defects at VDAC3 capable of both modifying the pool of its interactors and limiting its role as a sensor of mitochondrial 
oxidative state.

Overall, the analysis of the VDAC3 subnetworks, pathological and healthy, suggests that VDAC3 may have a role in neuro
inflammatory mechanisms but also in the development of spinal motor neurons and the oculomotor system. These findings comple
ment the expression data from the Expression Atlas repository (www.ebi.ac.uk/gxa/home) which, for humans, report higher levels of 
VDAC3 gene in the cerebellum, diencephalon and spinal cord [79].

3. Discussion

Over the past 15–20 years, different computational methods have been developed to infer gene regulatory networks for the analysis 
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of transcriptomics data from different sources [92–94]. Of particular interest is the ability of differential co-expression analysis 
methods to identify regulatory genes underlying various phenotypes. These methods are mostly useful for identifying disease regu
latory genes in pathological phenotypes [95], but also offer interesting insights for developing effective therapeutic approaches. 
Unfortunately, to date, studies aimed at inferring gene regulatory networks in ALS are lacking and no synthetic biology approach has 
been used to address this topic.

In this study, adopting a reverse engineering strategy based on the use of the ARACNe-AP algorithm, we analysed transcriptomic 
data from the blood of a large sample of ALS patients and their controls. By this approach we produced novel data on ALS and already 
known information that strengthen our study. Exactly, we inferred 7 different ALS regulatory genes networks (GRNs) for many 
phenotypic conditions of the disease. Specifically, GRN-1 and GRN3-7 were relative to survival time, site of onset (spinal or bulbar), 
and probability of developing the disease according to the sex. In each of these transcriptional regulatory networks, we detected the 
most relevant ALS biological pathways and potential ALS-promoting mechanisms, some of which completely novel. Among them, we 
identified signs of increased vulnerability in male patients and the activation of the radiation response-related network as a disease- 
specific signature for female BALS patients.

In this regard, one study demonstrated reduced metabolism in BALS patients [96], while another showed in SALS upregulation of 
the miR-23a-3p, a microRNA associated with motor neurons loss in BALS [97].Taken together, these findings highlight the relevance of 
the distinction between SALS and BALS for predicting disease outcome and assessing treatment.

Furthermore, we divided the large-scale data into smaller and more informative network segments, obtained thus subnetworks of 
some hub genes (TP53, SOD1, ALS2, VDAC3) that could function as potential pathological drivers of ALS. By investigating the 
pathological and healthy subnetworks of the selected hub genes, we discovered different disease-related pathways and, interestingly, 
their interconnection with p53-mediated pathways. This result suggests a potential neurovascular response to ALS neuroinflammation.

In addition, data from ALS blood [98,99] confirm that patient blood cells respond to systemic and local signals with changes in gene 
expression similar to those found in the spinal cord or brain of ALS patients. This underlines the value of blood for diagnostic purposes, 
to assess the onset and progression of ALS. Moreover, the research strategy used in this study responds well to the growing need to 
study the disease with alternative approaches, also aimed at using investigation methods that do not involve animal models. In fact, the 
limitations of preclinical mouse models in recapitulating the complexity of the human disease are well known.

Overall, the synthetic biology approach applied in this study has allowed to successfully address some of the new challenges of ALS 
research: the analysis of big data released in patient databases; developing a broad and detailed overview of the molecular mechanisms 
of the disease; reducing animal studies; paving the way for the search in the blood of ALS “gold standard” biomarkers; laying the 
foundations for the design of new potential therapies for ALS.

3.1. Identification of biological pathways and topological key motifs in ALS GRNs

The prevalence of certain biological processes in a network over others may denote the activation of a regulatory axis with a more 
or less significant impact on the phenotype. Our analysis revealed few some differences and altered functions in pathway enrichment, 
with some punctual changes resulting in a noticeable regulatory shift of specific groups of hub genes. In particular, pairwise com
parison of pathological (GRN1), healthy (GRN2) and disease control (GRN3) networks revealed clear differences in the pathway 
representation of affected and healthy individuals (Table 1a). Indeed, in GRN2 we mainly observed an enrichment related to common 
circulatory pathways (e.g. immune response and platelet aggregation), confirming already known data [28]. Interestingly, in GRN1 
and GRN3 the top pathway found was ’radiation response’ (GO:0009314). Under this macro-category are the response pathways to 
light stimuli and ionizing radiation, comprising almost 60 genes encoding for the antioxidant, anti-inflammatory and DNA repair 
machinery. This finding underlines the role of radiation-induced oxidative stress that correlates well with certain inflammatory 
mechanisms in ALS, such as altered lipid and protein metabolism and energy imbalance [100]. The identification of this peculiar 
oxidative stress condition in blood samples from ALS patients supports the so-called “neurovascular scenario”, according to which 
alterations in gene expression may be associated with some altered ALS signalling pathways due to blood-brain barrier damage [101]. 
This suggests that the adoption of diagnostically valid and non-invasive blood biomarkers related to genes of the ALS regulatory 
network, could be advantageous not only to initiate preventive actions, but also as an aid in monitoring the course [75]. Furthermore, 
it is known that low-dose radiation can induces increased oxidative metabolism and redox imbalance of the central nervous system 
(CNS) microenvironment, mitochondrial dysfunction and protein degradation, leading to neural apoptosis in many neurodegenerative 
and inflammatory diseases [102]. Among the 60 genes we identified by GO analysis (Table 1; Table S2) there are 3 (CCND1, MMP1 and 
MMP3) suspected to play a role in ALS and related to radiation-induced oxidative stress. In particular, the cyclin D1 (CCND1), not only 
is a radiation-responsive gene but also interacts with the FUS gene by blocking its translation. This action is known to be toxic for motor 
neurons [103]. Regarding the matrix metalloproteinase genes, MMP1 and MMP3, they represent potential biomarkers of motor neuron 
degeneration since their deregulation is associated with ALS [78]. The identification of reliable biomarkers is one of the main goals of 
ALS research [25]. ALS is still an incurable disease, with few treatment options useful only to slightly slow down its course. Having 
‘gold standard’ biomarkers would certainly help the development of new drugs for this disease.

In addition, we performed a topological analysis of the inferred GRNs, since it is known that the structure of a network can be as 
informative as its complexity. Of particular interest is the analysis of disease-associate networks because pathogenesis usually induces 
topological variations useful to distinguish the pathology [104]. Our results shows that the genomic data from GRN1-GRN3 reflect well 
the ’topological’ characteristics of their networks (Fig. S2). In particular, a common L-shaped spatial conformation of gene interactions 
in all three networks (GRN1-GRN3) is easily recognizable. This could denote a hierarchical pattern of molecular signals expressed in 
blood as a gene signature of the target tissue. Moreover, the density and orientation of genes in GRN1 overlap with those in GRN3, 
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sharing a similar arrangement of the central body and side branches (Fig. S2). These data reveal thus features in common between the 
profiles of ALS patients (i.e. the GO:0009314 “radiation response” pathway) and those of controls. Also, some transcripts of the healthy 
regulatory profiles in GRN2 are missing or severely impaired in the pathological GRN1 network and the GRN3 fusion network (Fig. S2). 
These results are in line with what is known, in general, about the topology of networks. Namely, that the interacting components of a 
network with a constant topology have evolved to perform specific cellular functions [105]. Although parameters that do not change 
the topology of a network may equally influence its response dynamics [106].

Concerning the GO signal (GO:0009314) of “radiation response” was not found in SALS networks (GRN4) or “male ALS patients” 
(GRN7), enriched instead in pathways related to protein metabolism. The signal “response to radiation” was instead found in both 
BALS - patients with reduced survival (GRN5) (Table 1b) and “female ALS patients” (GRN6) networks (Table 1c) normally less affected 
than men by the disease and more prone to spinal onset (Figs. S1a–b). This leads to the hypothesis that the gene enrichment char
acteristic of BALS women may derive from the impairment of the protective effects of antioxidant genes, essential to attenuate/ 
counteract the deleterious effects of the disease [79]. Therefore, radiation-induced oxidative damage would seem to have an important 
role in the pathogenesis of ALS. There are several reports that associate ALS with defective DNA repair. For example, FUS pathology 
has been shown to disrupt DNA damage response signalling (DDR) [107,108]. While an important role in the NHEJ mechanism of DNA 
double-strand break repair and mismatch repair was discovered for TDP43 [109,110].On the other hand, loss of key DDR components 
leads not only to accumulation of DNA damage but also to marked proteotoxic stress and genome instability [111]. The latter condition 
can be induced by radiation exposure, and interestingly, it has been reported that low-dose radiation can increase the risk of neu
rodegeneration [112]. Regarding the radiation-induced oxidative damage, is it not surprising that edaravone, prescribed to ALS pa
tients for its anti-oxidant and anti-inflammatory effects, was studied to assess its ability to protect cells from the oxidising action of 
radiation [113].

As for GRNs 1–3, also for GRNs 4–7, the ontological correspondence coordinates well with the physical model of the networks, a: 
GRN4 resembles GRN6 and GRN5 resembles GRN7 (Fig. S2). This shows that the networks reconstructed by ARACNe are plausibly 
matched and are able to predict two models of the same disease but distinct for phenotypic profile, a less resilient one composed of 
male BALS patients and a more resilient one composed of female SALS patients. These data correlate well with findings from other 
studies focusing on the influence of sex and site of onset in ALS progression. Moreover, they hint at the importance of sex-specific 
factors in understanding the pathophysiology of ALS, as also suggested by others [114]. Interestingly, a recent study on iPSC motor 
neurons showed that few genes are differentially expressed between ALS patients and healthy controls, although the number of 
differentially expressed genes in ALS is much higher in males than in females. In particular, in ALS males, an enrichment of stress 
response pathways related to TNF, NF-kB, and radiation exposure was found. Instead, in ALS females, pathways related to ribosomal 
function, oxidative phosphorylation, as well as mitochondria were more involved [115]. Also, it has emerged the idea that sexual 
dimorphism in ALS results from interactions between the central nervous system and peripheral organs, implicating the vascular, 
endocrine, metabolic, musculoskeletal, and immune systems, which are physiologically different between males and females [116].

In order to identify putative prognostic markers of ALS specifically associated with patients’ survival time, we implemented disease 
stratification by enhancing the pathway-level analysis of gender responses to the type of ALS site of onset. The obtained results suggest 
the existence of a lowest common denominator among the different phenotypes associated with ALS patients [118]. By analyzing the 
61 gene signatures for predicting survival of ALS patients, we showed that the same two markers of poor prognosis (SLC40A1, CLEC7A) 
are found in the spinal, bulbar and female networks. This confirms the accurate inference of the algorithm in predicting significant 
regulators of gene perturbations. Contextually, we also questioned the significance of the absence of the CLEC7A marker in the male 
network. This gene is a member of the superfamily of proteins containing the C-type lectin/C-type lectin-like domain (CTL/CTLD), 
typically expressed by cells of the innate immune response. Recent evidence in ALS patients [119] and in mouse models of ALS [120] 
evaluated it as a key gene of microglial activity, associated with short survival and severe condition in a male-dependent manner. The 
results obtained surprised us because, considering the ALS case history, we expected more worse prognosis targets in the male network 
than in the female network. The Cox proportional-hazards model used by Swindell et al. [25] identifies gene predictors of ALS survival 
with a different approach from ours. In fact, ARACNe-AP analysis can obtain information on the transcriptional relationships of hub 
genes, not on changes in gene expression levels [24]. In particular, the construction of the matrix of gender-distinct disease profiles 
allowed us to identify some subtle regulatory differences more stringently. In this regard, loss of CLEC7A could be an aggravating factor 
that exacerbates the vulnerability of male patients. However, this is a hypothesis that requires further study to be confirmed. In any 
case, our results are in line with other evidence on the role of this gene and lead to narrow the assessment of a differential neuro
inflammatory response in male and female due to the absence of a neuroprotective mechanism caused by CLEC7A. The inferred GRN 
thus reveals some hidden pathways of initiation, suggesting that attention should be turned to as yet under-investigated aspects [5,69].

3.2. ALS transcriptional networks of TP53, SOD1, ALS2 and VDAC3 genes

In silico analysis of the subGRNs sub-networks of the four selected hub genes produced interesting and useful data to better un
derstand ALS. First, within the individual subnetworks deduced for each hub gene, we found several novel target genes, not yet 
associated with ALS and putatively useful as disease biomarkers. Also, for each analysed hub gene, the relative involvement in specific 
pathways was highlighted, many of which related to mechanisms of neurodegeneration, some directly related to ALS, others more 
generic but no less interesting. For example, the neuronal development or spinal motor neuron pathways found associated, respec
tively, with the pathological subnetworks of SOD1 and VDAC3. Interestingly, VDAC3 also seems to be involved in the development of 
the oculomotor system, the only apparatus whose muscles are not affected by ALS. TP53 appears to promote some preferential 
pathways involving autophagy and neuronal apoptosis in the ALS contest, which are also correlated to endolysosomal and 
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mitochondrial metabolism genes [30]. Another interesting result emerged from the elaboration of the ALS2 gene subnetwork. Indeed, 
its transcriptional map was the one with the highest number of ALS-related hits. A data of great interest for drug design on new target 
molecules.

Certainly, a strong finding from this analysis is that we have revealed the interconnection of the four selected hub genes (TP53, 
SOD1, ALS2, VDAC3) with p53-mediated pathways, which suggests a potential neurovascular response to ALS neuroinflammation. 
This is confirmed by the results of other studies that identify p53 as a key regulator of neurodegeneration caused by ALS-associated 
genes [33,34]. Our data therefore reinforce the previous results and, in addition, provide evidence that the aforementioned mecha
nisms may have a primary role in the onset of the ALS, both sporadic and genetic. Furthermore, neuroinflammation also correlates well 
with other pathways associated with the 4 hub genes identified by us, namely the response to radiation damage or to the oxidative 
stress associated with it. In this regard, VDAC3, functioning as an oxidative stress sensor, could well guide this response by controlling 
various pathways involved, including mitochondrial metabolism itself [91]. It is therefore possible that DNA damage, as well as the 
related genomic instability, may have a significant role in the onset of the disease.

Overall, the information on the molecular mechanisms associated with ALS resulting from this analysis, in addition to being overall 
consistent with the data reported in the literature, have the value of providing a new integrated vision of the transcriptional regulators 
of ALS. A vision that not only helps to broaden knowledge about the disease but is also useful to identify certain molecular features on 
which to focus future studies also with the intent of discovering effective ALS biomarkers.

3.3. Study limitations and strengths

We are aware that our study is burdened by some weaknesses. Probably the main ones are related to the quality and quantity of 
input data (e.g. GEP) used to generate the GRNs. In this regard, the limited number and accessibility of repository datasets [121] made 
it difficult to collect a sufficiently large sample to prepare input matrices for ARACNe-AP with case and control GEPs from different 
tissue samples. In particular, the limited availability of GEPs based on human/murine spinal cord and neurons prevented the expected 
cross-validation between tissues and species, forcing us to scale down the initial research design by looking for information from 
microarray data from blood of ALS patients. However, there are several research lines [122–127] that demonstrate that blood is a 
promising alternative to the use of other biological samples. Also, some studies have evaluated the link between pathological processes 
in the brain and transcriptional levels in blood cells of ALS subjects [99,127–129].

In fact, although not directly affected by the disease, blood is still as “informative” as other tissues considered more suitable (e.g. 
cerebrospinal fluid, CSF) thanks to the continuous exchanges at the blood-CSF barrier. In addition, blood is easily available and 
sampled by patients and therefore highly suitable for meta-analysis studies with statistically valid results, unthinkable to obtain from 
CSF or spinal cord. Therefore, the transcriptional signature in peripheral blood cells is a useful surrogate for evaluating CNS gene 
expression. This makes blood an excellent biological sample in which to search for ALS biomarkers also useful to speed up the 
diagnosis, especially in the early stages of ALS, and to follow patients in the follow-up of treatment.

Another gap of this study stems from the limited information retrieved on the exact number of sporadic and familial patients, 
genetic variations, sample ID associated with sporadic and familial profiles of the GSE112681 dataset we used. Probably, this 
constraint hindered the opportunity to perform more accurate inferences and interpretations on the stratification of the ALS population 
and thus elaborate more deeply the regulatory mechanisms of the genotype-phenotype correlation. However, we believe that most of 
weaknesses may be compensated by the size of the final sample analysed and the potential of the algorithm used.

Among the strength points of our GRN analysis is the ability of ARACNe-AP to model the complex nonlinear relationships between 
genes. Indeed, by capturing the interactions between multiple TFs and their target genes, GRN analysis can reveal how perturbations in 
one part of the network propagate through the overall system, leading to disease. This is particularly important in ALS for two reasons. 
First, because the effects of genetic mutations may not be immediately evident at the level of individual genes, becoming more evident 
when considering the broader regulatory context. Second, it is particularly useful if the input data, as in the present study, lack some 
anamnestic details without affecting the robustness of the reverse engineered models.

4. Conclusions

In this work, blood networks of from ALS patients and control subjects were reverse engineered by ARACNe-AP algorithm to 
determine the specific gene interactions of each network, as well as the pathways linking the normal state to the ALS condition. The 
potential of the designed reverse engineering framework, based on the processing of transcriptome data useful for predicting 
phenotypic differences between pathological and healthy subjects, allowed us to identify a considerable number of potential ALS- 
promoting mechanisms and putative transcriptional biomarkers previously unknown. Noteworthy is the presence of SOD1 among 
the hub genes in the blood of non-SOD1 ALS patients. Among the most interesting results emerging from our predictive study is the 
characterization of the radiation-induced oxidative pathway (GO:0009314), which associated the “female gender with ALS” group 
(less vulnerable to the disease than the “male gender” group) with bulbar onset (ALS patients with worse prognosis) with the weakest 
pathway signal among the most significant pathological mechanisms usually investigated [117]. Another significant finding is the 
presumed transcriptional cooperation of hub genes playing a role in inter-organelle communication. In particular, communication 
between the ER, mitochondria, lysosomes, and Golgi apparatus correlates well with the known activity of p53 in counteracting 
neuroinflammatory response [25,130].

Overall, the originality and importance of the study consist in having predicted/identified, for the first time: 
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1. Connections between single molecular mechanisms of ALS related to mutations on specific genes;
2. Molecular pathways associated with specific ALS phenotypes, related to the site of onset and/or to the sex of the individual;
3. VDAC3 as a hub gene of GRNs in ALS.
4. Putative pathological targets of TP53 in ALS;
5. Possible disease biomarkers in the blood of patients, from which to design putative therapies against ALS.

Taken together, our results demonstrate the utility of an integrated systems biology approach to obtain a detailed view of the gene 
interaction networks putatively involved in the regulation of the molecular mechanisms related to ALS. The proposed approach is not 
limited to this biological context but could also find application in other disease contexts.

5. Materials and methods

5.1. The algorithm for the reconstruction of accurate cellular networks - adaptive partitioning version (ARACNe-AP) pipeline

In order to map the transcriptional interplay that may contribute to ALS pathogenesis, we used the reverse engineering algorithm 
for the reconstruction of accurate cellular networks - adaptive partitioning version (ARACNe-AP) [24] and GEPs of the GSE112681 
dataset [25,26]. These datasets were generated in the Netherlands from peripheral blood samples taken from a panel of ALS patients 
and from a control group of neurologically healthy individuals. The ARACNe-AP algorithm, developed by Andrea Califano [8,23,24] is 
an advanced computational methodology in the field of computational systems biology. ARACNe-AP is designed to infer regulatory 
relationships within biological systems by statistically analyzing gene expression data. It utilizes MI and statistical significance tests to 
deduce direct interactions between genes, thereby revealing potential gene regulatory networks. This algorithm aims to provide a 
rigorous and data-driven approach for the reconstruction of accurate cellular networks, contributing to a deeper understanding of 
biological processes at the genomic level.

The inference of gene regulatory networks using the ARACNe-AP algorithm can be described in a series of 9 steps: 

1. Data Acquisition and Pre-processing: 
- Begin with gene expression data, typically in the form of microarray or RNA-Seq datasets [131].
- Pre-process the data by normalizing and filtering to remove noise and systematic biases.

2. MI Calculation: 
- Calculate the MI between pairs of genes. MI measures the statistical dependence between two variables - in this case, the 

expression levels of genes.
3. Statistical Significance Assessment: 

- Estimate the statistical significance of the MI scores to identify meaningful interactions while controlling for false positives.
- Typically, permutation tests or other statistical methods are used to determine significance thresholds.

4. Network Construction: 
- Create an initial network where nodes represent genes, and edges represent MI scores between gene pairs.

These edges could transduce a signal of:
Activation: A directed arc from a gene (node) A to a gene (node) B indicates an activation effect. In other words, gene A promotes or 

stimulates the expression of gene B. This can occur when gene A produces a protein or TF that acts as an activator for gene B.
Inhibition: A directed arc from gene A to gene B can also represent an inhibition effect. This means that gene A suppresses or reduces 

the expression of gene B. This can occur when gene A encodes for a protein or TF that acts as a repressor for gene B. 

- Apply a significance threshold to retain only significant interactions, thereby reducing the network to a subset of high-confidence 
edges.

5. Data Processing Inequality (DPI) Pruning: 
- Apply the DPI principle to remove indirect interactions and false positives from the network.
- DPI pruning ensures that only direct interactions are retained in the network.

6. Network Refinement: 
- Further refine the network by removing any remaining redundant or spurious interactions, using techniques such as the Minimum 

Spanning Tree (MST) algorithm.
- This step helps to simplify the network structure.

7. Network Visualization and Analysis: 
- Visualize the resulting gene regulatory network to gain insights into the relationships between genes.
- Analyse network properties, such as hubs, clusters, and central nodes, to identify key regulators and functional modules.

8. Biological Interpretation:
- Functionally annotate the genes in the network to understand their roles in biological processes.
- Investigate the potential regulatory pathways and feedback loops within the network.

9. Iterative Process: 
- Gene regulatory network reconstruction is often an iterative process, with refinement based on additional data and experimental 

findings.
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5.2. Gene expression dataset analysis

The transcriptomic data that we used to infer the GRNs derive from 1117 whole blood RNA samples included in the SuperSeries 
GSE112681 (composed by following SubSeries GSE112676 and GSE112680), available from the Gene Expression Omnibus (GEO) 
database (www.ncbi.nlm.nih.gov/geo); (see Refs. [25,26]). In details, among the 1117 microarray expression profiles reported in 
GSE112681, 397 are patients with ALS, 75 are patients defined as ‘ALS-mimics’ who affected by diverse ALS-like conditions (the most 
common diagnoses were benign fasciculations, spinal muscular atrophy, and myelopathy), and 645 are neurological healthy volun
teers matched for gender and age. Samples were hybridized to two different platforms: Illumina’s HumanHT-12 version 3 and version 4 
BeadChips according to manufacturer’s protocol (Illumina, Inc., San Diego, CA, U.S.A.). Some phenotypic data of GSE112681 are 
reported in Refs. [25,26], and these allowed us to prepare different networks based on gender (239M/158F), survival status (from one 
year up to 10 years); and site of onset (251 spinal-onset vs. 146 bulbar-onset samples) (Figs. S1a–b). The gender composition of the 
original cohort study includes 60.2 % males (M) and 39.8 % females (F) of ALS patients; 55.3 % M and 44.7 % F in the control group. 
Regarding the genetic mutation screening of familial and sporadic ALS, the C9orf72 expansion is found in 5.2 % of GSE112676 and 
12.8 % of GSE112680; however, this feature has not been annotated in the corresponding GEO file of the patient. A very particular 
feature reported in both datasets is the diagnostic form of ALS patients, the spinal-onset (SALS) and bulbar-onset ALS (BALS). In the 
GSE112676 were diagnosed with the 61.4 % of SALS patients and the 38.6 % of BALS patients, while the 66.9 % of SALS and the 33.1 % 
BALS in the GSE112680. Moreover, the average age of ALS patients is 63.6 (55–72 years), and 62.3 for controls (55–69 years). The 
survival time of ALS patients ranges from less than one year to more than 10 years (in just a few cases).

According to the properties of the study sample reported in GSE112681, inclusion and exclusion criteria were defined to answer to 
our research question. Hence, the large-screening dataset (GSE112681) is eligible (inclusion criteria) as ARACNe-AP algorithm requires 
≥100 GEPs to build GRNs [24]. With the aim to ensure the representativeness of ALS population and the statistical power of the 
sample-specific networks analysis [132–134], we assembled ARACNe-AP matrices to generate GRNs using a reduced set from the 
original entire sample of 1117 profiles, selecting 794 expression profiles exclusively associated to patients with confirmed ALS 
diagnosis (inclusion criteria). Therefore, the previously mentioned 75 ALS-mimics (exclusion criteria) were excluded from the current 
study sample.

5.3. Gene network inference

For optimal analysis, ARACNe-AP meets two certain requirements, large dataset of GEPs (≥100), as first input, and the list of gene 
regulators (e.g. TFs) of the study organism [24], as second input.

The consensus network inferred with ARACNe-AP was built using a subset of 794/1117 GEPs (GSE112681) [25,26], and a list of 
1635 human TFs available from database of Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of 
Toronto (1.01 version) (humantfs.ccbr.utoronto.ca/download.php) (Table S1) [27] to determine whether the inferred activities of 
each regulator were significantly correlated using a conservative MI threshold (p ≤ 1.0 × 10-8, i.e., p ≤ 0.05 Bonferroni corrected for 
all candidate interactions).

With regards of data normalization, each gene matrix prepared for ARACNe-AP contains as input data quantile normalized values 
of GEPs processed as reported in GSE112681 [25,26]. In details, the used raw microarray data files contain the raw intensity mea
surements (raw counts) directly from the microarray scanner where the proper gene annotations are available to map probe sets to 
gene IDs. Background correction methods are used to correct for this noise. Microarray data have been normalized to make the dis
tributions of probe intensities similar across all arrays. It has been used the standard procedure of the quantile normalization. 
Microarray expression have been log2-transformed to stabilize the variance and make the data more normally distributed. This step is 
very important because ARACNe-AP uses mutual information, which assumes that the data are continuous and appropriately scaled. In 
practice the data were normalized using quantile normalization with IlluminaGUI in R. After quantile normalization, gender was 
checked by expression of gender-specific Y chromosomal probes (JARID1D and RPS4Y1). Samples with gender mismatches were 
excluded. Subsequently expression values were log2 transformed and quantile normalized. Arrays were projected along the first and 
second principal component and outliers were dismissed. Moreover, the genes with very low variance across samples have been 
filtered out since they are unlikely to contribute meaningful information to network inference. Finally, using k-nearest neighbors, 
missing values were identified in the data set, samples or genes with missing values were removed. It is crucial to ensure that the final 
input file has no missing values, as ARACNe-AP requires complete data for accurate MI calculation.

As previously specified, the clinical group of ALS-mimics of the original dataset was not included to avoid potential confounding 
variables in the regulatory analysis. The network inferred with ARACNe-AP is a directed graph that consists of a series of arches 
representing the connections between regulators (predefined list of input genes, e.g. TFs) and their targets. Each connection is 
computed by the correlation measure of MI that indicates the pairwise connection strength. The huge complexity of the network output 
was filtered using the statistical parameter of 95th perc of MI to select gene connections with higher-degree MI corresponding with the 
strongest gene regulators [135] (Table S2). To identify hub genes and their related ALS and healthy control subnetworks, subGRN1 and 
subGRN2 respectively, we used the top 5 % and 30 % ranked arcs of the complete network between the regulators and their targets 
[24].

We prepared different matrices with 794 GEPs from GSE112681 to build the following seven GRNs: ALS patients (both genders, 
SALS and BALS condition; n = 397) named “pathological network” (GRN1); only controls (n = 397), defined as “healthy network” 
(GRN2); all samples of GRN1 and GRN2 (n = 694), defined as “disease-control network” (GRN3); only SALS patients (n = 251), called 
“SALS network” (GRN4); only BALS patients (n = 146), “BALS network” (GRN5); only female patients (SALS and BALS including; n =

X.G. Pappalardo et al.                                                                                                                                                                                                Heliyon 10 (2024) e40696 

16 

http://www.ncbi.nlm.nih.gov/geo


158), “female ALS network” (GRN6); and, only male patients (SALS and BALS including; n = 239), “male ALS network” (GRN7).
Before running all GRNs simulations, the hub gene list (Table S2) was pruned of probes associated with uncharacterized or un

known functions (e.g. LOC, KIAA, FAM, FLJ, DKFZp, C#orf) to reduce random noise [136]. In addition, before generating the two 
gender-specific GRNs (GRN6-7), the hub gene lists of GRN6-7 (Table S2) were cleared of genes implicated in gonadal differentiation 
[29]. To simulate a temporal signature of disease state in relation to the different ALS onset site and gender, all GEPs were preprocessed 
stratifying patients based on the survival duration, as illustrated in Figs. S1a–b. The clustering of survival data was accomplished to 
compute GRN4-5 and GRN6-7, in order to analyse differences in the gene regulatory pattern among these GRNs and uncover possible 
critical mediators or interdependencies of genes/biological pathways involved in the ALS progression mechanisms and prognostic 
outcomes.

5.4. Pathway analysis

We analysed the list of ARACNe-AP inferred genes at 95th perc of MI (Table S2) by using Gene Ontology (GO) (geneontology.org/). 
We also used the hierarchically organized underlying GO-terms calculated by Fisher’s exact test and using the Bonferroni correction for 
P < 0.05, and the Panther Overrepresentation test (release 20210224; Panther v.16.0 released 2020-12-01) in order to find the 
biological pathways of each reconstructed network [137].
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Abbreviations

ALS Amyotrophic Lateral Sclerosis
AD Alzheimer’s disease
ADNP Activity-dependent neuroprotective protein
ALS/FTD ALS/fronto-temporal dementia
ALS2 Alsin Rho guanine nucleotide exchange factor
ALX4 ALX Homeobox 4
ARACNe-AP Algorithm for the Reconstruction of Accurate Cellular Networks - adaptive partitioning version
BACH1 BTB domain and cnc homolog 1
BCL6 BCL6 Transcription Repressor
COMMD1 Copper metabolism MURR1 domain-containing 1
CREB3 CAMP Responsive Element Binding Protein 3
CSTF1 Cleavage stimulation factor subunit 1
E4F1 E4F Transcription Factor 1
ER Endoplasmatic reticulum
ESR2 Estrogen receptor (ER)-β
ETV4 ETS Variant Transcription Factor 4
FOXA1 Forkhead Box A1
FOXN4 Forkhead Box N4
FOXP3 Forkhead box P3
FUS FUS RNA Binding Protein
GEP Gene expression profile
GO Gene Ontology
GRN Gene regulatory network
HES4 Hairy and enhancer of split 4
HOXB3 Homeobox B3
HOXD1 Homeobox D1 protein
HOXD10 Homeobox D10 protein
IRF5 Interferon regulatory factor 5
LCAP/L1CAM-AS1 Lung carcinoma-associated 10
LMX1A LIM Homeobox Transcription Factor 1 Alpha
LMX1B LIM Homeobox Transcription Factor 1 Beta
lncRNA Long intergenic non-coding RNA
NEUROG3 Neurogenin 3
PACAP Pituitary adenylate cyclase-activating peptide
PAX5 Paired Box 5
PD Parkinson’s disease
PLAG1 Pleiomorphic adenoma gene like 1
POU3F3 POU Class 3 Homeobox 3
POU4F1 POU Class 4 Homeobox 1
SEMA3E Semaphorin 3E
SOD1 Superoxide dismutase 1
SOX13 SRY-Box Transcription Factor 13
SubGRN Subnetwork (sub gene regulatory network)
TBX6 T-Box Transcription Factor 6
TCF7 Transcription Factor 7
TF Transcription Factor
THRA Thyroid hormone receptor alpha
TP53 Tumour protein 53
TSHZ1 Teashirt Zinc Finger Homeobox 1
VDAC3 Voltage-dependent anion-selective channel protein 3
VIP Vasoactive intestinal peptide
ZHX2 Zinc Fingers and Homeoboxes 2
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