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Abstract: G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cell surface
receptors that respond to various extracellular signals. The allosteric modulation of GPCRs has
emerged in recent years as a promising approach for developing target-selective therapies. Moreover,
the discovery of new GPCR allosteric modulators can greatly benefit the further understanding of
GPCR cell signaling mechanisms. It is critical but also challenging to make an accurate distinction of
modulators for different GPCR groups in an efficient and effective manner. In this study, we focus on
an 11-class classification task with 10 GPCR subtype classes and a random compounds class. We used
a dataset containing 34,434 compounds with allosteric modulators collected from classical GPCR
families A, B, and C, as well as random drug-like compounds. Six types of machine learning models,
including support vector machine, naïve Bayes, decision tree, random forest, logistic regression, and
multilayer perceptron, were trained using different combinations of features including molecular
descriptors, Atom-pair fingerprints, MACCS fingerprints, and ECFP6 fingerprints. The performances
of trained machine learning models with different feature combinations were closely investigated
and discussed. To the best of our knowledge, this is the first work on the multi-class classification of
GPCR allosteric modulators. We believe that the classification models developed in this study can be
used as simple and accurate tools for the discovery and development of GPCR allosteric modulators.

Keywords: GPCRs; allosteric regulation; machine learning; finger-prints; drug design

1. Introduction

G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins in
the human genome and regulate a variety of extracellular signal transduction pathways,
including photons, ions, hormones, neurotransmitters, odorants, and other stimuli [1,2].
Based on similarity and diversity of amino acid sequences and functions, GPCRs can be
categorized into three main subfamilies, termed A, B, and C. As GPCRs are therapeutic
targets for a broad spectrum of diseases, they have been of long-standing interest as thera-
peutic targets, and account for ~34% of the global market share of therapeutic drugs [3,4].
Most of the GPCR-targeted drugs are functionally active by binding to the orthosteric site
of the receptor, which is the pocket bound by endogenous activating ligand [5]. However,
an increasing number of drugs targeting the orthosteric sites have been withdrawn from
the market due to low efficacy and undesired side effects [6,7]. The major issue that is
associated with the orthosteric ligand is that their binding sites are often highly conserved
across a single GPCR subfamily, making it difficult to achieve high selectivity for specific
GPCR subtypes [8]. In recent years, great attention has been devoted to the discovery of
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drugs targeting GPCRs as allosteric modulators [9–11]. These small molecules bind to a
site (allosteric site) that is topographically distinct from the orthosteric site of the GPCR
protein and thus do not compete with orthosteric ligands [12]. Compared to the highly
conserved orthosteric sites, allosteric binding pockets are more diverse across the same
subfamily of GPCRs. This mechanism allows allosteric modulators to confer subtype
selectivity. Meanwhile, the allosteric modulators also show a preferable safety profile due
to the ‘ceiling’ effect [5,13,14]. In addition, Yiran Wu et al. added that the distinct pathways
and allosteric pockets may enable allosteric modulators’ cooperativities among different
protein subtypes [15]. Therefore, it is important to develop allosteric modulators as both
therapeutic agents and research tools to bring new opportunities to drug discovery towards
GPCRs and have an in-depth understanding of receptor modulation mechanisms.

Drug discovery is expensive. The process requires molecule design, lead optimization,
in vitro and in vivo data analysis [16]. High-throughput screening (HTS) is a modern
technique that is commonly used to facilitate the discovery of the allosteric modulators
of GPCRs [17]. However, it is costly and often has been plagued with problems of high
false-positive rates [18]. Alternatively, computational approaches, including homology
modeling, molecular docking, and molecular dynamics simulation have been applied
to aid drug discovery of novel allosteric modulators [19–22]. Yet, developing in silico
screening methods that attain high accuracy remains challenging. At present, there is still
an urgent demand for computational tools that can identify allosteric drugs from inactive
random compounds and increase the chances of success in the development of allosteric
modulators as lead clinical compounds.

While there are many traditional cheminformatic tools to assist the development of
allosteric modulators, there have been few examples using machine learning (ML). ML
has emerged as a promising pillar to promote data-driven decision-making, facilitate
the process, and reduce the failure rates in drug discovery and development [23–30].
Kumar et al. developed multiple in silico models (Support Vector Machines (SVM), k-
nearest neighbor algorithms, partial least square (PLS), etc.) to predict human intestinal
absorption of diverse chemicals [31]. Jacob and Vert [32] used tensor-product-based features
and applied SVM to predict protein-ligand interactions. Remarkably, in 2020, Google’s
DeepMind’s AlphaFold made a scientific breakthrough for its astonishing performance on
predicting protein 3D structures by using deep learning approaches [33,34].

We have previously reported an application of developing ML-based classification
models for the prediction of orthosteric and allosteric regulations on cannabinoid recep-
tors [13]. To expand the application to a broader scope of GPCR families and to handle a
more diversified chemical space, in this paper, we proposed an 11-class classification task
to discriminate allosteric modulators among different subtypes of GPCRs A, B, C subfam-
ilies, and inactive compounds simultaneously. Diverse types of molecular features and
multiple machine learning algorithms were applied for model training. The combinations
of different types of molecular features and ML algorithms were carefully investigated to
search which set of features works best for a specific classifier. The performance of trained
ML models was systematically evaluated by using different metrics. This research gives the
first report on the multi-class classification of GPCR allosteric modulators. The study can
be of value for facilitating in silico screening and providing guidance for future discovery
and development of GPCR allosteric modulators.

2. Materials and Methods
2.1. Data Collection and Preparation

In this study, the allosteric database (ASD) [35] was used for collecting GPCR allosteric
modulators. Classical GPCR subfamilies A, B, and C were selected as targets to collect
allosteric modulators. So far, the number of discovered allosteric modulators across dif-
ferent GPCR subtypes is of high variance. To construct a dataset that mimics this nature,
we selected some common subtypes that are of a distinct number of allosteric modulators
from each GPCR subtype. The number of collected allosteric modulators from each sub-
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type is shown in Table 1. We also collected drug-like random compounds from the ZINC
database [36] to serve as inactive decoy compounds. More than eight thousand drug-like
compounds were randomly collected and integrated into the GPCR allosteric modulator
datasets. Allosteric modulators collected from 10 GPCR subtypes were combined with the
inactive compounds to make up the final dataset containing 34,434 compounds (Table 1).

Table 1. Dataset Information.

Dataset Training Set Validation Set Test Set Total

Drug-like compounds 5691 1423 1779 8893
CB1—Cannabinoid receptor 1 (Class A) 1242 311 383 1936
FFA2—Free fatty acid receptor 2 (Class A) 60 15 14 89
mAchR M1—Muscarinic acetylcholine receptor M1
(Class A) 4019 1005 1225 6249

S1PR3—Sphingosine 1-phosphate receptor 3 (Class A) 323 81 114 518
GLP1-R—Glucagon-like peptide 1 receptor (Class B) 202 51 61 314
GCGR—Glucagon receptor (Class B) 285 72 65 422
PTHrP—Parathyroid hormone/parathyroid
hormone-related peptide receptor (Class B) 56 15 17 88

mGlu2—Metabotropic glutamate receptor 2 (Class C) 3519 880 1075 5474
mGlu4—Metabotropic glutamate receptor 4 (Class C) 1342 336 410 2088
mGlu5—Metabotropic glutamate receptor 5 (Class C) 5295 1324 1744 8363

2.2. Molecular Fingerprint and Descriptor Calculation

Both molecular descriptors and molecular fingerprints were used as molecular repre-
sentations for all compounds in the datasets. A total of 119 molecular descriptors (ExactMW,
SlogP, TPSA, NumHBD, NumHBA, etc.,), which characterize the physicochemical prop-
erties of the studied compounds were calculated using RDKit (http://www.rdkit.org/,
accessed on 29 October 2020). Three different types of molecular fingerprints, Atom-pair
fingerprints [37], MACCS fingerprints [38], and ECFP6 fingerprints [39] were calculated
with a CDK toolkit [40]. Atom-pair fingerprints were encoded as standard bit vectors of
length 1024 based on the atomic environments and shortest path separations of every atom
pair in the molecule. MACCS fingerprints consist of 166-bit fingerprints representing the
presence or absence of 166 substructural keys. ECFP6 are circular topological fingerprints
that represent circular topological atom neighborhoods with 1024 descriptors.

2.3. Model Building

Here, six ML algorithms were employed to develop the classification models to
discriminate between different subtypes of GPCR allosteric modulators and inactive drugs,
including support vector machine (SVM), neural network/multilayer perceptron (MLP),
decision tree (DT), random forest (RF), naïve Bayes (NB), and logistic regression. The
open-source scikit-learn (http://scikitlearn.org/, accessed on 14 November 2020) was used
for model building, tuning, validation, and result interpretation.

Support vector machine (SVM) [41] is a kernel-based algorithm widely used for binary
classification and regression tasks. Each chemical structure was described as a binary
string and worked as an eigenvector for SVM. The eigenvector was trained using the SVM
algorithm, which results in a decision function for classification. The svm.SVC() method
with three kernel functions (linear, rbf, poly) from scikit-learn was applied. The penalty
parameter C and parameter γ for rbf and poly kernels were tuned on the training set by
five-fold cross-validation using the grid search strategy.

Multilayer perceptron (MLP) [42] is a type of fully connected, feed-forward artificial
neural network (ANN), consisting of three types of layers: the input layer, hidden layer,
and output layer. An arbitrary number of hidden layers between the input and output layer
is the true computational engine of the MLP. For each hidden layer, different numbers of
hidden neurons can be assigned. MLP is based on calculating the values of hidden neurons
in a current layer as the activated summation of weighted outputs of hidden neurons

http://www.rdkit.org/
http://scikitlearn.org/
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from a previous layer. The weights of the neuron connections are initially random but
then adjusted through the backward propagation learning algorithm. Similar to SVM, we
used grid search to optimize the hyperparameter for the MLPClassifier() method in scikit-
learn. We searched for the optimal number of layers, number of hidden units, activation
function (identity, logistic, tanh, ReLu), regularization parameter (0.0001, 0.001, 0.01, 0.1),
and learning rate (0.1, 0.01, 0.001, 0.0001).

Decision tree (DT) [43] is a simple classic supervised learning method used to solve
classification and regression problems. At each node of the tree, the attribute that gives
the greatest information gain is chosen to make the decision. The data are divided in
the most homogeneous way. Then the process is repeated on each smaller subset in a
recursive manner. DecisionTreeClassifier() was applied for generating models with tuning
on max_depth.

Random forest (RF) [44] is an ensemble method that leverages the power of a multitude
of decision trees. In classification, regression, or other tasks, the final output is obtained
by averaging the results of classification and regression trees that are grown on bootstrap
samples. RandomForestClassifier() was applied. The best model was saved after the tuning
on n_estimators (10, 50, 100) and max_depth (2, 3, 4, 5).

Naïve Bayes (NB) [45] is a simple probabilistic classifier based on Bayes’ theorem for
conditional probability. This algorithm assumes that the attributes in a dataset are inde-
pendent of each other. In other words, the NB classifier ignores the possible dependencies
among the inputs and reduces a multivariate problem to a group of univariate problems.

Logistic regression (LR) [46] is a classification algorithm used for the prediction of
the outcome of a categorical dependent variable from a set of predictor or independent
variables. It is mainly used for prediction also calculating the probability of success.
LogisticRegression() was applied and tuned with penalty (l1, l2, elasiticnet).

2.4. Chemical Space Analysis

The classification tasks in this study are completely implemented by machine intel-
ligence without using any chemical or pharmacy domain knowledge. To investigate the
possible relationships between the molecular properties or fingerprints and classification
tasks, we visualized the chemical space distribution of each class by using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) method. Atom-pair, ECFP6, MACCS fingerprints,
and molecular descriptors were used to represent molecules and were decomposed into
two dimensions by t-SNE. The scikit-learn was applied for t-SNE analysis. Matplotlib
library was used for plotting.

t-Distributed stochastic neighbor embedding (t-SNE) [47] is a nonlinear embedding
technique developed by van der Maaten, L. and G. Hinton in 2008. It was used as a
dimension reduction method well-suited for embedding high-dimensional data into a low-
dimensional space of two or three dimensions [48]. t-SNE calculates the similarity measure
between pairs of instances in the high dimensional space and the low dimensional space.
The pairwise similarities of points were converted to joint probabilities. In this process,
the Kullback–Leibler divergence between the joint probabilities of the low-dimensional
embedding and the high-dimensional data was minimized. This neighbor embedding
property makes t-SNE effective for identifying local clusters in the data.

2.5. Model Evaluation

In this study, the dataset was randomly divided into a training set (80%) and test set
(20%) using a stratified sampling method. Then 80% of the training sets were randomly
selected and used for training. The remaining compounds were used as a validation
set. Various evaluation metrics were calculated to evaluate the performance of different
ML models, including accuracy (ACC), balanced accuracy (Bal_ACC), precision, recall,
f1-score, area under the receiver operating characteristic (ROC) curve (AUC) score, Cohen’s
κ (CK) [49], and Matthews correlation coefficient (MCC) [50].
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Micro-average and macro-average are two strategies being used for multiclass classifi-
cation tasks. Here, we applied the macro-average method to calculate the precision, recall,
and f1-score. Macro-average calculates each metric for each label separately and returns
their unweighted mean. An ML model with good performance on macro-averaging metrics
means it can recognize each class perfectly, even on small classes, which is a suitable case
for our study. As for micro-averaging, we are aggregating the contributions of all classes to
compute the average metric, which only emphasizes the performance of majority classes.
The macro-averaged metric for each class is defined as:

M =
C

∑
i=1

Mi·
1
C

where M is the current metric, C is the number of total classes for the classification task, i
denotes the ith class.

The following abbreviations are used for metric definitions: the number of true
positives (TP), the number of false positives (FP), the number of true negatives (TN), and
the number of false negatives (FN). The AUC score is one of the most widely used metrics
that measures the overall performance of a classification model. It ranges between 0.5 and
1. A model with an AUC of 1 means perfect separation whereas an AUC of 0.5 means the
model has no class separation capacity.

ACC is a measure of systematic error. It is the number of correctly predicted data
points out of all data points.

ACC =
TP + FN

TP + TN + FP + FN

Recall is also called the true positive rate or sensitivity, which measures the ability of a
classifier to find all of the positive samples.

recall =
TP

TP + FN

Precision is known as the positive predictive value, which is the proportion of the
predicted true label among all the retrieved instances.

precision =
TP

TP + FP

The f 1-score is a weighted average of the precision and recall and takes both false
positives and false negatives into account.

f1 − score = 2· precision·recall
precision + recall

CK is used to estimate overall model performance by measuring the proximity of the
predicted classes to the actual classes when compared to a random classification.

CK =
ACC − Pe

1 − Pe

where:

Pe =
(TP + FP)× (TP + FN) + (TN + FP)× (TN + FN)

(TP + TN + FP + FN)2
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When the dataset is imbalanced, Bal_ACC can be used to evaluate the general perfor-
mance of an algorithm. It avoids inflated performance estimates and is computed as the
average between sensitivity and specificity.

Bal_ACC =

[
TP

TP + FN
+

TN
TN + FP

]
· 1
n

where n represents the total number of classes.
MCC is another useful metric when the dataset has varying classes and is imbalanced.

It is a correlation coefficient between observed and predicted classes and has a range
between −1 and 1. A value of −1 indicates a completely wrong prediction, while a
coefficient of 1 indicates a perfect prediction.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + PP)(TN + FN)

3. Results and Discussion
3.1. Overall Workflow

In this study, four subtypes from class A GPCRs, three subtypes from class B GPCRs,
and three subtypes from class C GPCRs were collected from the ASD database. Inactive
compounds were randomly selected from the ZINC database to cover a large drug-like
chemical space. The allosteric modulators from 10 GPCRs subtypes and one random
drug-like compounds class (decoys class) were used to construct the dataset for our 11-
class classification task (Table 1, Figure 1A). Atom-pair, ECFP6, MACCS fingerprints,
and molecular descriptors were calculated from the constructed dataset to represent four
types of features. Different types of features can be used to evaluate the properties of
the compounds from diverse aspects, which may affect the performance of ML models.
Therefore, besides using one type of feature at each time for model training, we also paired
fingerprints with molecular descriptors, as well as combining all four feature types to
cover the best possible combinations (Figure 1A). Eight new datasets were generated from
the different feature combinations. A total of 11 classes were labeled for classification
from 0 to 10, respectively. Six supervised ML algorithms were applied to build classifiers
for each dataset. We conducted a five-fold cross-validation for each dataset to select the
best-performing model (Figure 1B). The ML models’ performance was evaluated by ACC,
precision, recall, f 1-score, MCC, CK, Bal_ACC, and AUC values.
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Figure 1. Schematic illustration of the workflow. (A) Workflow of data collection and reconstruction. (B) Workflow of
model training and validation. GPCRs abbreviations: Cannabinoid receptor 1 (CB1); Free fatty acid receptor 2 (FFA2);
Muscarinic acetylcholine receptor M1 (mAchR M1); Sphingosine 1-phosphate receptor 3 (S1P3); Glucagon-like peptide
1 receptor (GLP1-R); Glucagon receptor (GCGR); Parathyroid hormone-related peptide receptor (PTHrP); Metabotropic
glutamate receptor 2 (mGlu2); Metabotropic glutamate receptor 4 (mGlu4); Metabotropic glutamate receptor 5 (mGlu5).

3.2. Data Set Analysis

To investigate the possible relationships between the physicochemical properties or
fingerprints and classification tasks, the chemical space distribution of each class was
analyzed. t-SNE was used to decompose the molecular descriptors and fingerprints into
two dimensions for visualizing. Figures 2–4 show the results of the chemical space distri-
bution of compounds in the dataset, which are represented by three types of fingerprints
and molecular descriptors, respectively. As shown in Figures 2–4, the blue dots represent
drug-like molecules that define the background of the overall chemical property space. All
10 allosteric modulator subtypes fell in the defined chemical spaces (based on molecular fin-
gerprints and properties), indicating that both similar and distinctive drug-like molecules
were involved in the classification tasks for target-specific allosteric modulators. In compar-
ison with known allosteric modulators, both similar and distinctive drug-like molecules
were presented in the model training and validation processes. Similar molecules challenge
the robustness of the model training process while distinctive molecules exhibit the vast
chemical space to classifiers. Each of the allosteric modulator subtypes also occupies sev-
eral specific regions which are distinct from one another, which may indicate their subtype
selectivity. The distinct chemical space distribution of different allosteric subtypes shows
the feasibility of applying our machine intelligence models.
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Figure 4. t-SNE method was used to visualize the chemical distribution of allosteric modulators from three subtypes of
class C GPCRs according to Atom-pair, ECFP6, MACCS fingerprints, and molecular descriptors.

3.3. Performance Evaluation on Different Feature Types

The ACC, precision, recall, f 1-score, MCC, CK, Bal_ACC, and AUC values of all
machine learning (ML) models on validation sets are summarized in Tables S1–S3. Radar
charts are also plotted to visualize all the above metrics for both training sets and test sets
(Figures S1–S4). The results on test sets are shown in Tables 2–4.

Table 2. Results of the Test Set on Each Dataset with One Feature Type.

Datasets Model AUC ACC Bal_ACC f 1-Score CK MCC Precision Recall

Atom-pair

SVM 0.966 0.972 0.936 0.949 0.965 0.965 0.965 0.936
NB 0.820 0.627 0.679 0.625 0.550 0.559 0.644 0.679

MLP 0.960 0.954 0.925 0.933 0.943 0.943 0.944 0.925
LR 0.942 0.912 0.895 0.907 0.891 0.891 0.922 0.895
RF 0.942 0.956 0.890 0.925 0.946 0.946 0.971 0.890
DT 0.861 0.770 0.748 0.743 0.715 0.716 0.743 0.748

ECFP6

SVM 0.974 0.976 0.950 0.963 0.971 0.971 0.978 0.950
NB 0.916 0.868 0.847 0.872 0.835 0.839 0.911 0.847

MLP 0.957 0.958 0.919 0.931 0.948 0.948 0.948 0.919
LR 0.955 0.940 0.916 0.932 0.925 0.925 0.954 0.916
RF 0.946 0.964 0.897 0.931 0.956 0.956 0.980 0.897
DT 0.896 0.822 0.812 0.789 0.780 0.780 0.771 0.812
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Table 2. Cont.

Datasets Model AUC ACC Bal_ACC f 1-Score CK MCC Precision Recall

MACCS

SVM 0.961 0.963 0.926 0.934 0.954 0.954 0.944 0.926
NB 0.822 0.629 0.684 0.588 0.551 0.555 0.562 0.684

MLP 0.954 0.940 0.914 0.915 0.925 0.925 0.918 0.914
LR 0.898 0.839 0.815 0.834 0.800 0.800 0.857 0.815
RF 0.945 0.961 0.895 0.924 0.951 0.951 0.962 0.895
DT 0.890 0.854 0.796 0.791 0.820 0.820 0.790 0.796

Molecular
Descriptors

SVM 0.809 0.788 0.644 0.682 0.734 0.736 0.751 0.644
NB 0.824 0.618 0.690 0.576 0.538 0.541 0.531 0.690

MLP 0.943 0.936 0.893 0.893 0.920 0.920 0.902 0.893
LR 0.887 0.840 0.793 0.810 0.801 0.801 0.834 0.793
RF 0.941 0.953 0.887 0.919 0.941 0.941 0.966 0.887
DT 0.880 0.828 0.779 0.767 0.787 0.788 0.758 0.779

Table 3. Results of the Test Set on Each Dataset with Two Feature Types.

Datasets Model AUC ACC Bal_ACC f 1-Score CK MCC Precision Recall

Atom-pair
and

Molecular
Descriptors

SVM 0.825 0.818 0.672 0.715 0.771 0.773 0.791 0.672
NB 0.834 0.660 0.704 0.667 0.588 0.597 0.688 0.704

MLP 0.959 0.945 0.925 0.918 0.932 0.932 0.914 0.925
LR 0.959 0.947 0.923 0.931 0.934 0.934 0.941 0.923
RF 0.944 0.962 0.894 0.927 0.952 0.953 0.975 0.894
DT 0.875 0.827 0.770 0.765 0.785 0.785 0.762 0.770

ECFP6 and
Molecular

Descriptors

SVM 0.819 0.809 0.661 0.703 0.759 0.761 0.776 0.661
NB 0.922 0.871 0.859 0.875 0.838 0.841 0.901 0.859

MLP 0.973 0.960 0.951 0.945 0.950 0.950 0.939 0.951
LR 0.960 0.961 0.925 0.939 0.952 0.952 0.957 0.925
RF 0.949 0.968 0.902 0.932 0.960 0.960 0.978 0.902
DT 0.876 0.814 0.773 0.759 0.770 0.770 0.747 0.773

MACCS and
Molecular

Descriptors

SVM 0.812 0.793 0.649 0.688 0.739 0.741 0.760 0.649
NB 0.853 0.659 0.743 0.621 0.588 0.592 0.579 0.743

MLP 0.943 0.951 0.891 0.913 0.939 0.939 0.950 0.891
LR 0.922 0.897 0.856 0.871 0.872 0.872 0.896 0.856
RF 0.945 0.961 0.895 0.926 0.951 0.951 0.971 0.895
DT 0.894 0.837 0.806 0.785 0.799 0.799 0.767 0.806

Table 4. Results of the Test Set on Dataset with Four Feature Types.

Datasets Model AUC ACC Bal_ACC f 1-Score CK MCC Precision Recall

Atom-pair and
ECFP6 and

MACCS and
Molecular

Descriptors

SVM 0.837 0.841 0.693 0.735 0.800 0.802 0.807 0.693
NB 0.884 0.776 0.792 0.778 0.725 0.729 0.800 0.792

MLP 0.962 0.967 0.941 0.941 0.960 0.960 0.958 0.928
LR 0.968 0.967 0.940 0.950 0.959 0.959 0.962 0.940
RF 0.950 0.970 0.904 0.933 0.962 0.962 0.976 0.904
DT 0.883 0.823 0.787 0.774 0.781 0.781 0.765 0.787

According to the results, SVM trained on ECFP6 (SVM—ECFP6) outperformed other
ML models with the highest scores on AUC, ACC, f 1-score, CK, and MCC. It also showed
satisfactory results on Bal_AUC (0.950), precision (0.978), and recall (0.950). The good result
on Bal_AUC is exciting for an imbalanced dataset. The high f 1-score of SVM—ECFP6 is
also expected because it is a weighted average of precision and recall. MCC is a reliable
and comprehensive assessment of the models’ performance. High MCC values mean that
the ML model was able to correctly predict both the positive data instances as well as
negative data instances, indicating an outstanding discriminant capability of the models’
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performance. The confusion matrix is plotted to summarize the classification result of
SVM—ECFP6 (Figure 5) on the test set. The results of all other models are shown in
supplementary data (Figures S5–S16). As is shown in the confusion matrix, the separability
of SVM—ECFP6 works well on all 11 classes, with most classes being correctly predicted.
This model also shows a generalization capability even in small classes. Notably, a total of
17 test cases from the seventh class (PTHrP) was all correctly classified.
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FFA2, mAchR M1, S1P3, GLP1-R, GCGR, PTHrP, mGlu2, mGlu4, and mGlu5 were labeled as 0 to 10, respectively.

By comparing different ML algorithms, while SVM performed well when trained on
one fingerprint type, its performance is significantly reduced when trained with molecular
descriptors alone or in combination with other types of features. Compared to SVM, MLP
shows a more stable performance on all datasets. When trained on datasets with two or
more feature types, MLP showed superior overall performance, with AUC values above
0.95. It also showed the best performance on the molecular descriptor dataset, with an AUC
value of 0.943. MLP can be considered a subset of deep neural networks (DNN), where its
neural network architecture gives a competitive performance on high-dimensional datasets.
This may result in the good performance of MLP on these datasets. RF has a balanced
performance on most of the datasets. It generally shows good AUC scores but compared to
SVM and MLP, the Bal_ACC and recall values are lower, indicating this classifier is more
likely to be affected by the imbalanced dataset. LR also shows similar results as RF. NB
and DT performed the worst among all ML models, which is also reasonable since they are
more simple models and are often used as the baseline for comparison.

The selection of different features will also affect the ML models’ performance. As
summarized in Table 5, models trained on the ECFP6 feature showed the best overall
results; whereas, the molecular descriptors feature has poor performance compared with
all other feature types or feature combinations. The results also showed that models trained
on MACCS fingerprint underperformed the results of ECFP6 and Atom-pair fingerprint.
The underperformance of MACCS could possibly be due to the fact that MACCS contains
less information (166-bit) than ECFP6 (1024-bit) and Atom-pair (1024-bit), which would
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result in a less robust model. However, a fingerprint containing higher information density
does not necessarily mean that it also should achieve a better outcome. Compared to
ECFP6, which only contains structural information, Atom-pair is usually considered a
hybrid type of fingerprint that contains both atomic and structural information. However,
in our case, ECFP6 still shows the best outcome across all GPCR classes. Since there
are 10 GPCR protein targets and one random decoy class involved in this study, the
good result on ECFP6 means that ML models trained on this fingerprint can have a
good impact on the majority of classes of selected GPCR protein targets. To obtain a
deeper understanding of the predictive models, we further extracted the SlogP, molecular
weight (M.W.), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) from the
molecular descriptors and conducted pair-wise distribution comparisons on each GPCR
class with drug-like molecules, which are shown in Figures S17–S26 in the Supplementary
Data. The comparison plots showed that most classes (all except the PTHrP) generally
follow Lipinski’s rule of five since the distributions of drug-like molecules overlap with the
target GPCR classes. However, the physicochemical properties of allosteric modulators
from some of the GPCR classes do form distinguishable distributions from that of drug-
like molecules. For example, the distribution of CB1 on M.W. is more concentrated than
drug-like molecules with a mode around 500 whereas the mode of drug-like molecules
is around 400. The distributions of GLP1-R and GCGR on SlogP are around 5, which is
also different from the mode of SlogP for drug-like molecules that is around 4. It is worth
noting that compared to the performance on datasets combining two feature types, MLP,
LR, and RF all showed enhanced performance when trained on the dataset with all four
feature types’ combinations, which is possibly due to the fact that the four feature types
can give complementary information that is favored by these ML algorithms.

Table 5. Overall Performance Comparison of Different Feature Types (Average over Nine Datasets on All ML Models).

Datasets AUC ACC Bal_ACC f 1-Score CK MCC Precision Recall

Atom-pair 0.915 0.865 0.846 0.847 0.835 0.837 0.865 0.846
ECFP6 0.941 0.921 0.890 0.903 0.903 0.903 0.924 0.890

MACCS 0.912 0.864 0.838 0.831 0.834 0.834 0.839 0.838
Molecular Descriptors 0.881 0.827 0.781 0.775 0.787 0.788 0.790 0.781

Atom-pair and Molecular
Descriptors 0.899 0.860 0.815 0.821 0.827 0.829 0.845 0.815

ECFP6 and Molecular
Descriptors 0.917 0.897 0.845 0.859 0.872 0.872 0.883 0.845

MACCS and Molecular
Descriptors 0.895 0.850 0.807 0.801 0.815 0.816 0.821 0.807

Atom-pair and ECFP6 and
MACCS and Molecular

Descriptors
0.914 0.891 0.843 0.852 0.865 0.866 0.878 0.841

3.4. Performance Evaluation on Individual GPCR Classes

The f 1-score takes the imbalanced data distribution into account and is the harmonic
mean of precision and recall. Here we selected the f 1-score as a representative metric to
evaluate the ML models’ performance on one feature type (Table 6), two feature types
(Table 7), and four feature types (Table 8) for each GPCR class. The f 1-scores across different
GPCR families were also compared and shown in supporting information (Table S4).
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Table 6. The f 1-score of the Test Set on Each Dataset with One Feature Type on Each GPCR Class.

Datasets Model Drug-Like CB1 FFA2 mAchR
M1 S1P3 GLP1-R GCGR PTHrP mGlu2 mGlu4 mGlu5

Atom-pair

SVM 0.954 0.987 0.889 0.983 0.991 0.822 0.870 1.000 0.979 0.979 0.981
NB 0.609 0.683 0.373 0.715 0.720 0.456 0.673 0.919 0.676 0.387 0.661

MLP 0.928 0.967 0.923 0.971 0.974 0.789 0.838 1.000 0.956 0.940 0.975
LR 0.869 0.952 0.880 0.934 0.978 0.765 0.840 1.000 0.911 0.913 0.936
RF 0.925 0.970 0.783 0.972 0.950 0.792 0.869 1.000 0.966 0.966 0.978
DT 0.698 0.802 0.690 0.824 0.778 0.558 0.528 1.000 0.743 0.711 0.840

ECFP6

SVM 0.960 0.989 0.923 0.981 0.991 0.903 0.902 1.000 0.986 0.973 0.987
NB 0.813 0.812 0.800 0.901 0.944 0.785 0.871 1.000 0.892 0.868 0.906

MLP 0.934 0.979 0.750 0.968 0.987 0.885 0.847 1.000 0.973 0.944 0.971
LR 0.902 0.980 0.833 0.955 0.978 0.875 0.885 1.000 0.954 0.942 0.952
RF 0.938 0.973 0.783 0.976 0.982 0.784 0.878 1.000 0.979 0.967 0.982
DT 0.757 0.847 0.625 0.848 0.861 0.618 0.645 1.000 0.836 0.754 0.885

MACCS

SVM 0.943 0.978 0.815 0.975 0.973 0.847 0.826 1.000 0.978 0.967 0.972
NB 0.612 0.648 0.275 0.665 0.719 0.317 0.438 1.000 0.695 0.428 0.670

MLP 0.909 0.965 0.929 0.956 0.964 0.714 0.789 1.000 0.952 0.930 0.960
LR 0.799 0.882 0.720 0.849 0.942 0.729 0.775 1.000 0.834 0.754 0.885
RF 0.936 0.976 0.696 0.976 0.964 0.841 0.866 1.000 0.972 0.959 0.974
DT 0.791 0.867 0.500 0.876 0.793 0.643 0.653 0.971 0.875 0.824 0.913

Molecular
Descriptors

SVM 0.759 0.812 0.000 0.836 0.865 0.465 0.566 1.000 0.787 0.568 0.839
NB 0.677 0.570 0.329 0.671 0.752 0.470 0.406 0.829 0.576 0.402 0.652

MLP 0.909 0.938 0.733 0.960 0.965 0.752 0.759 1.000 0.949 0.908 0.955
LR 0.828 0.880 0.583 0.881 0.900 0.766 0.705 1.000 0.838 0.669 0.860
RF 0.925 0.969 0.727 0.971 0.959 0.811 0.870 1.000 0.966 0.943 0.969
DT 0.784 0.846 0.483 0.856 0.787 0.626 0.653 0.941 0.823 0.753 0.886

Table 7. The f 1-score of the Test Set on Each Dataset with Two Feature Types on Each GPCR Class.

Datasets Model Drug-Like CB1 FFA2 mAchR
M1 S1P3 GLP1-R GCGR PTHrP mGlu2 mGlu4 mGlu5

Atom-pair
and

Molecular
Descriptors

SVM 0.782 0.832 0.000 0.864 0.870 0.578 0.608 1.000 0.832 0.638 0.860
NB 0.648 0.699 0.550 0.742 0.755 0.510 0.706 0.919 0.725 0.393 0.693

MLP 0.922 0.944 0.889 0.965 0.911 0.828 0.837 0.971 0.953 0.912 0.967
LR 0.926 0.964 0.846 0.965 0.974 0.870 0.859 1.000 0.952 0.928 0.957
RF 0.936 0.972 0.727 0.975 0.968 0.811 0.898 1.000 0.975 0.952 0.979
DT 0.763 0.843 0.500 0.861 0.773 0.627 0.580 0.941 0.825 0.817 0.887

ECFP6 and
Molecular

Descriptors

SVM 0.773 0.828 0.000 0.858 0.865 0.523 0.596 1.000 0.818 0.613 0.856
NB 0.827 0.829 0.800 0.904 0.964 0.796 0.894 1.000 0.885 0.822 0.905

MLP 0.941 0.979 0.963 0.975 0.961 0.828 0.866 1.000 0.960 0.942 0.975
LR 0.942 0.981 0.833 0.974 0.965 0.862 0.901 0.971 0.968 0.956 0.971
RF 0.944 0.977 0.727 0.978 0.987 0.808 0.899 1.000 0.979 0.973 0.983
DT 0.753 0.882 0.364 0.832 0.850 0.592 0.609 1.000 0.818 0.776 0.869

MACCS and
Molecular

Descriptors

SVM 0.761 0.813 0.000 0.839 0.865 0.488 0.585 1.000 0.795 0.581 0.842
NB 0.673 0.645 0.371 0.718 0.786 0.377 0.480 0.971 0.694 0.428 0.690

MLP 0.930 0.958 0.727 0.968 0.954 0.800 0.837 1.000 0.967 0.933 0.964
LR 0.878 0.923 0.696 0.929 0.922 0.815 0.806 1.000 0.894 0.804 0.916
RF 0.937 0.971 0.727 0.973 0.968 0.833 0.875 1.000 0.973 0.954 0.977
DT 0.780 0.848 0.500 0.873 0.827 0.591 0.696 1.000 0.846 0.786 0.888

Table 8. The f 1-score of the Test Set on Dataset with Four Feature Types on Each GPCR Class.

Datasets Model Drug-
Like CB1 FFA2 mAchR

M1 S1P3 GLP1-R GCGR PTHrP mGlu2 mGlu4 mGlu5

Atom-pair
and ECFP6

and MACCS
and

Molecular
Descriptors

SVM 0.804 0.852 0.000 0.889 0.900 0.578 0.621 1.000 0.860 0.702 0.877
NB 0.739 0.803 0.632 0.848 0.891 0.678 0.821 0.971 0.837 0.512 0.823

MLP 0.953 0.981 0.800 0.982 0.991 0.865 0.870 1.000 0.970 0.964 0.975
LR 0.953 0.979 0.880 0.981 0.974 0.881 0.894 1.000 0.972 0.961 0.973
RF 0.948 0.979 0.727 0.979 0.982 0.833 0.882 1.000 0.981 0.973 0.985
DT 0.753 0.869 0.500 0.849 0.830 0.596 0.617 1.000 0.841 0.775 0.882

From Table 6, we can see that the best model SVM—ECFP6 has generally a high
f 1-score across all GPCR classes. It has an f 1-score over 0.98 on CB1, mAchR M1, S1P3,
PTHrP, mGlu2, and mGlu5. The f 1-scores on FFA2, GLP1-R, GCGR of SVM—ECFP6 are
all over 0.90 but below 0.95. The small sample sizes they have could impede the training
process for robust models. PTHrP has a similar sample size (88 samples in total) to FFA2
(89 samples in total). Surprisingly, it has an f 1-score of 1, indicating a precise and robust
classification. The 88 samples from PTHrP are all polypeptides and share a core scaffold.
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They are very focused chemicals with small modifications to the core scaffolds. The highly
distinguishable pattern may explain the good performance of the ML models in this class.
While a large sample size is appreciated for building ML-based classification models, the
current challenge remains on limited numbers of available GPCR allosteric modulators. In
this study, the SVM-ECFP6 gives a satisfying performance across 11 classes (including small
classes with around 90 samples), showing the feasibility of our method to be generalized
to broader GPCR families.

In compliance with the previous observation, SVM and MLP have better performance
on most classes than other ML models when trained with one feature type (except for
molecular descriptors feature). When trained with two or more feature types, the SVM’s
performance is significantly reduced while MLP, LR, and RF show better performance
in each class (Tables 6–8). Moreover, similar to the result from SVM-ECFP6, many other
models did not perform well on FFA2, GLP1-R, and GCGR, but most models have a
high f 1-score on PTHrP. In general, ML models trained on GPCR family A and C show a
better f 1-score than GPCR family B (Table S4) as all datasets for class B GPCRs have small
numbers of instances.

4. Conclusions

In this study, four types of features, Atom-pair, ECFP6, MACCS fingerprints, and
molecular descriptors were used to construct a series of datasets. The chemical space anal-
ysis of all four features demonstrated that the 10 allosteric subtypes form spatial patterns
that are distinguishable from each other. Six ML models were built and trained on datasets
with different feature combinations. SVM—ECFP6 shows the best results (AUC = 0.974,
ACC = 0.976, Bal_ACC = 0.950, f 1-score = 0.963, CK = 0.971, MCC = 0.971, precision = 0.978,
recall = 0.950). MLP has the most stable performance across different feature combinations.
In particular, it outperformed other ML models on datasets constructed with two or more
features. By comparing the ML model’s performance on different features, we found
that when only using one feature type for training, ECFP6 is the best choice for its good
performance on most ML models. Mixed effects were seen on datasets with various feature
combinations on different ML models. In the field of drug discovery, we need to frequently
deal with imbalanced datasets [51]. The model developed in our study shows a good
generalization capability on an imbalanced dataset. To the best of our knowledge, this
study is the first work on the multi-class classification of GPCR allosteric modulators. The
developed multi-class classifiers provide alternative options on virtual screening besides
the conventional structure-based and ligand-based methods. Besides being of benefit to
potential hit identification campaigns on GPCR allosteric modulators, this study can also
be of value to demonstrate the possibility of adapting machine learning to the broad area
of drug discovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11060870/s1. Collected raw chemical datasets. Results of the validation set on each
dataset with different feature types (Tables S1–S3); The f1-score among different GPCR families
on each dataset (Table S4); Radar chart of validation sets on different feature types (Figures S1–
S4); Confusion matrix of each ML model on different feature types (Figures S5–S16). Pair-wise
distribution comparisons of each GPCR class with drug-like molecules on SlogP, molecular weight
(M.W.), hydrogen bond acceptor (HBA), and hydrogen bond doner (HBD) (Figures S17–S26).
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