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Abstract

We used a mathematical transmission model to estimate when ecological drivers of respiratory syncytial virus (RSV)
transmissibility would need to act in order to produce the observed seasonality of RSV in the Philippines. We estimated that
a seasonal peak in transmissibility would need to occur approximately 51 days prior to the observed peak in RSV cases
(range 49 to 67 days). We then compared this estimated seasonal pattern of transmissibility to the seasonal patterns of
possible ecological drivers of transmissibility: rainfall, humidity and temperature patterns, nutritional status, and school
holidays. The timing of the seasonal patterns of nutritional status and rainfall were both consistent with the estimated
seasonal pattern of transmissibility and these are both plausible drivers of the seasonality of RSV in this setting.
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Introduction

Acute lower respiratory infection (ALRI) is responsible for 20%

of deaths in post neonatal infants globally, with one third of these

deaths due to respiratory syncytial virus (RSV) [1]. In most settings

ALRI in young children follows striking seasonal patterns,

including in the tropics, where ALRI generally occurs during the

rainy season [2,3]. Relatively little emphasis has been placed on

systematically investigating the drivers of seasonality in tropical

settings, despite the fact that most ALRI deaths in children occur

in the tropics. Seasonal variations in transmission are required to

amplify the inherent oscillations in infection incidence, which

would otherwise remain damped, and to dictate the timing of

seasonal epidemics, which are generally consistent in similar

climates. Possible ecological drivers of respiratory infection

seasonality include increased pathogen survival (possibly due to

variations in temperature, humidity or sunlight); reduced host

immunity (possibly due to variations in nutrition, sunlight, or co-

infections); and increased host mixing due to seasonal variations in

behavioural patterns (such as increased time spent indoors during

rainy or cold periods, and school terms) [4,5]. Identifying the

drivers of seasonality has potential benefit beyond improving the

understanding of disease transmission. As well as improving the

prediction of disease burdens in the context of global change, host

factors such as poor nutrition are amenable to intervention, which

may prove more effective if timed correctly [4].

In previous studies in the Philippines, we have found that

seasonal variations in child nutrition, as well as in meteorological

factors (rainfall, sunshine and relative humidity) were associated

with the seasonality of ALRI admissions in children [6,7]. The lag

time between the seasonal peaks in these potential driving factors

and the peaks in the yearly ALRI epidemics varied considerably.

High rainfall and relative humidity, and low levels of sunshine all

occurred within a few weeks before or after the seasonal peak in

ALRI. In contrast nutritional status was poorest 10 weeks before

the seasonal peak in ALRI. In this setting in the Philippines the

seasonal peaks in ALRI admission are coincident with the peaks in

cases of microbiologically confirmed RSV [6]. From a modelling

perspective, drivers of transmission act by altering the transmission

coefficient (b) which is a measure of the transmissibility of the

infection (the rate at which an infectious person in the population

infects susceptible people in the population) at any point in time.

Note that transmissibility differs from transmission – although
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transmissibility may be high at a particular point in time, the

number of infections actually occurring will also depend on the

number of infectious and susceptible individuals at the time [4,8].

Previous modelling suggests the lag between the yearly peak in b
and the yearly peak in the incidence of infections may be in the

order of one to three months for RSV infection [9]. With this in

mind we have used an RSV transmission model to estimate when

the seasonal scale variations in b would need to occur in order to

reproduce the observed seasonality in RSV admissions in our

study population. We have then compared this seasonal pattern of

b to the seasonal patterns of potential environmental drivers of

transmission: rainfall, humidity, and temperature patterns, nutri-

tional status, and school holidays, in order to better assess their

epidemiological plausibility.

Ethics Statement
The trial ‘‘Effectiveness of an 11-valent pneumococcal conju-

gate vaccine against pneumonia in Philippine children: A double-

blind, placebo-controlled, randomised, multicentre, effectiveness

study’’ was approved and monitored by the Ethical and

Institutional Review Board of the Research Institute for Tropical

Medicine (RITM), the Philippines. Written informed consent was

obtained from parents/guardians prior to enrolling infants into the

trial. In a small minority of cases both parents were illiterate. In

these instances a witness independent of the research team (a

relative or neighbour) attested to (1) that the information provided

to the parent was from the information sheet, (2) that the parent

was given the opportunity to ask questions, and (3) that the parent

provided verbal consent for the child to participate in the study.

The witness then signed the consent form on behalf of the parent.

The Ethical and Institutional Review Board of the RITM

approved the consent protocol and information sheets. This

retrospective analysis used de-identified data collected during the

trial. Ethical approval for the analysis in this paper was granted

without the need to seek additional consent, by the University of

Queensland School of Population Health Research Ethics

Committee in June 2011 (Ethics approval SP070711).

Methods

ALRI admissions data were collected during a randomised

controlled trial to investigate the efficacy of pneumococcal

conjugate vaccine (PCV) in Bohol Province in the Philippines,

between 2000 and 2004 [10,11]. Study personnel were perma-

nently assigned to hospitals involved with case ascertainment, and

respiratory infections were assessed and recorded in all children

living in the trial municipalities who were admitted to local health

care facilities over the course of the trial. Nasal wash specimens

were collected from children admitted to the Bohol Regional

Hospital with ALRI, and from 1 in 3 children diagnosed with

ALRI at the outpatient clinic. Children with a positive RSV

polymerase chain reaction (PCR) result were included in this

study.

A. Model Structure
Figure 1 shows the structure of our RSV model. The rates of

movement between the different epidemiological categories are

given by the following differential equations (parameter definitions

are given in Table 1):

dS1

dt
~mS{mS1{lS1

dE1

dt
~lS1{sE1{mE1

Figure 1. RSV model schematic. S1 are susceptible individuals
before their first RSV infection. E1 are individuals infected for the first
time but not yet infectious. I1 are individuals infected for the first time
and now infectious. R are individuals recovered from infection and
temporarily resistant to reinfection. S2 are partially susceptible
individuals before later RSV infections. E2 are individuals with
subsequent infections but not yet infectious. I2 are individuals with
subsequent infections and now infectious.
doi:10.1371/journal.pone.0090094.g001

Table 1. Parameter estimates used in the model.

Parameter Notation Model estimates

Force of infection l Mean = 0.0022 to 0.0037 day21

Mean latent period 1/s 4 to 6 days

Mean duration of infection in category I1 1/n1 5 to 6 days

Mean duration of infection in category I2 1/n2 4 days

Degree of infectiousness (I2/I1) d 0.5 to 0.8

Rate of loss of short term immunity (RRS2) c 0.012 to 0.024 day21

Susceptibility in category S2 a 0.68 to 0.84

doi:10.1371/journal.pone.0090094.t001
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dI1

dt
~sE1{n1I1{mI1

dR

dt
~n1I1zn2I2{mR{cR

dS2

dt
~cR{mS2{lS2a

dE2

dt
~lS2a{sE2{mE2

dI2

dt
~sE2{n2I2{mI2

The model was integrated over daily time steps using Runge-

Kutta 4 integration. The model is frequency dependent (all the

model compartments sum to 1). Fully susceptible individuals (S1)

are infected at rate l (the force of infection) which is dependent on

the transmission coefficient (b) and the proportion of infectious

individuals (categories I1 for primary infection and I2 for

subsequent infections):

l~b I1zdI2ð Þ

d allows for variable transmission from subsequent infections

and a allows for a variable level of susceptibility to subsequent

infections when in category S2. For both primary and subsequent

infections, there is a latent period of infection during which time

individuals are exposed but not yet infectious (respectively, E1 and

E2). Following the infectious period (respectively, I1 and I2),

individuals move to the recovered, non-susceptible (R) category at

rate n1 and n2 respectively. The recovered, non-susceptible state is

temporary, with individuals moving from this category to the S2

category at rate c. The transmission coefficient (b) takes into

account host, pathogen and environmental factors that influence

transmission [12].

We have modelled the seasonal variation in the transmission

coefficient using a cosine function. The timing of the yearly peaks

in the transmission coefficient is defined by the phase (Q) of the

cosine wave:

b~e 1zycos 2p
tzwð Þ
365

� �� �� �

e is the average value of b, and y is the magnitude of the

seasonal variation (as a proportion of e). We also examined a

second version of the model with a seasonal forcing function

describing a square wave with decreased transmissibility over 2

months of the year. The timing and magnitude of the square wave

is determined by an underlying cosine wave:

h~cos 2p
tzwð Þ
365

� �� �

b~

e 1{y
5

6

� �� �
if hv{0:87

e 1zy
1

6

� �� �
otherwise

8>>><
>>>:

This second version of the model approximates the expected

effect of school summer holidays (April–May). Although most

symptomatic RSV infection occurs in infants and children too

young to attend school, household studies suggest that RSV

infection is often introduced into households by school aged

siblings (although the proportion of household outbreaks attribut-

ed to RSV being introduced by school aged siblings varies

considerably between studies) [13,14].

Seasonality of births can also influence the seasonality of

infections, in particular the seasonality of first infections [15]. We

simulated this by allowing for seasonality in the birth rate, fitting a

cosine wave to local birth data. Here, ms denotes the seasonal birth

rate, and m denotes the mean birth rate (set at the Philippines birth

rate of 761025 of the total population per day).

mS~m 1z0:1cos 2p
tz79ð Þ
365

� �� �� �

B. Parameter Estimates
B1. Average force of infection (mean l). We have based

our estimate of the force of infection on two studies measuring the

incidence rate of first RSV infection over a number of years. Both

studies used active case finding to identify children with respiratory

infection, who were then tested for RSV infection. The first study

is a follow up of two birth cohorts (n = 635) in the rural setting of

Kilifi, Kenya [16]. RSV was confirmed using immunofluorescence

testing of nasal specimens and/or seroconversion. The rate of first

RSV infection was 0.55 (95% CI 0.50 to 0.61) per child year over

the first three years of life, equivalent to a rate of 0.0022 per day.

The second study is a follow up of a single birth cohort (n = 125)

from the urban setting of Houston, USA [17]. This study identified

RSV cases using viral culture of nasal specimens and/or

seroconversion, and found a rate of first RSV infection of 0.74

(95% CI 0.62 to 0.89) per child year over the first three years of

life, equivalent to a rate of 0.0037 per day.

A number of studies have examined the seroprevalence of anti-

RSV IgG antibodies according to age [16,18,19,20,21,22].

Estimating the force of infection from these studies is problematic

because of the highly seasonal nature of RSV infection (measuring

seroprevalence just after the seasonal peak in RSV incidence will

overestimate the average force of infection, while measuring

seroprevalence just before the seasonal peak will underestimate the

average force of infection). These studies suggest a relatively

constant risk of RSV infection occurs over the first few years of life,

with seroprevalence in the order of 90% by three years of age. In

Figure 2 we compare the results of these seroprevalence studies

with the RSV rates from the birth cohort studies from Kilifi and

Houston. While the rate from the Kilifi study falls in the centre of

the estimates from the seroprevalence studies, the rate from the

Houston study appears to be higher than average.

We have used the rate of first RSV infections from the Kilifi

study (0.0022 per day) as the estimate for mean l for our model. In

addition, in order to investigate how a higher than average risk of

infection affects RSV seasonality, we also fitted the model using

Modelling RSV Seasonality in the Philippines
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mean l equal to the rate of first RSV infections from the Houston

study (0.0037 per day).

B2. Susceptibility to reinfection. Previous infection with

RSV provides incomplete immunity [23,24,25]. Natural immunity

to RSV appears to have two aspects. Firstly, there appears to be a

long term partial immunity following first infection, which we have

modelled with a reduced susceptibility in the S2 category. This

may be due to specific immunity following first RSV exposure,

and/or the maturing of the infant immune system with age [16].

For the purposes of the model the distinction is not crucial.

Secondly, there appears to be additional short term immunity

following any RSV infection, which we have modelled by using

the SEIRS (susceptible, exposed, infectious, recovered, susceptible)

structure (as shown in Figure 1) rather than an SEIS structure. In

the SEIRS model, individuals in the R category are resistant to

infection, thus c (the rate that these individuals transition from the

R category to the S2 category) determines the duration of their

short term immunity.

We estimated the susceptibility in the S2 category (a) as follows.

It is generally accepted that susceptibility to first RSV infection is

100% (once protection from maternal antibody is lost). Infants in

high exposure settings such as child care show RSV incidence

approaching 100% during their first RSV season [26,27]. Bearing

this in mind, we considered that the attack rate following

experimental infection of young adult volunteers should give an

estimate of the susceptibility to infection in category S2. We

identified four such studies [24,28,29,30] (Table 2). Pooling the

results of these studies gives a = 0.77 (95% CI 0.68 to 0.84). We

also found four observational studies in children where the relative

risk of subsequent infection a year or more after first RSV

infection was able to be calculated from the published data

[16,17,26,27] (Table 2). We pooled the results from these studies

(weighted according to the number of children at risk of

reinfection in each study) and the result (RR = 0.76) was consistent

with the adult infection studies. In the model we use 0.68 to 0.84

for a.

We estimated the rate of loss of short term immunity to

reinfection (c) as follows. We could not use data from observa-

tional studies to assess the short term risk of reinfection because

these will be prone to bias due to the highly seasonal nature of

RSV infection (as most people are infected with RSV during the

seasonal epidemics, their risk from naturally occurring infection in

the months following this will be low regardless of their degree of

susceptibility). For this reason we have based our estimate of short

term immunity on data from the single study investigating

experimental reinfection of volunteers soon after confirmed

Figure 2. Cumulative incidence of first RSV infection according to age. Mean RSV incidence from birth cohorts in Kilifi and Houston (lines)
compared to results from anti-RSV IgG seroprevalence surveys (data points with 95% CIs).
doi:10.1371/journal.pone.0090094.g002

Table 2. Data used to estimate susceptibility in S2 category in
the model.

Setting Study type
Susceptibility in
S2 category

UK [29] Experimental infection in adults 0.74 (0.49 to 0.91)a

USA [24] Experimental infection in adults 0.76 (0.58 to 0.89)a

USA [28] Experimental infection in adults 0.78 (0.62 to 0.89)a

USA [30] Experimental infection in adults 0.77 (0.60 to 0.90)a

Kenya [16] Observation study in children 0.93 (0.69 to 1.24)b

USA [17] Observation study in children 0.71 (0.61 to 0.84)b

USA [26] Observation study in children 0.72 (0.62 to 0.84)b

USA [27] Observation study in children 0.67 (0.55 to 0.81)b

aProportion (infected/challenged).
bRR (second infection/first infection, where second infection 12 or more months
after first infection).
doi:10.1371/journal.pone.0090094.t002
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natural RSV infection [23]. In this study 47% (95% CI 21% to

73%) of the subjects were infected upon experimental exposure to

RSV two months after natural infection. We calculated c by fitting

a function:

dY

dt
~c 100{Y½ �

where Y is the population level susceptibility to reinfection, and t

is the time following infection, to pass though the data point from

this experimental study (47% susceptible at 2 months after

previous infection) and then reach our estimate for a (77%

susceptible at 12 or more months after first infection). This gave c
= 0.016 per day. For the model we have used a range from 0.012

per day to 0.024 per day. The lower limit of the range is the lowest

rate that will result in 100% of individuals having moved to

category S2 within 1 year following infection. The upper limit of

the range is 50% above the 0.016 estimate.

B3. Latent period (1/s). Studies of household RSV spread

have found the serial interval to be approximately six to seven days

[13,14]. In four studies of experimental infection of adult

volunteers, shedding was found to start at a mean of 6 days, 4.4

days, 4.4 days, and 4.0 days after inoculation (respective study sizes

were 15, 30, 22 and 35) [23,24,28,30]. In one of these studies it

was noted that the latent period depended on the size of the

infective dose, which may explain the differences between these

three studies [24]. Standard texts estimate the mean incubation

period to be 5 days [31]. The latent period is likely to be similar, as

infectiousness will increase with the onset of symptoms, even if

virus can be isolated prior to this [28]. In the model we use a mean

latent period of 4 to 6 days. For the purpose of fitting the model to

the observed RSV cases, we assume the latent period and

incubation period are equal.

B4. Duration of infectiousness (1/n1 and 1/n2). We have

assumed the infectious period is the same as the duration of RSV

shedding. Data from community studies are summarised in Table 3

(we excluded two studies measuring shedding in hospitalised

children because more severe disease increases shedding duration

[32,33]). The Kenyan study summarised in Table 3 indicates that

shedding duration varies according to the history of previous RSV

infection [34]. In this study the mean duration of RSV shedding in

those having had a previous RSV infection was 4.0 days, which is

consistent with the results from four experimental infection studies

in adults [23,24,30,35]. Shedding appears longer in young

children (approximately 5 to 6 days) consistent with the increased

shedding duration during first RSV infection in the Kenyan study

(5.1 days) [32,34,36]. In the model we use a mean duration of

infectiousness of 5 to 6 days for individuals is category I1, and 4

days for individuals in category I2.

B5. Relative degree of infectiousness between categories

I2 and I1 (d). In a series of studies the degree of RSV shedding

was found to be lower in adults (mean 3.0 log10TCID50/ml,

n = 29) [23,35], compared to hospitalised children aged less than 3

years (4.3 log10TCID50/ml, n = 19 ) [32]. This limited evidence

suggests that individuals in category I2 are 0.7 times as infectious

(in addition to having a shorter duration of infection) than those in

category I1. A recently published RSV model with lifelong partial

immunity following first infection used a relative degree of

infectiousness between individuals in category I2 compared to

category I1 of 0.6, and achieved good fitting to incidence data from

a number of settings with varied seasonal patterns [37]. In the

model we use 0.5 to 0.8 for d.

C. Model Fitting
We have fitted the incidence of I1 to the observed RSV cases, as

the risk of severe disease and hospital admission is highest upon

first infection [17,26]. To fit the model to the observed monthly

RSV cases, we first scaled up the cumulative incidence of I1 for

each month to calculate the predicted monthly number of RSV

cases (we derived the scaling factor from the mean number of

observed RSV cases per year divided by the yearly cumulative

incidence of I1 in the model at equilibrium). The seasonal forcing

parameters e, y and Q were derived from fitting the predicted

number of RSV cases to the observed RSV cases, while at the

same time fitting the model to the estimated average force of

infection (mean l) in the population. As the latent and incubation

periods are the same in our model, the seasonal pattern of disease

incidence will be coincident with the seasonal pattern of the

incidence of I1. A formal least squares approach was used for

model fitting. The parameter estimates used in the model are

summarised in Table 1. Parameters were varied in a stepwise

manner to maximise and minimise the time lag between the

seasonal peak in b and the seasonal peak in RSV incidence, in

order to form a range of epidemiologically plausible lag periods.

D. Assessing Potential Drivers of RSV Seasonality
After using the model to estimate the seasonal pattern of b, we

then compared this to the seasonal patterns of candidate drivers of

RSV seasonality (meteorological factors, school holidays, and the

seasonality of nutritional status). Meteorological factors examined

were the number of days per week with rainfall .5 mm (chosen to

incorporate both rainfall frequency and intensity) and mean

relative humidity and mean temperature. In addition we estimated

the dew point temperature (a measure of absolute humidity) from

the mean relative humidity and mean temperature [38]. Meteo-

rological data were recorded at the Philippine Atmospheric,

Geophysical and Astronomical Services Administration (PA-

GASA) offices in Tagbilaran. All trial municipalities were within

25 km of Tagbilaran. The number of rainy days per week also

serves as a proxy measure of sunshine hours, as these variables are

negatively correlated in this tropical setting [7]. The seasonality of

infant nutritional status was depicted using a time series of

estimated birth weight in the PCV trial participants [6]. While

birth weight is dependent on maternal nutrition, we have

previously shown in our study setting that birth weights are lowest

when rice production in lowest, and the seasonal trough in birth

Table 3. Data on the duration of RSV shedding used to
estimate the infectious period.

Setting n Age
Mean duration of RSV
shedding

Kenya [34] 96 First infection 5.1 days (95% CI 4.2 to
6.2 days)

96 Previously
infected

4.0 days (95% CI 3.3 to
4.9 days)

USA [24] 22 Adults 3.5 days

USA [23] 12 Adults 4.7 days

USA [35] 118 Adults 3.9 days

USA [30] 35 Adults 3.6 days

USA [36] 44 Less than 4 years 5 to 6 days

USA [32] 12 Less than 2 years 9.0 days (95% CI 2.0 to
16.0 days)

doi:10.1371/journal.pone.0090094.t003

Modelling RSV Seasonality in the Philippines
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weight is coincident with a seasonal trough in infant growth [6].

Similarly, a study from Bangladesh found that the seasonality of

birth weight was correlated both with nutrition in children aged

less than five years, and with rice availability [39]. The seasonal

scale variations of these environmental exposures were calculated

using locally weighted regression scatter plot smoothing (lowess)

using a five month bandwidth, before being compared to our

estimate of the seasonal pattern of b.

Results

Modelling the seasonality in births alone without additional

seasonal variation in b could not reproduce the observed

seasonality in RSV admissions, with the modelled incidence of

RSV cases varying by less than 10% over the calendar year.

Table 4 shows the results of the cosine b model, including the

results for the parameter combinations resulting in the best model

fit to the observed data, as well as the longest and shortest lag

between the seasonal peak in b and the seasonal peak in RSV

cases predicted by the model. While there is little difference in the

model fit between the different parameter combinations (as

demonstrated by the similarly sized residuals) the lag between

the seasonal peak in b and the seasonal peak in RSV cases

predicted by the model varies considerably. For the scenarios with

a mean l of 0.0022 this lag ranges from 67 days to 49 days. For

the scenarios with a mean l of 0.0037 (above average force of

infection) the range of this lag is much wider, from 43 days to 6

days. Table 5 shows the results of the square wave b model,

including the results for the parameter combinations resulting in

the best model fit to the observed data, as well as the longest and

shortest lag between the seasonal peak in RSV cases predicted by

the model and the start of the square wave. The square wave b
model does not fit the observed data as well as the cosine b model,

as demonstrated by the larger residuals. For the scenarios with a

mean l of 0.0022 the lag between the seasonal peak in RSV cases

predicted by the model and the start of the square wave ranges

from 31 days to 68 days. For the scenarios with a mean l of 0.0037

(above average force of infection) the range of this lag is from 80

days to 129 days. Figure 3 shows the cosine b and square wave b
models fitted to the observed RSV cases, for the scenario with a

mean l of 0.0022 and the parameter combinations resulting in the

best model fit to the observed data.

Figure 4 shows the seasonal pattern of b estimated from the

cosine b model with mean l of 0.0022, compared to the seasonal

scale variations in the potential environmental drivers. The

environmental data are plotted relative to the centre of the yearly

RSV epidemics, which occurred at slightly different times each

year. The nutrition index (estimated weight for age z-score at

birth) is consistently at its minimum 10 weeks before the centre of

the yearly epidemics, compared to the seasonal peak in b, which

occurred 7 weeks (51 days) before the peak in RSV cases.

Although rainfall does not show a consistent seasonal peak, the

seasonal trough in rainfall occurs consistently 17 to 18 weeks after

the centre of the yearly RSV epidemics, compared to the seasonal

trough in b, which occurred 19 weeks (131 days) after the peak in

RSV cases. In contrast, relative humidity, dew point and

temperature do not show clear relationships with the seasonal

pattern of b. Performing a similar analysis for school terms

indicates that school holidays begin after the predicted square

wave. This can be seen in Figure 3 (summer school holidays in the

Philippines begin in late March to early April).

Discussion

We have found that the observed seasonality of RSV admissions

in our study setting can be replicated by an RSV transmission

Table 4. Results from the cosine b model.

Mean l c a s n1 n2 d e y Q Res Lag

0.0022 Longest lag 0.024 0.68 0.17 0.17 0.25 0.5 0.72 0.20 140 24.9 67

Best fit 0.012 0.84 0.25 0.17 0.25 0.5 0.64 0.13 123 24.6 51

Shortest lag 0.012 0.84 0.25 0.17 0.25 0.8 0.42 0.13 122 24.6 49

0.0037 Longest lag 0.024 0.68 0.17 0.17 0.25 0.5 0.78 0.14 116 26.0 43

Best fit 0.012 0.84 0.25 0.17 0.25 0.8 0.47 0.12 81 24.1 9

Shortest lag 0.012 0.84 0.25 0.17 0.25 0.5 0.72 0.11 77 24.4 6

The lag is from the seasonal peak in b to the seasonal peak in RSV cases predicted by the model. Lag and Q are in days. The values of l, c, s, n1 and n2 are rates per day.
Res is the residuals following fitting the model to the observed RSV data (the square root of the sum of the squares of the difference between the monthly number of
observed RSV cases and the monthly number of RSV cases predicted by the model).
doi:10.1371/journal.pone.0090094.t004

Table 5. Results from the square wave b model.

Mean l c a s n1 n2 d e y Q Res Lag

0.0022 Shortest lag 0.024 0.68 0.17 0.17 0.25 0.5 0.72 0.48 164 29.3 31

Best fit/longest lag 0.012 0.84 0.25 0.17 0.25 0.5 0.65 0.47 156 26.9 68

0.0037 Shortest lag 0.024 0.68 0.17 0.17 0.25 0.5 0.79 0.55 143 28.5 80

Best fit/longest lag 0.012 0.84 0.25 0.17 0.25 0.5 0.73 0.51 100 25.7 129

The lag is from the seasonal peak in RSV cases predicted by the model to the start of the square wave. Lag and Q are in days. The values of l, c, s, n1 and n2 are rates per
day. Res is the residuals following fitting the model to the observed RSV data (the square root of the sum of the squares of the difference between the monthly number
of observed RSV cases and the monthly number of RSV cases predicted by the model).
doi:10.1371/journal.pone.0090094.t005
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model with a transmission coefficient (b) following a seasonal

cosine wave that is maximal 51 days (range 67 days to 49 days)

before the yearly peak in RSV admissions. This is consistent with

the findings from previous modelling of RSV infection, which

suggests that peak RSV transmissibility precedes yearly RSV

epidemics by one to three months [9]. Seasonal malnutrition in

our study setting (as measured by seasonal variation in birth weight

and infant growth) is consistently at its worst 10 weeks before the

yearly RSV epidemics [6]. This lag is slightly longer than the 51

days predicted by the model, however there are three mechanisms

we have not modelled which would lead to an additional delay

between peak seasonal malnutrition and peak RSV admissions.

Firstly, we have not factored in health care seeking delays: the

children with RSV in our study had an average delay of 5 days

between the onset of cough and admission. Secondly, the immune

effects of malnutrition may lag behind the anthropometric effects:

studies of the treatment of malnutrition in children indicate that

immune recovery lags up to a month behind anthropometric

recovery [40,41,42]. Thirdly, not all children suffer from

malnutrition in our study setting, thus successive generations of

infection are required before seasonal forcing in the malnourished

subgroup could drive RSV incidence in the wider population.

Rainfall is high most of the year in our study setting, and shows a

consistent trough 17 to 18 weeks after the yearly RSV epidemics.

This is also consistent with our model, which predicts the seasonal

trough in b occurring 131 days (19 weeks) after the yearly peak in

RSV cases. Factoring the health care seeking delay discussed

above would mean the seasonal trough in b actually occurs 18

weeks after the yearly peak in RSV cases, precisely coincident with

the observed trough in rainfall. The seasonal patterns of

temperature, dew point and relative humidity are not consistent

with the predicted seasonal pattern of b. The small magnitude of

the seasonal variation in these exposures (mean temperature and

dew point vary by approximately 2uC through the year, while

mean relative humidity varies by approximately 5% through the

year) also suggests that these exposures are unlikely to be playing a

major role in driving the seasonality of RSV in this setting. School

summer holidays appear to occur too late to play a dominant role

in driving RSV incidence in infants in this setting. In addition, the

timing of school holidays relative to yearly RSV epidemics is very

different in other tropical climates, suggesting school holidays do

not play a dominant role in RSV seasonality in the tropics. For

example in northern Australia and in southeast Florida RSV

incidence is highest soon after school summer holidays [43,44].

Seasonal malnutrition is a biologically plausible driver of RSV

seasonality: poor infant growth leaves children weakened and

vulnerable to infection [45], and is a known risk factor for RSV

associated ALRI [46,47,48,49]. If rainfall is driving RSV

Figure 3. Results of the RSV model. RSV case estimates derived from the model were fitted to the observed number of RSV cases. Mean l
= 0.0022 per day. Data from Bohol, the Philippines, 2001 to 2004.
doi:10.1371/journal.pone.0090094.g003
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Figure 4. Timing of the estimated seasonal variation in the transmission coefficient (b) relative to observed seasonal exposures. The
red line shows the estimated variation in b. The black lines show the variation in the observed exposures. Data from Bohol, the Philippines, 2001 to
2004.
doi:10.1371/journal.pone.0090094.g004
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transmission in this setting, the mechanism of action is less clear.

Although high rainfall is linked to high humidity, our results

suggest that changes in humidity are not the principle mechanism

of action. It is hypothesised that adverse weather conditions such

as increased rainfall could lead to increased indoor crowding,

increasing respiratory virus transmission [5,50]. There are little

empirical data available to test this hypothesis. One study from the

tropical setting of Bangladesh found an increased risk of

respiratory infection following rainy days only occurred in

households with three or more people per room, suggesting that

the increased risk of RSV infection in crowded households is more

pronounced during rainy days [51]. Cloud cover is increased

during the rainy season. In tropical latitudes the amount of

sunshine is dictated more by cloud cover than day length, with the

lowest amount of sunshine during the rainy season. Low levels of

25-hydroxyvitamin D appear to be a risk factor for ALRI due to

RSV in infants [52]. If children have higher vitamin D levels

during the dry, sunny season this could reduce transmissibility by

increasing innate defences in susceptible children. Whether

vitamin D deficiency occurs in children in this tropical setting is

unknown, as is the timing of any seasonal deficiency (in temperate

settings, variations in vitamin D levels appear to lag 1 to 2 months

behind variations in sunshine levels [53,54], however the temporal

relationship may be different in the tropics). These questions could

be addressed directly by studies measuring the seasonal variation

in Vitamin D levels in children in tropical settings. Increased

sunshine may also act to directly kill pathogens in the environment

[5].

It is possible that seasonal variations in both nutrition and

rainfall could act synergistically to drive RSV transmission in this

setting. According to our model, either exposure could potentially

drive seasonality alone; however it is not clear if variations in either

nutrition of rainfall patterns are large enough to drive the

transmission coefficient to the necessary amplitude. If more than

one mechanism was acting, each need only be responsible for part

of the variation in the transmission coefficient.

Our model is based on a previous RSV model developed by

Weber et al [9], however our model differs in several aspects. A

central issue with RSV models is modelling partial immunity to

reinfection. The previous model by Weber et al used stepwise

reductions in susceptibility to reinfection following first, second

and later infection cycles. In our model, after the first RSV

infection, individuals have the same (reduced) susceptibility to any

subsequent infections. Individual level studies examining this have

not found a significant difference between the susceptibility to

second and third RSV infection, indicating that our simplification

is reasonable [16,17,26]. In addition, susceptibility to RSV

infection appears similar in adults who have had many previous

RSV infections, as well as in children who have had only one

previous RSV infection (Table 2). Our second simplification to the

Weber model is we do not include an epidemiological compart-

ment for infants with maternal anti-RSV antibodies (i.e. all infants

are born fully susceptible). This simplification has been used

previously [37,55]. Some of our parameter estimates differ from

those used by Weber et al, in particular our estimates for the rate

of loss of short term immunity (c) and the duration of

infectiousness (n1 and n2). In our model we chose a minimum

value of c = 0.012 per day, compared to c = 0.005 per day in

Weber et al. We limited c to values above 0.012 per day as this is

the lowest rate that will result in all infected subjects losing their

partial immunity by one year following infection. This appears to

be a reasonable assumption: data from Kenya and the USA

suggest short term immunity lasts no more than a year [16,17]. In

contrast to our estimates for the duration of infectiousness (5 to 6

days for first infections and 4 days for later infections), Weber at al

used 10 days. Our estimates were based on data from 7 studies

examining RSV shedding, the two largest of which were published

after the Weber model was developed. In addition, we specifically

excluded studies examining RSV shedding in hospitalised

children, as shedding duration is prolonged in children with

RSV associated ALRI [32,33], who make up only a small fraction

the RSV cases occurring in the general population.

Our results show that the lag between the seasonal peak in b
and the seasonal peak in RSV cases is substantially shorter if the

mean force of infection (l) is higher. We have used the average

rate of first RSV infection in Kilifi (0.0022 per day) [16] as the

mean force of infection for our primary analysis, while we have

used the average rate of first RSV infection in Houston (0.0037 per

day) [17] to give an indication of the effect of a particularly high

force of infection. We used the Kilifi data to derive our primary

force of infection estimate for two reasons. Firstly, Kilifi is similar

to our study setting of Bohol in that both are rural, coastal settings

in the tropics. Secondly, the average rate of first infection in Kilifi

appears to be more consistent with the results from the

seroprevalence studies in the literature than the rate of first

infection in Houston (Figure 2). The authors of the Houston paper

note that the cumulative incidence of infection in their study was

similar to that found in child care settings in other similar studies,

which suggests a particularly high risk of infection over the two

years of the Houston study. While using the average rate of first

RSV infection in Kilifi as the mean force of infection for our

primary analysis appears valid, it is clear that for the best precision

when estimating the seasonal pattern of b, precise measurement of

the local force of infection is desirable.

In Figure 4 we plotted the environmental data relative to the

centre of the actual yearly RSV epidemics, because epidemics

occurred at slightly different times each year (the 2002/2003

epidemic occurred 56 weeks after the 2001/2002 epidemic, while

the 2003/2004 epidemic occurred 50 weeks after the 2002/2003

epidemic). In doing so we have implicitly assumed year to year

differences in the timing of the epidemics are due to differences in

the timing of seasonal drivers, rather than due to differences from

year to year in the amplitude of the seasonal forcing. However, as

discussed in the previous paragraph, a higher force of infection is

associated with a shorter lag between the seasonal peak in b and

the seasonal peak in RSV cases. Thus a year with particularly

intense seasonal increase in b would be expected to have an earlier

RSV epidemic. Further modelling incorporating year to year

differences in the amplitude of seasonal forcing may shed

additional light on seasonality, particularly if modelling incidence

during extreme rainfall events, or during poor harvests.

Our findings contribute to the current epidemiologic under-

standing of RSV, the most common cause of ALRI in infants and

children [56]. We have shown that seasonal scale drivers of

transmissibility can act several weeks before and/or after the

seasonal peaks in RSV incidence, and thus it is important to

incorporate the non-linear dynamics of infectious disease trans-

mission when examining potential drivers of infectious disease

seasonality. Our results indicate that the timing of seasonal

variations in nutrition and rainfall patterns in this tropical study

setting are epidemiologically consistent with them being plausible

drivers of RSV seasonality.
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