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Identification of repurposed 
drugs targeting significant long 
non‑coding RNAs in the cross‑talk 
between diabetes mellitus 
and Alzheimer’s disease
Shokoofeh Ghiam1, Changiz Eslahchi2,3*, Koorosh Shahpasand4, Mehran Habibi‑Rezaei5 & 
Sajjad Gharaghani1*

The relationship between diabetes mellitus (DM) and Alzheimer’s disease (AD) is so strong that 
scientists called it “brain diabetes”. According to several studies, the critical factor in this relationship 
is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross‑talk 
has a significant impact on societies. Long non‑coding RNAs (lncRNAs), on the other hand, have a 
substantial impact on complex diseases due to their ability to influence gene expression via a variety 
of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits 
the development of innovative therapeutic techniques. However, developing a new drug requires 
considerable time and money. Recently repurposing existing drugs has gained popularity due to the 
use of low‑risk compounds, which may result in cost and time savings. in this study, we identified drug 
repurposing candidates capable of controlling the expression of common lncRNAs in the cross‑talk 
between DM and AD. We also utilized drugs that interfered with this cross‑talk. To do this, high degree 
common lncRNAs were extracted from microRNA‑lncRNA bipartite network. The drugs that interact 
with the specified lncRNAs were then collected from multiple data sources. These drugs, referred 
to as set D, were classified in to positive  (D+) and negative  (D−) groups based on their effects on the 
expression of the interacting lncRNAs. A feature selection algorithm was used to select six important 
features for D. Using a random forest classifier, these features were capable of classifying  D+ and  D− 
with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food 
and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood 
of belonging to  D+ or  D−. The most significant FDA‑approved positive drugs, chromium nicotinate 
and tapentadol, were presented as repurposing candidates, while cefepime and dihydro‑alpha‑
ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, 
curcumin and quercetin, were recommended to prevent this cross‑talk. According to the previous 
studies, less attention has been paid to the role of lncRNAs in this cross‑talk. Our research not only did 
identify important lncRNAs, but it also suggested potential repurposed drugs to control them.

Abbreviations
IR  Insulin resistance
DM  Diabetes mellitus
AD  Alzheimer’s disease
T3D  Type 3 diabetes
APOE  Apolipoprotein E
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IDE  Insulin degradation enzyme
GLUT4  Glucose transporter type 4
AChE  Acetylcholinesterase
T2DM  Type 2 diabetes mellitus
NcRNA  Non-coding RNA
MiRNA  MicroRNA
LncRNA  Long non-coding RNAs
CADD  Computer aided drug design
FDA  Food and Drug Administration
OOB  Out of bagging error
SVM  Support vector machine
CV  Cross validation
Aβ  Amyloid beta

Recent  studies1,2 have linked insulin resistance (IR) and impaired insulin signaling to the cross-talk between 
diabetes mellitus (DM) and Alzheimer’s disease (AD). Many scientists believe that Alzheimer’s disease is both 
a neurological and neuroendocrine disorder. Therefore, Type 3 Diabetes (T3D) is the most appropriate term 
to describe this complicated  disease3. Other cellular and molecular factors involved in the cross-talk between 
DM and AD are oxidative stress, obesity, inflammation, dysregulation of Apolipoprotein E (APOE), Insulin 
Degradation Enzyme (IDE), Glucose Transporter type 4 (GLUT4), and Acetylcholinesterase (AChE)4. Nowa-
days, computational-based methods are very popular because they save time and money, so experts are using 
computational methods to introduce important genes, proteins, drugs etc.

To overcome this cross-talk, various computational-based studies have been performed so far. Mittal et al. 
extracted differentially expressed genes from Type 2 diabetes mellitus (T2DM) and Alzheimer’s patients. Then, 
they constructed a protein–protein interaction network using the proteins’ first neighbors. Pathway enrichment 
analysis was also performed, and notable proteins as well as significant pathways were  introduced5.

Using Biological Expression Language, Karki et al.6 proposed six shared pathways between T2DM and AD. 
They also discussed the dangers of certain anti-diabetic drugs in the progression of AD.

Hu et al.7 employed data from the ROSMAP Project to introduce common pathways between T2DM and 
AD. They analyzed multi-omic data using an inference method.

In addition to the importance of proteins, recent research suggests that non-coding RNAs (ncRNAs) play 
an important role in the progression of complex  diseases8–11. The reason is that they are encoded by the major-
ity of the human genome. Furthermore, approximately two-thirds of the experimentally detected microRNAs 
(miRNAs) are expressed in the brain and are active participants in its  functions12. Long non-coding RNAs 
(lncRNAs) have also been shown to play a biomarker role in the detection of IR, inflammation, and DM, as well 
as the progression of  AD13,14.

Ghiam et al.15 investigated the role of the ncRNAs as potential biomarkers in the cross-talk between DM 
and AD.

In addition to the biomarker role of ncRNAs in early disease detection, they may also be used as pharma-
cological targets in the treatment of a variety of  disorders16. On the other hand, a new drug takes a long time to 
complete all phases of drug design (at least 10 years). This procedure is both time-consuming and expensive. To 
address the aforementioned problems, computer-aided drug design (CADD) has been proposed as a method 
for predicting new drugs for further study. Methods of drug repositioning (also known as drug repurposing) 
have been utilized to identify new therapeutic roles for existing drugs. For this purpose, Shakil used molecular 
docking to investigate the effects of two antidiabetic drugs, Ertugliflozin and Sotagliflozin, and their targets, 
Sodium glucose cotransporter 2 and AChE, on AD. Finally, he emphasized the sotagliflozin structure for future 
Type 3 diabetes  treatment17.

This study aims to introduce (reuse) Food and Drug Administration (FDA) approved drugs for regulating 
the expression of common lncRNAs in the cross-talk between DM and AD. Additionally, drugs with side effects 
were reported.

The following section discusses data collection, machine learning, and network-based methods. Positive 
drugs (candidates for repurposing) and negative drugs (those with adverse effects) were proposed in the results 
section, and we will elaborate on them in the discussion section.

Materials and methods
Materials. Collection of data. Insulin is required for normal cognitive functions of the hippocampus. Ac-
cording to scientists, the primary factor in the cross-talk between DM and AD is insulin resistance in the  brain18. 
Consequently, significant mRNAs were extracted from DM, AD, and IR. The set of common mRNAs was se-
lected as follows:

where  DMp,  ADp and  IRp denote the sets of curated proteins associated with DM, AD and IR in the Disgenet 
database respectively.

The information of miRNAs and lncRNAs were collected from  miRTarBase19,  LncBase20, and  Starbase21 
databases. We attempted to select the most reliable mRNA–miRNA, miRNA–lncRNA, and lncRNA–drug inter-
actions with experimental evidence. To do so, we looked for mRNA–miRNA and miRNA–lncRNA interactions 
in the Starbase database with CLIP-Data ≥ 3 (strict selection), mRNA–miRNA interactions in the miRTarBase 

P = DMp ∩ ADp ∩ IRp
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database with strong evidence, and miRNA–lncRNA interactions in the LncBase database with high confidence. 
These interactions are chosen to be functional with the best binding capabilities.

The lncRNA-drug information was gathered from the D-lnc22 and  NancoRNA23 databases. Finally, the infor-
mation of the latest FDA approved drugs with the structural files were downloaded from  DrugBank24.

Method. We extracted common mRNAs in DM, AD, and IR from the curated Disgenet database in the first 
step. After retrieving miRNAs and lncRNAs from experimentally detected databases for the selected mRNAs, 
high degree miRNAs and lncRNAs were extracted from mRNA–miRNA and miRNA–lncRNA networks, 
respectively. Following that, for the significant lncRNAs, drug-lncRNA interactions were extracted from various 
datasets, and drugs were classified into positive and negative groups based on their effects on the regulation of 
the selected lncRNAs. To build a model for selecting FDA-approved drugs for repurposing, one-dimensional 
and two-dimensional (1D-2D) features of the intended drugs were extracted, and the feature selection algorithm 
was used to select features that could best separate positive and negative sets. On the basis of the selected fea-
tures, the random forest classifier was then constructed, and performance metrics were reported. Finally, using a 
constructed random forest model, the probability of each FDA-approved drug belonging to positive or negative 
sets was predicted, and the most relevant drugs to each set were introduced by defining a threshold. Those in the 
positive group were proposed as potential candidates for repurposing to regulate important lncRNAs, whereas 
those in the negative group were proposed as adverse drugs in the cross-talk between DM and AD. Figure 1 
shows the workflow of the study.

In the following, each step has been described in detail.

Identification of significant miRNAs based on the mRNA‑miRNA network. A mRNA–miRNA bipartite network 
was built in the first state. The nodes in one part of this network represent a set of selected mRNAs, while 
the nodes in the other part represent miRNAs which have interacted with at least one of the selected mRNAs 
retrieved from databases. Assume that P = {p1,  p2, …,  px} and M = {m1,  m2, …,  ml} represent the set of mRNAs 
and miRNAs, respectively. If miRNA  mj interacts with mRNA  pi, there is an edge between  pi and  mj.

High degree miRNAs were chosen as significant in the constructed network. These miRNAs are denoted by 
M′ = {m′1, m′2, m′3, …, m′s}.

Identification of significant lncRNAs based on the miRNA‑lncRNA network. In this state, the miRNA-lncRNA 
bipartite network was constructed. Nodes in one part are the set of significant miRNAs (M′) and nodes in the 
other part are the set of lncRNAs received from databases which have interacted with at least one of the selected 
miRNAs. Assume that L = {l1,  l2, …,  lr} is the set of mentioned lncRNAs. If lncRNA  lj interacts with miRNA m’i, 
there is an edge between m’i and  lj. High degree lncRNAs were chosen as significant in this network. These lncR-
NAs are denoted by L′ = {l′1, l′2, l′3, …, l′t}.

Figure 1.  The workflow of the study.
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Drug collection based on the lncRNA‑drug network. At first, the regulation (upregulation or downregulation) 
effect of members of L′ in both DM and AD were diagnosed. Let D = {d1,  d2,  d3, …,  dz} denoted the set of drugs 
which interacted with at least one of the elements in L′. Suppose that  di interacts with both l′i and l′j which are 
upregulated and downregulated respectively in both DM and AD. It means that  di inhibits both of them there-
fore, the effect of  di on l′i is positive (therapeutic effect) but on l′j is negative (exacerbation effect). In this case we 
remove  di from D. Accordingly, drugs with contradictory effect were omitted. Let D′ = {d′1, d′2, d′3, …, d′n} are 
denoted the set of remaining drugs. Now we constructed the lncRNA-drug bipartite network which nodes in 
one part are L′ and the other part are D′. There is an edge between l′i and d′j if drug d′j interacts with lncRNA l′i. 
Next, based on the therapeutic effect or side effect of D′ on the regulation of members in L′, D′ was divided in to 
 D+ = {d′1, …, d′j} which cure the intended diseases and  D−  = {d′j+1, …, d′n} which severely increase the negative 
effects of the intended diseases. For instance, suppose that l′i is upregulated in both DM and AD and d′i inhibits 
it therefore, d′i will be categorized in  D+. On the other hand, suppose that l′j is upregulated too but d′k causes 
overexpression of this lncRNA (inverse effect) so, by using this drug, the negative effects of both DM and AD will 
increase. As a result, d′k will be categorized in  D−.

The regulation (upregulation or downregulation) effect of L′ members in both DM and AD was initially 
identified. D = {d1,  d2,  d3, …,  dz} represents the set of drugs that interacted with at least one element in L′.

Suppose that  di interacts with l′i and l′j, which are respectively upregulated and downregulated in both DM 
and AD. It indicates that  di inhibits both l′i and l′j therefore, the effect of  di on l′i is beneficial (therapeutic effect), 
while its effect on l′j is detrimental (exacerbation effect). In this instance, we eliminate  di from D. Thus, drugs 
with contradictory effects were excluded. Let D′ = {d′1, d′2, d′3, …, d′n} represents the remaining drugs. Now we 
have constructed the lncRNA-drug bipartite network, with L′ nodes in one part and D′ nodes in the other. If d′j 
interacts with lncRNA l′i, there is an edge between l′i and d′j. Next, based on the therapeutic effect or side effect 
of D′ on the regulation of members in L′, D′ was divided into  D+  = {d′1, …, d′j} which cure the intended diseases 
and  D−  = {d′j+1, …, d′n} which significantly intensify the negative effects of the intended diseases. For example, if 
l′i is upregulated in both DM and AD and d′i inhibits it, then d′i will be classified as  D+. Alternatively, if l′j is also 
upregulated but d′k causes overexpression of this lncRNA, then the use of this drug will exacerbate the negative 
effects of both DM and AD. Consequently, d′k will be classified as  D−.

Features of drugs. For drugs in D′, we converted sdf files to mol files for using Open  Babel25, a tool for convert-
ing chemical file formats.  PaDEL26, a software for calculating molecular descriptors and fingerprints, was also 
employed to extract 1D–2D features based on the structural properties of D′ members. Only those features that 
best classified D′ into  D+ and  D- were selected. The algorithm for feature selection is as follows:

1. Eliminating constant features: Features that have the same value for all drugs in D’ were omitted because 
they had no impact on the classification process.

2. Removing redundant features: To improve performance, highly correlated features should be removed. To 
achieve this, we computed the Pearson correlation coefficient using the "findcorrelation" function from the 
"caret" package in R, with a cutoff of 0.9. This function takes the absolute values of pair-wise correlations into 
account. The function eliminates the variable with the highest mean absolute correlation when two variables 
have a high correlation.

3. Discarding features with low entropy: To find efficient variables for the model, entropy was calculated for 
each feature using the entropy function in R, and features with entropy less than θ were removed.

4. Removing features with a p-value greater than 0.05: For the remaining attributes, the t-student test was used 
to select features with significant differences (p value < 0.05) between  D+ and  D−.

Finally, significant attributes F = {f1,  f2,  f3, …,  fw} were chosen

Model designing. A random forest classifier was constructed using features extracted from the previous state.
Out of bagging error (OOB) was calculated using Python’s random forest library to determine the optimal 

number of trees. OOB is a type of random forest mean prediction error in which trees without the intended 
sample in their bootstrap are utilized. The model was then evaluated using five-fold cross validation, and per-
formance metrics were reported.

Choosing FDA‑approved drugs that are relevant to members of D′. In the same manner as in previous states, 
PaDEL was used to extract 1D-2D features for FDA-approved drugs, and the same set of extracted features, F, 
was selected. Let  DFDA = {df1,  df2,  df3, …,  dfv} denote drugs with selected features. Then, for DFDA, outlier detec-
tion was utilized to select the most pertinent FDA-approved drugs for D′.

The procedure for detecting outliers is as follows:

1. Number of atoms: very small drugs with nATOM ≤ µ was removed from the study since they have no impact 
on the classification process.

2. Applicability of domain: the warning leverage for each compound was calculated using the formula:  hi =  xi
T 

 (XT X)−1  xi
  where:
3. xi is the query molecule’s description-row vector
4. X is the k*n matrix (k descriptor values for each one of the n training molecules)
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5. h* (warning leverage) is usually set to 3p/n, where p is the number of model variables (|F|) plus one and n 
is the number of training compounds

  Outliers were identified as drugs with a  hi value greater than the warning leverage and were removed from 
the dataset.

6. One class classification: although relevant drugs were selected from previous steps by removing outliers, to 
further optimize the running time of the classification algorithm, it is necessary to select highly relevant drugs 
to D′. To achieve this, for the remaining drugs in the  DFDA, a single class classification method employing 
Support Vector Machine (SVM) classifier with radial  basis27 was utilized, and other outliers were excluded.

Finally, the most relevant compounds to D’ were chosen from all FDA-approved drugs. These drugs are 
denoted by D′FDA = {df′1, df′2, df′3, …, df′q}. Now, this set was fed into the newly constructed random forest model, 
and for each drug the probability of belonging to  D+ or  D− was calculated. The drugs with probabilities of 0.95 
or higher were selected. Those with a positive effect (belongs to  D+) were suggested as repurposing candidates 
and those with a negative effect (belongs to  D−) were introduced as warning drugs that could simultaneously 
increase the risk of DM and AD.

Results
Network analysis. Based on the data collection section above, 9 mRNAs shared by DM, AD, and IR were 
extracted from the curated Disgenet database (Table 1, first column). There are 412 miRNAs which have inter-
acted with at least one of these mRNAs. Then we constructed the mRNA-miRNA bipartite network and signifi-
cant miRNAs were extracted. In this network, no miRNA interacts with the INS and LEP proteins, so these two 
proteins were omitted from our investigation. Then, miRNAs with the highest degree (degree 4) were chosen as 
significant. By this strategy, 7 miRNAs were identified (Table 1, second column). Similarly, we constructed the 
miRNA-lncRNA bipartite network. This network contains 1700 lncRNAs, only three of them have the highest 
degree of 7, and eight of them have degree 6. These 11 lncRNAs were deemed significant (Table 1, forth column). 
These degrees are chosen so that approximately 10 miRNAs and 10 lncRNAs are considered as significant. For 
instance, if we considered degree 3 for the first network, we would select more than 40 miRNAs, and if we con-
sidered degree 5 for lncRNAs, we would select more than 30 lncRNAs. Supplementary Tables S1 and S2 list all 
mRNA-miRNA and miRNA-lncRNA interactions in these two networks. However, the final tripartite network 
was built using 7 selected mRNAs, 7 selected miRNAs, and 11 selected lncRNAs. Results have been shown in 
Fig. 2 and Table 1.”

Significant mRNAs, miRNAs, and lncRNAs are summarized in Table 1. No interacting miRNAs have been 
reported in the existing databases for INS and LEP among the 9 mRNAs. The hub miRNAs and lncRNAs are 
shown in columns 2 and 4, and the associated degrees of the intended miRNAs and lncRNAs are shown in 
columns 3 and 5.

To validate the role of obtained mRNAs in the cross-talk between DM and AD, their dysregulation’s type 
was investigated. The literature review indicates that HMOX1, NOS3, PPARG, and TNF are upregulated in both 
diseases, while INSR, SLC2A4, and SOD2 are downregulated. The formation of neurofibrillary tangles is caused 
by the upregulation of HMOX1, which increases tau hyperphosphorylation and results in neurofibrillary tangle 
 formation28. Overexpression of PPARG causes amyloid beta (Aβ) neurotoxicity by targeting glycogen synthase 
kinase-3beta (GSK3β) in the Wnt/Beta-Catenin pathway. The upregulation of NOS3 and TNF may increase 
 apoptosis29 and  inflammation30 in the memory region of the brains of patients with DM and AD, respectively. 
Conversely, downregulation of INSR reduces insulin’s sensitivity to its receptors, resulting in insulin resistance 
in the  brain31. SLC2A4 (GLUT4) is the brain’s glucose transporter. Any dysregulation of the expression of this 
important protein may impair neuronal cells’ ability to absorb  glucose32. SOD2 downregulation also affects 
mitochondrial activity in the neuronal  cells33. Summary of the results are presented in Table 2.

Table 1.  Selected mRNAs, miRNAs and lncRNAs. Significant mRNAs, miRNAs, and lncRNAs are 
summarized in Table 1. No interacting miRNAs have been reported in the existing databases for INS and 
LEP among the 9 mRNAs. The hub miRNAs and lncRNAs are shown in columns 2 and 4, and the associated 
degrees of the intended miRNAs and lncRNAs are shown in columns 3 and 5.

MRNAs (P) MiRNAs (M′) Degree LncRNAs (L′) Degree

INSR hsa-miR-3184-5p 4 NEAT1 7

NOS3 hsa-miR-17-5p 4 XIST 7

PPARG hsa-miR-20a-5p 4 EBLN3P 7

SLCA4 hsa-miR-93-5p 4 H19 6

SOD2 hsa-miR-106b-5p 4 MALAT1 6

HMOX1 hsa-miR-20b-5p 4 HCG18 6

TNF hsa-miR-200c-3p 4 PSMA3-AS1 6

INS – AC021078.1 6

LEP – AC005261.1 6

AC024940.6 6

NORAD 6
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In this table, 7 mRNAs in the cross-talk between DM and AD (achieved from curated Disgenet database) and 
their mechanisms in the relationship between the two intended diseases are introduced using literature review.

For the 7 significant miRNAs identified by the miRNA-lncRNA bipartite network, we also conduct a literature 
review to confirm their role in the cross-talk between DM and AD.

In both diseases, hsa-miR-106b-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-93-5p, and hsa-miR-200c-3p 
have been downregulated, whereas hsa-miR-20b-5p has been upregulated. Downregulation of hsa-miR-106b-5p, 
hsa-miR-17-5p, has-miR-20a-5p and hsa-miR-93-5p as well as overexpression of hsa-miR-20a-5p may alter 
the expression of amyloid precursor protein (APP) and subsequently influence Aβ, which is responsible for 
hyperphosphorylation of tau protein. In addition, altering the expression of hsa-miR-200c-3p may increase the 
expression of GSK3β, which results in hyperphosphorylation of  tau34. Moreover, hsa-miR-3184-5p is a novel 
miRNA in the cross-talk between DM and AD, which is proposed in this study for future experimental investiga-
tion. Table 3 shows the summary of these results.

This table describes the mechanisms of 7 significant miRNAs in the cross-talk between DM and AD. Only 
miR-3184-5p introduced in this study as a novel miRNA in this cross-talk which needs additional experimental 
research.

Similarly, we investigated the role of obtained lncRNAs in DM and AD cross-talk through literature review. 
Recent studies suggest that NEAT1 and XIST, two important biomarkers in DM and AD, are upregulated in both 
diseases, which not only activate the Akt/mTOR signaling pathway but also dysregulate the expression of miR-
124, resulting in an increase in BACE1 concentration and Aβ plaque deposition in the  brain35–37. H19, another 

NEAT1

INSR NOS3 PPARG SLC2A4

XIST AC0210
78.1

HCG18 EBLN3P H19 MALAT1 PSMA3-
AS1

HMOX1

NORAD

TNFSOD2

AC0052
61.1

AC0249
40.6

17-5p 20-a-5p 20-b-5p 93-5p106-b-
5p

200c-3p3184-
5p

Figure 2.  Final mRNA-miRNA-lncRNA network. The first layer (purple nodes) consists of 7 shared mRNAs 
between DM and AD that were extracted from curated Disgenet database. The second layer (blue nodes) 
consists of 7 high degree miRNAs obtained from mRNA-miRNA bipartite network and the last layer (yellow 
nodes) consists of 11 high degree lncRNAs achieved from miRNA-lncRNA bipartite network.

Table 2.  mRNAs interpretation. In this table, 7 mRNAs in the cross-talk between DM and AD (achieved from 
curatedDisgenet database) and their mechanisms in the relationship between the two intended diseases are 
introduced using literature review

mRNA Expression Mechanism

HMOX1 Upregulation Formation of neurofibrillary tangles

INSR Downregulation Insulin resistance

NOS3 Upregulation Apoptosis in cortical neurons

PPARG Upregulated Targeting Wnt/Beta-Catenin Pathway

SLC2A4 Downregulation Disrupting glucose transportation in the brain

SOD2 Downregulation Mitochondrial dysfunction

TNF Upregulation Increasing inflammation
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significant lncRNA, is upregulated in DM and AD, resulting in hippocampal neuron  apoptosis38. Meanwhile, low 
levels of MALAT1 (downregulation) have been found in Alzheimer’s patients compared to controls, reducing 
the lncRNA’s anti-apoptotic  effect39. Abdulle et al. also demonstrated the significance of MALAT1 as a target in 
diabetic-related  diseases40. Additionally, HCG18 and BPLN3P are upregulated, which increases the risk of insulin 
resistance and type 1 diabetes,  respectively41,42. The remaining obtained lncRNAs are novel in this cross-talk 
which are proposed in this study for future experimental analysis. Table 4 displays the summary of these results.

This table explains the role of the obtained lncRNAs in the cross-talk between DM and AD.
Among 11 significant lncRNAs, 5 of them are novel, proposed in this study for future experimental analysis.
Additionally, 40 drugs were extracted from lncRNA-drug bipartite network where 24 drugs classified as 

 D− and 16 drugs as  D+. These drugs interact with NEAT1, XIST, H19 and MALAT1. For example, Panobinostat 
increases NEAT1 and H19 expression in SK-NEP-1 and G401  cells43 According to Table 4, the upregulation of the 
targeted lncRNAs may cause cross-talk between DM and AD. Consequently, the use of this drug may increase the 
risk of both DM and AD. As a result, it is classified as  D−. In contrast, Adriamycin inhibits NEAT1 expression in 
stomach cancer. In addition, it can increase MALAT1 expression in non-small cell lung cancer. It may therefore 
have a therapeutic effect on the cross-talk between DM and AD and is classified as  D+.

The remaining 7 lncRNAs did not interact with any drugs in the existing lncRNA-drug databases. Table 5 
displays the results of the negative or positive effect of all the obtained drugs on the expression of the 4 selected 
lncRNAs.

The drugs in the first column  (D−) and the third column  (D+) have a negative and positive effect on the com-
mon significant lncRNAs in DM and AD respectively. Furthermore, the interaction of lncRNAs with drugs is 
reported in columns 2 and 4, respectively.

Feature description. PaDEL was utilized to extract 1444 features from the 40 drugs that were chosen from the 
lncRNA-drug bipartite network. There were 293 omitted constant features. Then, 745 highly correlated features 
with cutoff = 0.9 were also removed (Fig. 3A). Low entropy features (θ < 1.5) that had no effect on classifying  D+ 
and  D− were removed as well (Fig. 3B).

Consequently, 293 features remained. The t-student test was then performed to identify the most significant 
features, and 6 of them with a p value less than 0.05 that best classified  D+ and  D− were selected. The final drug-
feature matrix, which includes 40 drugs and 6 significant features, is presented in Table S3 of the Supplementary 
materials.

Table 3.  miRNAs interpretation. This table describes the mechanisms of 7 significant miRNAs in the cross-
talk between DM and AD. Only miR-3184-5p introduced in this study as a novel miRNA in this cross-talk 
which needs additional experimental research.

miRNA Expression Mechanism

hsa-miR-106b-5p Downregulation Regulating Aβ induced tau phosphorylation via regulating the expression of Fyn

hsa-miR-17-5p
has-miR-20a-5p Downregulation Regulating APP expression

hsa-miR-20b-5p Upregulation Attenuating apoptosis induced by Aβ25–35

hsa-miR-93-5p Downregulation Targeting Aβ plaques

hsa-miR-200c-3p Downregulation Increasing tau phosphorylation (p-tau) by increasing p-GSK-3β

hsa-miR-3184-5p Novel miRNA –

Table 4.  LncRNAs interpretation. This table explains the role of the obtained lncRNAs in the cross-talk 
between DM and AD.Among 11 significant lncRNAs, 5 of them are novel, proposed in this study for future 
experimental analysis

lncRNA Expression Mechanism

NEAT1
Upregulation Biomarkers in DM and AD

XIST

HCG18 Upregulation Insulin resistance

EBLN3P Upregulation Increasing the risk of type 1 diabetes mellitus

H19 Upregulation
Apoptosis of hippocampal neurons

MALAT1 Downregulation

PSMA3-AS1 Novel –

AC021078.1 Novel –

AC005261.1 Novel –

AC024940.6 Novel –

NORAD Novel –
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Table 5.  Drugs and the corresponding lncRNAs. The drugs in the first column (D-) and the third column 
(D+) have a negative and positive effect on the common significant lncRNAs in DM and AD respectively. 
Furthermore, the interaction of lncRNAs with drugs is reported in columns 2 and 4, respectively.

Drugs  (D−) lncRNAs Drugs  (D+) lncRNAs

Panobinostat NEAT1, H19 Adriamycin NEAT1, MALAT1

Diamorphine NEAT1 Dexamethasone NEAT1

Deferasirox NEAT1 Arachidonic acid NEAT1

Ubiquinol NEAT1 Sorafenib NEAT1

Nilotinib NEAT1, XIST Estradiol NEAT1

Rosiglitazone NEAT1 Clinafloxacin NEAT1

Trovafloxacin NEAT1 Fluorouracil NEAT1

Sangivamycin NEAT1, XIST Oxymatrine MALAT1

Bisphenol A NEAT1 Quercetin XIST, MALAT1

Apratoxin A NEAT1, XIST pma MALAT1

Bexarotene NEAT1 Curcumin H19

beta-Asarone MALAT1 Plx4720 H19

Bleomycin MALAT1 Mk-886 H19

3–3′–4 4′ tetrachlorobiphenyl MALAT1 Tamoxifen H19

Oxaliplatin H19, MALAT1 Fulvestrant H19

Vincristine H19, MALAT1 Diclofenac XIST

Etanercept H19

Doxycycline H19

Azathioprine H19

Decitabine XIST, H19

Etoposide H19

Verapamil H19

Epirubicin H19

Pirarubicin H19

Bortezomib H19

Azacitidine XIST

Figure 3.  The feature selection process. (A) The correlation matrix of 1444 features achieved from PaDEL has 
been displayed. The values range from − 1 to 1, with − 1 denoting a negative correlation and 1 denoting a positive 
correlation. Features that were highly correlated (cutoff = 0.9) were removed. (B) Features with low entropy 
(below the red dashed line) were omitted.
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Random forest classifier. A random forest classifier based on the drug-feature matrix was used to construct a 
model for further analysis. The optimal number of trees was determined to be approximately 100 based on the 
tradeoff between OOB error and accuracy. Figure 4 depicts the findings.

Furthermore, fivefold cross validation (cv) was used to evaluate the constructed random forest classifier, and 
several performance measures were reported. During the evaluation 80% of the data was selected for the train-
ing dataset and 20% for the test dataset. As shown in Tables 6 and 7, the accuracy of each fold in a fivefold cv 
ranges between 0.75 and 0.875%, and the overall accuracy is 0.825. In addition, the precision and recall values 
for  D+ and  D− range from 0.75 to 1. The F1 measures for negative and positive sets are 0.89 and 0.86, respectively. 
Results have been shown in Tables 6 and 7.

Selecting relevant FDA approved drugs. The structural files of 2474 FDA-approved drugs  (DFDA) were down-
loaded from DrugBank, and 1D-2D features were extracted from PaDEL. Drugs with a nATOM (number of 
atoms) less than 7 were eliminated (Fig. 5A). The 6 significant features obtained in the previous step were chosen 
for the remaining 2317 drugs. However, for 13 drugs, the value of some selected features was unavailable, so they 
were eliminated. The total number of drugs was thus reduced to 2304. To detect outliers, first, the applicability of 
the domain was determined, and then the warning leverage was computed as follows:

Each drug with a warning leverage equal to or exceeding the aforementioned threshold was omitted (Fig. 5B). 
Consequently, 94 drugs were eliminated.

The remaining 2210 drugs were classified using a one-class classification SVM method, and 1221 drugs (D′FDA) 
were selected as the most relevant to at least one of the 40 drugs.

Warning leverage = 3p/n = 3 ∗ (6+ 1)/2304 = 0.0091
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Figure 4.  There is a trade-off Between OOB error and accuracy. One by one, trees were added to the algorithm, 
and OOB error and accuracy were calculated.

Table 6.  Performance measures of the constructed random forest model with fivefold cv. *Accuracy: Acc.

Fold 1 Acc Fold 2 Acc Fold 3 Acc Fold 4 Acc Fold 5 Acc Overall Acc

0.875 0.75 0.875 0.875 0.75 0.825

Table 7.  Confusion matrix.

Precision Recall F1-score

Negative 0.8 1 0.89

Positive 1 0.75 0.86
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Then, D′FDA was given as input into the constructed random forest model, and the probability of each drug 
belonging to the  D+ or  D− was calculated. The drugs with a probability of 0.95 or higher were deemed the most 
relevant. Due to their positive effect on the regulation of lncRNAs associated with DM and AD, certain  D+ drugs 
have been proposed as repositioning candidates. Those in  D− have been classified as adverse drugs as they have 
a negative effect on the regulation of corresponding lncRNAs. Table 8 lists all selected FDA-approved drugs 
discovered in this study.

The final FDA-approved negative and positive drugs are listed in this table. Positive drugs are suggested for 
repurposing. Negative drugs, on the other hand, have been introduced as warning drugs that may disrupt the 
expression of common lncRNAs and significantly increase the negative effects of both diseases simultaneously.

Discussion
In this work, using network and machine learning approaches, candidate drugs for repurposing were introduced 
based on common mRNAs, miRNAs, and lncRNAs associated with the cross-talk between DM and AD. Drugs 
that may exacerbate the negative effects of both diseases were also discussed. The first 11 significant lncRNAs, 
as listed in Table 1, are taken into account. Only four of these lncRNAs have been associated with drug interac-
tions in lncRNA-drug databases: NEAT1, XIST, H19, and MALAT1. The interactions with the remaining seven 
lncRNAs have not yet been identified. Therefore, this study focuses on the four lncRNAs listed above in order 
to identify suitable drugs for the repositioning objective.

Scientists believe that inhibiting NEAT1 and XIST reduces Aβ plaques in patients’ brains by regulating the 
expression of interacted ncRNAs and proteins in specific pathways. Therefore, silencing of the aforementioned 
lncRNAs may represent a novel potential therapeutic target in the treatment of both  diseases44,45. Furthermore, 
researchers show that inhibiting H19 prevents apoptosis in hippocampal neurons in both  diseases46. Addition-
ally, experiments indicate that overexpression of MALAT1 increases the lncRNA’s neuroprotective function in 
the brains of patients and decreases neuronal injury in the  hippocampus47.

The discovery of drugs that can silence NEAT1, XIST, or H19 while also inducing MALAT1 overexpression 
could be considered a new treatment for DM and AD cross-talk.

Conversely, drugs that have a negative effect on the targeted lncRNAs must be avoided. According to Table 8, 
there are two categories of FDA-approved drugs. Positive and negative drugs are listed, respectively, in the first 
and third columns. Positive drugs have been recommended for diabetic and Alzheimer’s patients. Estradiol, 
for instance, is effective in preventing Aβ plaques and tau hyperphosphorylation in the brains of Alzheimer’s 
patients, in addition to reducing the risk of  diabetes48,49. It has been demonstrated that drugs in the chromium 
family have a curable effect on DM, AD, and IR, as they not only improve cognitive function in older adults but 
also regulate glucose excretion in patients with DM and  IR50. Consequently, it may be one of the most significant 
candidate drugs in this cross-talk. Tapentadol, a drug used to treat pain in the elderly, is another positive drug. 
According to  researchers51 it may improve the behavior of elderly dementia patients. Additionally, it has been 
proposed as a novel therapy for diabetic  neuropathy52. Niacin is a B vitamin that facilitates the transformation of 
food into energy. According to research on the effect of niacin on AD, scientists believe that including niacin in 
one’s diet can aid in disease prevention.53. Volunteers who received less niacin were up to 70 percent more likely 
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Figure 5.  This figure depicts the  DFDA’s outlier detection process. (A) Those with a small number of atoms 
(nATOM = 7) were initially removed from the dataset (drugs below the red dashed line). (B) The warning 
leverage was then calculated using the applicability of domain, and outlier drugs were excluded (drugs above the 
red dashed line).
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to develop the disease than those who received more. However, it has the potential to increase glucose levels in 
diabetic patients, so dosage must be closely  monitored54. Sibutramine is used for weight loss. Additionally, it 
reduces LDL cholesterol, thereby reducing the cardiovascular risk in diabetic  patients55. Moreover, since high 
cholesterol levels may increase the risk of  AD56, it may be a new drug capable of curing Alzheimer’s patients, 
particularly by controlling APOE.

Curcumin, a bright yellow chemical produced by curcuma, and quercetin, a plant pigment found in grapefruit, 
onion, and other fruits and vegetables, are two positive natural compounds. According to numerous studies, 
curcumin plays an important role in reducing Aβ plaques and inhibiting tau aggregation, as well as controlling 
blood sugar and managing diabetes complications. In addition, quercetin reduces oxidative stress by regulating 
signaling pathways, as well as lowering hyperglycemia and improving IR. In AD, it also has neuroprotective 
properties.

On the other hand, negative drugs have not been suggested for patients with DM and AD.
Diamorphine, for instance, increases tau hyperphosphorylation in AD patients by targeting the FYN  protein57. 

The FDA has not approved zaleplon, a sleeping pill, for Alzheimer’s patients because this class drugs have been 
linked to an increased risk of dementia in the  elderly58. The anti-inflammatory drug, sulfasalazine, is used to 
treat Crohn’s disease and rheumatoid arthritis. Despite being an anti-inflammatory, chou et al. discovered that 
it may increase the risk of dementia in patients with rheumatoid arthritis. Hypoglycemia has been added to 
the list of side effects of sulfasalazine in T2DM  patients59,60. Geodon is the brand name for the antipsychotic 
drug ziprasidone, which is used to treat schizophrenia and bipolar disorder. Experimental studies indicate that 
it increases the risk of death in Alzheimer’s patients, so it is neither recommended nor approved for dementia 

Table 8.  Final selected FDA approved drugs with positive and negative effects. The final FDA-approved 
negative and positive drugs are listed in this table. Positive drugs are suggested for repurposing. Negative 
drugs, on the other hand, have been introduced as warning drugs that may disrupt the expression of common 
lncRNAs and significantly increase the negative effects of both diseases simultaneously.

Positive drugs Probability Negative drugs Probability

Dexamethasone 1 Panobinostat 1

Sorafenib 1 Diamorphine 1

Estradiol 1 Deferasirox 1

Fluorouracil 1 Nilotinib 1

Curcumin 1 Rosiglitazone 1

Quercetin 1 Trovafloxacin 1

Tamoxifen 1 Bisphenol A 1

Fulvestrant 1 Bexarotene 1

Diclofenac 1 Oxaliplatin 1

Chromium nicotinate 0.97 Vincristine 1

Tapentadol 0.97 Doxycycline 1

Niacin 0.96 Azathioprine 1

Chlorphenesin 0.95 Decitabine 1

Mephenesin 0.95 Etoposide 1

Homosalate 0.95 Verapamil 1

Sibutramine 0.95 Epirubicin 1

2-Mercaptobenzothiazole 0.95 Bortezomib 1

Azacitidine 1

Dihydro-alpha-ergocryptine 0.99

Cefepime 0.99

Epicriptine 0.984

Alectinib 0.98

Dihydroergocristine 0.974

Deferoxamine 0.974

Glipizide 0.974

Ziprasidone 0.97

Betrixaban 0.97

Remimazolam 0.97

Glimepiride 0.97

Dihydroergotamine 0.97

Tazemetostat 0.97

Zaleplon 0.96

Cocarboxylase 0.96

Sulfasalazine 0.954
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 patients61. Furthermore, it increases the risk of hyperglycemia and diabetes. Cefepime, an antibiotic used to treat 
bacterial infections, has been linked to disruption of brain function; therefore, Alzheimer’s patients should only 
take it on a doctor’s advice.

In DM or AD, drugs such as cocarboxylase, glipizide, glimepiride, and the ergotamine family are being 
investigated. They are, however, classified as negative drugs in our study because they have an adverse effect 
on the regulation of common lncRNAs, and further experimental research into their impact on DM and AD is 
recommended.

There is insufficient information regarding the associations between the remaining drugs and the intended 
diseases; therefore, more research is required.

In addition to the obtained drugs, we investigated the impact of well-known drugs on the expression of 
the significant mRNAs, miRNAs, and lncRNAs that are currently used for the treatment of DM and AD from 
DrugBank database. There are 52 and 11 DM and AD drugs, respectively. In our results, the anti-diabetic drug 
Rosiglitazone is categorized as a negative drug. Based on our findings, the use of this drug may increase the risk 
of AD by elevating NEAT1 expression (see Tables 4, 5). Therefore, this drug may be an important candidate for 
future experimental research on the role of anti-diabetic drugs in the progression of AD.

However, there is no other overlap between drugs that we introduced in this study and the remaining 62 DM 
or AD drugs in the DrugBank database.

In future work, we will increase the reliability of our study by evaluating the expression of introduced lncR-
NAs using human samples. Then, we intend to conduct a laboratory experiment at the Royan Institute for Stem 
Cells to test introduced candidate drugs on the obtained lncRNAs using mouse samples. On the other hand, 
we proposed that dysregulation of certain mRNAs and miRNAs causes cross-talk between DM and AD. Since 
the focus of this paper was on lncRNA-drug repurposing, one of the future studies could concentrate on drug 
repurposing based on introduced mRNAs and miRNAs.

This study can be expanded to include any other diseases with a correlation, such as DM and fatty liver or AD 
and Parkinson’s disease. The pipeline remains unchanged; only the extracted data changes. Consequently, this 
work can serve as a guideline for similar work on two other diseases that interact with each other.

Conclusion
Drug repurposing is one of the most important methods for developing new drugs from existing ones for the 
treatment of diseases. This paper proposed a network and machine learning-based method that not only sug-
gests drugs to inhibit DM and AD cross-talk, but also introduces drugs that exacerbate the negative effects of 
the aforementioned diseases.

For instance, the drugs chromium nicotinate and tapentadol, which are used to treat IR and pain, respec-
tively, may regulate the expression of NEAT1, XIST, MALAT1, and H19 in the brains of diabetic and Alzheimer’s 
patients. Consequently, these two drugs can be considered a novel treatment for this cross-talk. In addition, drugs 
such as ziprasidone and sulfasalazine, which are used to treat crohn’s disease and schizophrenia, may increase 
the risk of both DM and AD. The list of repurposing candidate drugs and adverse drugs for which we wish to 
conduct experimental research to confirm our findings is presented in Table 8. Two of the drugs in this table, 
curcumin and quercetin, are natural compounds that can regulate the expression of H19, XIST, and MALAT1. 
Therefore, long-term use of these natural products may reduce the risk of DM and AD.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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