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Pleiotropic effects of sphingosine-1-phosphate
signaling to control human chorionic mesenchymal
stem cell physiology

Giulio Innamorati*,1,3, Emanuela Fontana1,3, Federica Steccanella1, Kushal Gandhi1, Giulio Bassi2, Valeria Zandonà1 and
Luca Giacomello*,1

Chorionic stem cells represent a promising opportunity for regenerative medicine. A deeper understanding of the stimuli that
regulate their physiology, could lead to innovative clinical approaches. We revealed the presence of multiple sphingosine-1-
phosphate (S1P) receptor isoforms in chorion-derived mesenchymal stem cells (CMSCs). Their activation simultaneously
propagated from the plasma membrane through Gi and other heterotrimeric G proteins and further diverged toward extracellular-
signal-regulated kinase 1/2 (ERK1/2), p38 and protein kinase D 1. At a functional level, S1P signaling inhibited CMSC migration,
while promoting proliferation. Instead, a reduction of cell density was obtained when S1P was combined to treatments that
increased cAMP intracellular concentration. Such surprising reduction of cell viability was relatively specific as it was not
observed with stromal stem cells from bone marrow. Neither it was observed by activating analogous G proteins with bradykinin
nor by inducing cell death via a cAMP-independent pathway. S1P could thus reveal novel keys to improve CMSC differentiation
programs acting on cAMP concentration. Furthermore, S1P receptor agonists/antagonists could become instrumental in favoring
CMSC engraftment by controlling cell motility.
Cell Death and Disease (2017) 8, e2930; doi:10.1038/cddis.2017.312; published online 13 July 2017

A number of novel approaches for regenerative therapies
based onmesenchymal stem cells (MSCs) are currently under
development.1 Among tissues of fetal origin, placenta appears
to be an untapped supply of multipotent cells.2–4 Collecting
placenta MSCs presents minimal ethical and legal concerns
and warrants high yields of precursor cells endowed of
expanded plasticity, low immunogenicity and immunomodu-
latory properties.3,5

To preserve intact these valuable properties, ideally MSC
expansion and differentiation should be controlled in vitro by
mimicking physiological stimuli as close as possible. Acting on
endogenous receptors would avoid the pervasive conse-
quences associated with chemical or genetic reprogramming,
particularly the risk of generating tumors. Yet, very little is
known about which receptors are populating the plasma
membrane of CMSCs and their function.
Similar to Wnt, CXCL12 and other G protein-coupled

receptor (GPCR) agonists that coordinate trophic niches for
progenitor cells,6–9 sphingosine-1-phosphate (S1P) is emer-
ging as a critical coordinator of morphogenesis. Starting from
the initial phases of embryonic development, S1P mediates
transcriptional regulation of key targets associated with
survival, proliferation and pluripotency.10 Afterward, S1P
regulates ‘cell fate’11 through development12 and tissue
remodeling. In adult life, S1P contributes to regenerate adult
tissues13,14 such as skeletal muscle,13 bone15 and adipose

tissue,16 by controlling proliferation and differentiation of
resident mesenchymal progenitor cells.
Under stress conditions, precise stimuli mobilize stem cells

from nurturing niches to travel in blood circulation. Eventually,
they become attracted to local injured tissues to repair the
damage. The possibility to control the tropism of exogenously
administered cell precursors represents an essential aspect to
achieve realistic cell-based therapies.17 Once again, receptor-
mediated stimuli could become of a key importance. Acting as
an extracellular lymph- and serum-borne ligand, S1P released
by activated platelets is amajor regulator of cell trafficking. The
pleiotropic action of S1P is mediated by five GPCR subtypes,
formerly named EDGs as in endothelial differentiation
genes.18 In the blood system, S1P acts with CXCL12 to guide
hematopoietic stem cell circulation after they leave the bone
marrow to accomplish their role in body surveillance and injury
recovery.19 S1P can sort diametrically opposite effects,
depending on the cell state. Distinct GPCR subtypes were
shown decisive for activating20 or inhibiting21 lymphocyte
motility, and subtype 2 resulted as inhibitory. However, the
receptor profile cannot by itself predict the migratory
phenotype for all cell types.22,23

We addressed and verified the possibility that S1P signals
across the plasma membrane of CMSCs to mitogen-activated
protein kinase (MAPKs) and other kinases central to the
regulation of cell proliferation, differentiation and motility.
Consistently, S1P affected CMSC migration and cell density.
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Further analysis disclosed the complexity of S1P signaling on
proliferation and resistance to pro-apoptotic treatment
revealing a crosstalk with the cAMP signaling pathway.

Results

Isolation and culture of human MSCs. CMSCs enzymati-
cally dissociated from the chorionic membrane of five human
full-term placentae were expanded as a monolayer. Cells
displayed a fibroblast-like morphology and started to pro-
liferate steadily propagating in vitro after successive cycles of
trypsinization.
Cells plated at low density formed colonies after 2 weeks

(Figure 1a). Their number was counted to estimate progenitor
cells and ranged from 3 to 14% of total cells seeded (Table 1).
The immunological phenotype was analyzed by flow

cytometry after six passages of subculturing (the profiles of
two preparations are shown in Figure 1b). Consistent with their
origin,4,24,25 CMSCs were negative for MHC class II
(HLA-DR), positive for MHC class I (HLA-ABC) and for MSC

markers, that is, CD54, CD73, CD90, CD105 and CD146.
Endothelial marker CD31 and hematopoietic markers CD34
and CD45 were not detected.
Supporting the immature nature of the CMSC preparation,

RT-PCR revealed the expression of pluripotent markers,
namely NANOG, SOX2, OCT4 and cKIT24,26 (Figure 1c).
The multilineage differentiation potential of CMSCs was
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Figure 1 Isolation and characterization of CMSCs. Single cells in suspension were expanded adhering to culture plastic through the formation of fibroblast-like colonies. (a) A
colony originating from a single cell, after successive cycles of amplification. Cells were fixed and stained with crystal violet. (b) The marker expression profile of cultured cells was
analyzed by flow cytometry. The respective isotype control is shown as a dotted line. (c) The expression levels of transcription factors regulating multipotent properties were
evaluated by RT-PCR for five preparations of CMSCs utilizing BMMSCs or Jurkat cells as a reference, n= 5. (d) CMSCswere fixed after 4 weeks of treatment with the appropriate
differentiation medium as indicated. Adipocytes were identified with Oil Red O to stain lipidic vacuoles in the cytosol. Osteoblasts were revealed with Alizarin red S by staining the
calcium matrix in red. Staining was negative in untreated control CMSCs

Table 1 Clonogenicity of CMSCs

CMSC preparation Clonogenicity

1 14±2%
2 3±2%
3 4±1%
4 12±3%
5 4±2%

After 2 weeks of culturing, single CMSCs formed colonies (defined as 50 or
more adjacent cells). Colonies were counted, divided by the number of seeded
cells and expressed as %±S.D.
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confirmed by inducing their differentiation in adipocytes and
osteoblasts (Figure 1d).

CMSCs express S1P receptors. To identify GPCRs present
on CMSC plasma membrane, saturating concentrations of
several ligands (for a complete list of GPCR ligands used in
this study see Supplementary Table S1) were tested for their
ability to activate extracellular-signal-regulated kinase 1/2
(ERK1/2) in two representative preparations. Ubiquitous
purinergic and muscarinic receptors produced ERK1/2
activation in response to ATP and carbachol, respectively.
S1P stimulation was higher and comparable to phorbol-12-
myristate-13-acetate (PMA), the highly potent protein kinase
C (PKC) activator (Figure 2a).
The activation was dose-dependent and the EC50 was

estimated in a low nanomolar range, consistent with the effect
being mediated via high-affinity GPCRs (Figure 2b). ERK1/2

activation was transient in time (Figure 2c) and it was
completely inhibited by pertussis toxin (PTX), indicating that
the pathway was fully Gi-dependent (Figure 2d). On the other
hand, the inhibition of all PKC isoforms by GF 109203X
produced no effect (Figure 2e).
For all five preparations tested, specific PCR primers

demonstrated transcription of three out of five S1P receptor
(S1PR) subtypes (Figure 3; Supplementary Figure S1). No
mRNA was detected for S1P2R and S1P5R.
GPCR involvement in S1P signaling was confirmed by the

increase of ERK1/2 phosphorylation observed in response to
FTY720P, a ligand selective for all S1PRs but S1P2R. Also in
this case, the EC50 was in the nanomolar range (Figure 4a).
A preliminary screening with additional S1P analogs

(Supplementary Table S1) was performed to further detail
which receptor subtypes were responsible for ERK1/2 activa-
tion. SEW2871, a S1P1R selective agonist,27 was effective,
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Figure 2 GPCRs mediated ERK1/2 activation in CMSCs. The activation state of ERK1/2 was analyzed by western blot using an antibody raised against specific activating
phosphorylation sites. (a) CMSCs were stimulated for the indicated time with several GPCR ligands, in particular 10 μM isoproterenol (ISO), 0.1 μM endothelin 1 (END1), 5 μM
S1P, 100 μM ATP and 100 μM carbachol (Cch). A unit of 0.1 μM PMA and 10% FCS were used as positive controls to bypass GPCRs. (b) The relationship between S1P
concentration and ERK1/2 phosphorylation was described after 10 min of stimulation. From the fitting curve, the EC50 was estimated to be 0.5 nM, n= 7. The panel above the
graph shows a representative experiment. (c) Phosphorylation of ERK1/2 was measured over a 48 h time period using 5 μM S1P, n= 3. (d) Gi was inhibited by pre-treatment with
200 ng/ml PTX before stimulating for 5 min with S1P or PMA as indicated, **Po0.01, n= 4. The panel above the graph shows a representative experiment. (e) All PKC isoforms
were inhibited by pre-treatment with the indicated concentration of GF 109203X before stimulating for 5 min with S1P, n= 3
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although to a minor extent compared to S1P. CYM50179, a
S1P4R selective agonist,28 produced a stronger stimulation
(Figure 4b), while JTE-013, a S1P2R antagonist,29 did not
prevent the effect of S1P, ruling out S1P2R (Figure 4c). All
together, these results suggested a combined action of
multiple S1PR subtypes converging on Gi-dependent ERK1/2
activation.

Downstream signaling of S1PRs. S1P signaling was not
limited to ERK1/2 but included protein kinase D 1 (PKD1), as
it was revealed by phosphorylation of two activation-
dependent sites, S738 and S910 (Figures 5a and b). Also
in this case, nanomolar concentrations of either S1P or
FTY720P were sufficient to promote PKD1 activation
(Figures 5 b and c). In addition of being dose-dependent,
the effect was transient (Figure 5d).
Similar results were obtained while analyzing p38 activa-

tion, which appeared Gi-mediated like for ERK1/2 (Figure 6a).
Opposite to MAPK activation, agonist-dependent activation

of PKD1 was unaffected by PTX (Figure 5e) but it was
sensitive to GF 109203X (Figure 5f). The latter result suggests
the involvement of Gq/11 or G12/13, and PKC family members
despite we observed no activation of classic PKC isoforms
(Figure 6b).
AKT phosphorylation remained unaltered after S1P expo-

sure. It thus appears that in CMSCs, S1P downstream
signaling does not involve the PI3K pathway (Figure 6c), but
activates multiple kinases instrumental to a large variety of
biological functions.

Functional consequences of S1P signaling in CMSCs.
S1P influences several aspects of morphogenesis, such as
cell growth, collective cell migration and tissue inductive
events.12 We sought functional assays aimed to analyze
proliferation, migration and differentiation.
Cells were plated at low density and their expansion was

evaluated after 7 days in the presence of fetal calf serum
(FCS) that was charcoal-stripped to remove S1P possibly
released by aggregating calf platelets.30 Addition of S1P
increased cell density (Table 2), the increase was relatively
contained, but significant at both S1P concentrations tested.
The positive effect on total cell number was reversed when

S1P was combined with isobutyl-1-methylxantine (IBMX),
added either as part of an adipocyte differentiation cocktail or
separately (Figure 7a). Increasing S1P concentration in a
medium containing 1 mM IBMX progressively reduced cell

density (Figure 7b). Charcoal-stripped FCS showed no
significant difference as compared to regular FCS
(Supplementary Figure S2a). According to a 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, the effect was unlikely caused by a slight and not
statistically significant reduction of cell proliferation, no
matter if FCS was charcoal-stripped (not shown) or not
(Supplementary Figure S2b). Most likely, the reduction
of cell density was produced by cell death. Flow cytometry
analysis of cell viability after 36 h in the presence of 1 mM
IBMX shows that S1P produced an increase of 24%
(±3%, Po0.01, n=3, [S1P]=5 μM) of the population in early
stages of apoptosis (annexin V-positive and propidium
iodide-negative).
In alternative to inhibit phosphodiesterases with IBMX,

preventing inhibitory Gi activity on adenylyl cyclase with PTX
can also increase cAMP intracellular concentration. Corre-
spondingly, PTX treatment resulted in a S1P dose-dependent
reduction of cell viability (Figures 7c and d). The effect was
reverted by treating cells with GF 109203X, an inhibitor of
novel and atypical PKCs, like PKD1 (Figures 7e and f).
The combination S1P–IBMX did not produce the same

effect on BMMSCs (Supplementary Figure S2c), and
interestingly, no S1P effect was observed co-administering
gemcitabine, a pro-apoptotic stimulus acting independently
from cAMP (Supplementary Figure S2d).
Similar to S1P, bradykinin stimulates Gi and Gq/11 via

GPCR31 and, on turn, activates ERK1/2 to a comparable level
(Supplementary Figure S2e). However, the pro-apoptotic
effect of IBMX could not be amplified by bradykinin
(Supplementary Figure S2f).
Altogether, these results indicate a certain degree of

specificity for the crosstalk occurring between S1P and cAMP.
In other words, in CMSCs the concentration of cAMP appears
to be a switch that converts the effect of S1P from tonic to pro-
apoptotic.
The marked consequences on cell viability imposed to

reduce the concentration of IBMX to 0.5 mM for a meaningful
analysis of S1P effect toward adipocyte differentiation,32,33

under these conditions no significant difference was observed
(Supplementary Figure S3a). Similarly, S1P had no effect on
osteogenesis (Supplementary Figure S3b). Cell differentiation
was hindered by charcoal-stripping of FCS but the effect could
not be ascribed to S1Pas replenishing the phospholipid (5 μM)
did not restore osteogenesis (not shown).
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Figure 3 S1PR expression in CMSCs. mRNA transcription levels of the five different S1PRs were estimated by RT-PCR. mRNA prepared from Jurkat cells was used as a
reference

S1P switches signaling from proliferation to death
G Innamorati et al

4

Cell Death and Disease



MSC have been repeatedly reported for their immunomo-
dulatory properties. CMSCs are not an exception and were
shown to inhibit T-cell proliferation.34 We confirmed this
finding, however, this important property was not affected by
S1P (Supplementary Figure S3c).

No evident effect of S1P was observed in wound-healing
assays measuring the time required by the cells to fill the gap
in the presence of 2% bovine serum albumin (BSA) or 10%
FCS (Supplementary Figures S4a and b). However, utilizing a
medium supplemented with 0.3% FCS, S1P markedly
inhibited cell migration in a dose-dependent manner
(Figure 8; Supplementary Video S5). Spontaneous migration
was not reduced by charcoal-stripping (data not shown).
Under analogous conditions, single cells were tracked by
time-lapse microscopy. The effect of S1P was evident after 5 h
treatment determining a reduction of cell velocity from 5.3 to
2.3 μm/h (Supplementary Figure S4c).

Discussion

Several studies isolated and differentiated MSCs from human
term placenta.24,35,36 However, CMSCs remain poorly char-
acterized when compared to MSCs obtained from bone
marrow or other sources. A better knowledge about their
receptor expression profile could deliver crucial tools to
manipulate them, while fully preserving their safety (see
introduction). S1P is reported upstream several pleiotropic
regulators of cell physiology and as a consequence of that, as
a crucial regulator of cellular processes such as proliferation,
migration survival and differentiation.37

We provide important indications in this sense by demon-
strating that the exposure to S1P selectively stimulates
endogenous PKD1, while leaving classic PKC isoforms
surprisingly unaffected. PKD1 is a key regulator of multiple
functions, including cell polarity, proliferation, migration and
differentiation.38 S1P was previously reported for modulating
MAPK activation in other cellular systems.39,40 In CMSCs we
observed a parallel transient increase of ERK1/2 and p38
phosphorylation operated by S1P via a Gi-dependent signal-
ing branch that diverges from the PTX insensitive branch
oriented on PKD1.
The human genome encodes for five distinct S1PRs. Such

diversified coupling could be responsible for splitting the
signal. Numbered 1–5,37 S1P1R, S1P2R and S1P3R are
widely expressed while S1P5R is prevalently expressed in the
central nervous system and S1P4R in hematopoietic cells,41

Schwann cells42 and other precursor cells. As compared to
S1P, its analogs promoted partial ERK1/2 activation in
CMSCs. An incomplete response could be a consequence
of reduced potency, or more likely of selective binding
discriminating among receptor subtypes.43 Significant ERK1-
/2 activation was observed in response to S1P1R specific
agonist, SEW2871. S1P2R is reported as poorly coupled to Gi
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and ERK1/2,44 and its mRNA could not be detected.
Consistently, its antagonist JTE-013 was ineffective. S1P3R
and S1P4R mRNAs were also present and indeed FTY720P
produced an intermediate activation level, only second to S1P
itself.
Altogether, our data portray S1P triggering a signaling

circuitry that branches already at the level of the plasma
membrane of CMSCs.
In muscular,13 neural45 and hepatic46 tissues S1P was

shown to support potency, proliferation and self-renewal of
cellular precursors. In CMSCs, we discovered that the
sphingolipid increases cell density if administered by itself,

but unexpectedly, it markedly impacts cells viability if
combined with either IBMX or PTX. The ‘switch’ sorting
between the two opposite effects is most likely related to the
consequent increase of cAMP intracellular concentration. In
addition, the pro-apoptotic signaling branch is presumably
MAPK-independent as the S1P activation of ERK1/2 and p38
is assumed fully blunted by the pre-treatment with PTX
(Figures 2 and 6). On the other side, the pro-apoptotic
co-signal appeared to be driven by a PKC-dependent branch
because the outcome was reverted by GF 109203X, a
selective PKC inhibitor that does not discriminate for the
different isoforms.
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The intracellular level of cAMP appears to be determinant
for driving commitment of MSCs.47 S1P is widely reported as
an anti-apoptotic agent, the overturn provoked by the crosstalk
might have implications for differentiation protocols combining
high FCS concentrations to IBMX. In fact, the latter is a
phosphodiesterase inhibitor that is used for inducing
neurogenesis48 or adipogenesis.49

In maturing 3T3-L1 preadipocytes, S1P significantly
decreased lipid accumulation.50 In C3H10T1/2 stem cell line,
S1P stimulation skewed differentiation from adipogenic to
osteogenic.47 We did not observe a significant effect on
osteogenic nor adipogenic differentiation. A possible explana-
tion for the variety of effects produced by S1Pon differentiation
is that the S1PR expression profile may evolve during the
process. Ongoing efforts are being dedicated to better
correlate in vitro S1P signaling to the commitment toward
other lineages. Yet, a more significant analysis may require
moving to animal models, where FTY720 was demonstrated
to possess anti-obesity properties.51

In vivomaturation is often contingent tomigratory processes
concurring to controlled cell proliferation.
Serum S1P levels are relatively high comparing to

peripheral tissues.52 The resulting gradient can be either
chemoattractive or chemorepulsive depending on the subtype
of receptor expressed.53 We observed a dose-dependent
inhibition of CMSC motility in response to S1P.
Chemokine-guided stem cell recruitment is considered as a

fundamental step toward in situ tissue engineering,54 and
additional chemotactic stimuli could result as equally valuable.
Our results warrant the rationale for studying the activity of
S1PRs in directing tissue tropism of CMSCs in vivo. Experi-
ments with CMSCs will be designed to reproduce analogous
studies that demonstrated S1P-mediated homing of hemato-
poietic stem cells at sites of tissue injury.55

Activated platelets represent the major source of extra-
cellular S1P. Monocytes and vascular cells may also con-
tribute to an increase of local concentration, linking the
coagulation system to inflammatory responses.56 On the
other side, FTY720 was proposed as a surrogate anti-
inflammatory chemokine capable of conditioning local tissues
with angiocrine factors like CXCL12 and preferentially recruit
anti-inflammatory monocytes.57 Hence, opportune orchestra-
tion of S1PR activity mediated by agonists/antagonists could
offer a number of synergistic effects instrumental, not only to
prevent the egression of transplanted cells but also to enhance
healing outcomes, tissue regeneration and biomaterial
implant functionality.

Conclusion

Wedemonstrated that S1P represents an important modulator
of CMSC physiology.
By interacting with selected receptor subtypes coupled to

different G proteins, S1P produced multiple effects ranging
from the activation of PKD1 and MAPK signaling to more
indirect functions, such as controlling cell motility and
balancing cells death versus proliferation.

Materials and Methods
Cells isolation and culture. Following informed consent (approved by the
Ethical Committee of the Azienda Ospedaliera Universitaria Integrata di Verona, no.
0054, 4 June 2012) five human term placentae were collected after cesarean
section and treated in accordance with approved guidelines. CMSCs were
expanded as previously described by Soncini et al.58 Chorion fragments were
collected and washed twice in physiologic saline solution supplemented with 100 U/
ml penicillin and 100 μg/ml streptomicin. Dissociation was achieved by mechanical
digestion using a scalpel followed by sequential enzymatic digestions: 24 U/ml
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Table 2 Functional consequences of S1P signaling on CMSC density

S1P (μM) 0.25 μM 1 μM

Density increase 21% 20%
S.E.M. 9% 10%
P o0.05 o0.05
n 9 13

The table depicts variations in density of cultured CMSCs due to the presence
of S1P
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dispase II for 5 min; 0.75 μg/ml collagenase for 30 min; and 0.25% trypsin for 5 min
repeated three times.
Each enzymatic digestion was in phosphate-buffered saline (PBS) supplemented

with 20 μg/ml DNase I at 37 °C and was blocked in Dulbecco’s modified Eagle’s
medium (DMEM) high glucose supplemented with 10% FCS, 1% penicillin/
streptomycin and 1% L-glutamine (complete medium). Cells were recovered each
time by centrifugation for 5 min at 400 × g. Finally, cells in suspension were filtered
through a 100 μm cell strainer, plated in complete medium and expanded. Seventy or
eighty percent confluency was reached after 7 days. All reagents were from
Sigma-Aldrich (St. Louis, MI, USA).
Human MSCs were isolated from bone marrow (BMMSCs) aspirates of healthy

donors in ‘accordance’ with the guidelines approved by the Ethical Committee of the
Azienda Ospedaliera Universitaria Integrata di Verona, no. 1828, 12 May 2010. Cells
were cultured in alpha-minimal essential medium, 10% FCS, 100 U/ml penicillin and
100 mg/ml streptomycin (all from Gibco, Grand Island, NY, USA). After 72 h,
nonadherent cells were removed and the medium was replaced twice a week.59

CMSC characterization. To assess the expression of different markers,
CMSCs were labeled with the following monoclonal antibodies: IgG1κ-PE; CD31-
PE; CD34-PE; CD45-PE; CD73-PE; CD90-PE; CD105-PE; CD54-PE; CD146-PE;
and HLA-ABC-PE (BD Biosciences, Franklin Lakes, NJ, USA); IgG1κ-FITC; and
HLA-DR-FITC (Beckman Coulter, Brea, CA, USA).
A total of 105 CMSCs per tube were incubated with the selected monoclonal

antibody or appropriate isotype control in PBS for 15 min at room temperature and,
after one wash and the addition of TO-PRO-3 (Life Technologies, Wilmington, DE,
USA), samples were analyzed by flow cytometry using FACSCanto II (BD
Biosciences).
Total RNA was isolated from CMSCs, BMMSCs or Jurkat cells using RNAeasy

mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
Purified RNA was quantified with Nanodrop spectrophotometer (Life Technologies)
and complementary cDNAwas generated from 2 μg of RNA using random primers by
high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA,
USA). Gene expression was quantified on a ABI Prism 7300 (Applied Biosystems)
using the SYBR green method60 and utilizing predesigned primers (KiCqStart SYBR
Green Primers by Sigma-Aldrich).

Quantitative values were obtained from the threshold cycle value (Ct). Each
sample was normalized on the basis of its GAPDH content. PCR products were
visualized by agarose gel electrophoresis.

Cell differentiation. CMSC differentiation potential was assessed in 96-well
plates by testing their ability to differentiate into adipocytes and osteoblasts in the
presence of specific differentiation media.61 Adipogenic differentiation was assessed
after 4 weeks of culture in DMEM high glucose containing 10% FCS, 1μM
dexamethasone, 10 μg/ml insulin, 60 mM indomethacin and 1 mM IBMX that was
reduced to 0.5 mM in the experiments combining S1P. Osteogenic differentiation
was assessed after 3 weeks in DMEM low glucose containing 5% FCS, 0.1 μM
dexamethasone, 0.15 mM ascorbic acid and 2 mM β-glycerophosphate. The
differentiation media were replaced twice a week. Oil Red O and Alizarin red S dyes
were used to identify adipocytes and osteoblasts, respectively. When combined to
S1P, differentiation was achieved using either regular or charcoal-stripped FCS
prepared according to Obinata.30 All reagents were from Sigma-Aldrich.

Cell treatments. GPCR ligands were bought from Sigma-Aldrich, solubilized
according to the manufacturer’s instructions and administered in the growth medium
supplemented either with FCS or BSA, as specified in the text.
For experiments requiring pre-treatment, before stimulation CMSCs were exposed

to GF 109203X (Sigma-Aldrich) or PTX (Sigma-Aldrich), for 1 or 2 h, respectively.

Cell expansion and toxicity assays. CMSCs were seeded in 96-well
plates at a density of 103 cells/well or 7 × 103 cells/well for proliferation and toxicity
assays, respectively. After 12 h, S1P or bradykinin was added alone or in
combination with IBMX, PTX, GF 109203X or gemcitabine. DMEM was
supplemented with regular or charcoal-stripped30 FCS when specified in the text.
Half of the volume was replaced on the fourth and seventh days. On the tenth day,
nonadherent cells were withdrawn by gentle washing with PBS. Adherent cells were
fixed with 4% paraformaldehyde and stained for 10 min in 5 mg/ml crystal violet in
2% ethanol. In all cases, a picture of the entire bottom of each well was obtained at
the end of the experiment utilizing a scanner (Nanogen Advantage Diagnostic,
Strassberg, Germany). Cell density was quantified utilizing a routine of ImageJ 1.46r
software (National Institute of Health, Bethesda, MD, USA).
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Apoptosis assay. Confluent cells in 12-well plates were treated with 1 mM
IBMX and 5 μM S1P, alone or combined, in DMEM 10% regular FCS at 37 °C under
5% CO2 for 36 h.

, The apoptotic rates of CMSCs were determined by annexin V
detection kit (BD Biosciences), according to the manufacturer’s instructions and
analyzed by flow cytometry.

MTT proliferation assay (referee 1, minor point 2). The MTT assay
(CellTiter 96, Promega, Madison, WI, USA) was performed to assess cell
proliferation. A total of 5 × 103 CMSCs per well seeded into 96-well plates were
stimulated with the indicated treatments. After 24 h, MTT solution was added to
each well and the plates were incubated for 1 h, according to the manufacturer’s
instructions. The absorbance was measured at 570 nm using a spectrophotometer
(VICTOR Multilabel Plate Reader, PerkinElmer, Waltham, MA, USA). The
absorbance was normalized by the number of cells, that is, the number of nuclei
stained with Hoechst 3342 (1:5000 dilution; Invitrogen, Carlsbad, CA, USA).

Western blot analysis. For analysis of ERK1/2, p38, PKD1, PKCs α/βII and
AKT, cells were grown to confluency and starved for 3 days in 2% BSA DMEM.
Agonist stimulation was achieved in the same medium treating for the indicated
time. At the end, cells were washed briefly with ice-cold PBS, lysed in 2 × SDS-
PAGE sample buffer, collected in microfuge tubes and stored at − 20 °C.
Approximately 20 μg of proteins were separated on 10% SDS-PAGE gels under
reducing conditions, then blotted to polyvinylidene difluoride membranes. Blocking
(1 h) and subsequent overnight incubation was in Tris-buffered saline (TBS)
containing 0.5% Tween-20 (t-TBS) supplemented with 5% dry fat-free milk.

Membranes were probed with antibodies to detect PKD1 phosphorylated on S738,
S910 and total (1 μg/ml Sigma-Aldrich SAB-4300060, SAB-4300075 and SAB-
-4502371, respectively), ERK1/2 phosphorylated and total (0.5 μg/ml Sigma-Aldrich
M7802 and M5670, respectively), p38 phosphorylated on T180, Y182 and total (1 μg/
ml Cell Signaling (Leiden, The Netherlands) 9211 and 9212, respectively), PKCα/β II
phosphorylated (1 μg/ml Cell Signaling 9375), and AKT phosphorylated and total
(1 μg/ml Cell Signaling 4058S and 4691, respectively) all in 5% milk in t-TBS for 1 h.
After washing in fresh t-TBS, membranes were incubated with horseradish
peroxidase (HRP)-conjugated anti-rabbit or anti-mouse secondary antibody at
1:10 000 in 5%milk in t-TBS for 1 h, washed in fresh t-TBS (twice for a total of 20 min)
and the bands were detected using Luminata Forte Western HRP Substrate
(Millipore, Billerica, MA, USA) and Syngene G Box (Syngene, Cambridge, UK). Band
intensities were quantified using ImageJ 1.46r software.

Cell migration assay. Cell motility was assessed by a scratch assay. CMSCs
were seeded in 35 mm dishes, grown in DMEM 10% FCS incubated at 37 °C in 5%
CO2 to create confluent monolayers. The monolayers were scratched using a sterile
pipette tip. Growth medium was replaced as indicated. After 24 h, the filling of the
scratch was digitally measured on at least 50 photographs for each condition by
analyzing 12 scratches from 2 dishes. Photoshop software was used to measure
the empty area.

To calculate cells velocity, 103 cells were seeded in 96-well plate and fed with
DMEM 0.3% FCS.

After being stained with Hoechst 3342 (1 : 5000 dilution), cells were treated with
5 μM S1P or vehicle, and incubated at 37 °C under an automated microscope (EVOS
FL Auto, Thermofisher, Waltham, MA, USA). Cell movement was tracked each
30 min. Multitracker plugin of ImageJ software was used for cell tracking analysis.

Immunomodulation assay (referee 2, major point 4). T-cell effectors
(CD3-positive) were purified from peripheral blood using a negative selection kit
(Pan T Cell Isolation Kit, Miltenyi Biotec, Bergisch Gladbach, Germany). T-cell purity
after the separation (at least 95%) was assessed by flow cytometry.

CMSCs seeded at 80% confluency were stimulated or not for 72 h with 2.5 μM
S1P in Roswell Park Memorial Institute (RPMI) medium supplemented with 10% FBS
(both from Sigma-Aldrich).

To evaluate CMSC-mediated immunomodulation of T-cell proliferation, rested and
primed CMSCs were collected and seeded with T cells at either 2 × 104 cells/well of a
flat-bottom 96-well plate (corresponding to a confluent monolayer), or 2 × 103 cells/
well concentration. After CMSC adhesion, 2 × 105 T cells previously stained with
5 μM carboxyfluorescein succinimidyl ester (Life Technologies) were added to CMSC
cells. T cells were activated with 0.5 μg/ml of crosslinking anti-CD3 and anti-CD28
antibodies (Sanquin, Amsterdam, The Netherlands) for 6 days in RPMI supplemented
with 10% human AB serum (EuroClone, Pero, Italy).

At the end of co-culture, cells were detached by trypsin and stained with anti-
human CD45 APC-eFluor 780 (eBiosciences, San Diego, CA, USA) and TO-PRO-3
iodide. The proliferation was assessed on viable (TO-PRO-3-negative and CD45-
positive) T cells by flow cytometry and expressed as the percentage of cells
undergoing at least one cell division. The proliferation rate was obtained according to
the following formula: (CD45-positive cell proliferation with CMSCs)/(CD45-positive
cell proliferation without CMSCs) × 100.

Statistical analysis. All experiments were repeated three or more times and
performed at least in duplicates. Results are reported as mean± S.E.M. Significant
differences between two or more treatment groups were evaluated using Student’s
t-test, Kruskal–Wallis test or one-way analysis of variance. When Po0.05, the
differences were considered to be statistically significant.
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