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Mathematical and stochastic computer (in silico) models of tumour growth and treatment response of the past and current eras
are presented, outlining the aims of the models, model methodology, the key parameters used to describe the tumour system,
and treatment modality applied, as well as reported outcomes from simulations. Fractionated radiotherapy, chemotherapy, and
combined therapies are reviewed, providing a comprehensive overview of the modelling literature for current modellers and
radiobiologists to ignite the interest of other computational scientists and health professionals of the ever evolving and clinically
relevant field of tumour modelling.

1. The Need for In Silico Modelling

Modern treatment delivery methods for external beam
radiotherapy employ techniques such as intensity modulated
radiation therapy (IMRT) and image guided radiation
therapy (IGRT) to deliver high radiation doses to the
tumour planning target volume (PTV) or multiple PTV’s
with ever increasing accuracy and precision. However, to
further improve outcomes for individual patients it will
be necessary to explore in more detail the radiobiological
processes that occur in human tumours and to predict
optimal treatment plans for the individual patient. There
is an increasing need to incorporate cellular behaviour and
characteristics into individualised treatment planning and
delivery. Undoubtedly, the future of cancer research rests on
a multidisciplinary approach.

The pursuit of an enhanced treatment regimen is con-
ventionally performed through well-designed, randomised
clinical trials. Clinical trials are indispensable prerequisites
to establish novel therapeutic principles. Nevertheless, trials
are lengthy processes which involve several influential factors
for a decisive outcome: trial design, patient selection and

followup, complex data analysis, and interpretation. Further-
more, trials cannot explore the sensitivity of the outcome to
input parameters and covariates.

Models are an efficient way to complement the results of
clinical trials. Beside animal models and cell lines, which are
often used for preclinical studies, there are computer models
(in silico models) encompassing mathematical, physical, and
engineering concepts representing the biological world.

Models in cancer treatment are simplified tools to
reproduce the biological system, thus they do not accurately
reflect the fine details of the real scenario. To compensate for
some of its deficiencies, the approach of computer modelling
has several advantages:

(i) input parameters can be easily changed and results
rapidly obtained;

(ii) various mechanisms can be studied in isolation,
determining their impact on specific processes;

(iii) extreme values for different parameters may be
considered, and limiting factors determined for bio-
logically valid results;
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(iv) treatment outcome can be predicted with quantita-
tive end points or “iso-effects”;

(v) models can answer the complex question of “what
if?”

Computer models can be used to simulate tumour cell
kinetics and dynamics, drug pharmacokinetics, therapies and
give similar results to those in experimental tumours. Models
are needed to open further research avenues and to suggest
relationships between radiobiological parameters.

The in silico-in vitro-in vivo chain (Figure 1) is gaining
worldwide recognition among scientists and their mutual
role in cancer research is illustrated through the great
advances of the last decades. In silico models are valuable
data input sources for both in vitro and in vivo models
(solid arrow). Mutually, the latter offer feedback to in silico
models in support of further developments and optimisation
(dashed arrow).

When modelling the processes involved in the damage
and elimination of tumour cells on the microscopic level,
development of an algorithm to propagate a virtual tumour
mass is first required. One approach has been to generate
a full-sized macroscopic tumour mass with a predefined
volume, cell type distribution, and so forth, based on average
tumour statistics or a particular tumour of clinical interest;
however, other modellers have used a first principles approach
and have “grown” the virtual tumour starting from a single
cell (or small group of cells). The tumour growth process is
in itself a large area of research, allowing for investigations
into the cell kinetics of malignant tissue. This line of study
also provides modellers with ideas about how to simulate
cell propagation during treatment, which is crucial because
many treatments are delivered over multiple weeks or even
months. As many of the models discussed are of the latter
variety (modelling tumour growth as well as treatment), the
proceeding section of this paper provides an overview of the
key analytical and stochastic tumour growth models in the
literature.

2. Tumour Growth Models

2.1. Introduction. The goals of tumour modelling vary
among researchers and may focus on one key biologi-
cal/radiobiological mechanism or explore mechanisms and
ranges of parameter values. Many models aim to identify
mechanisms and parameter values at the cellular level which
are responsible for macroscopic tumour outcomes, for exam-
ple, the cell kinetic properties affecting the tumour growth
or shrinkage rates. Modelling can add to the understanding
of cellular proliferative hierarchy and the differentiation
processes, evolution of genetic mutations, tumour morphol-
ogy, tumour pressure gradients, angiogenesis and oxygen
distributions, diffusion of nutrients, and so forth.

The modelling methodology employed to simulate a
biological system may be analytical or stochastic in nature.
Analytical (mathematical) methodology is more traditional,
utilising deterministic equation-based methods, often in the
form of a set of equations incorporating multiple parameters.
Stochastic methods use random number generation and
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Figure 1: The in silico-in vitro-in vivo chain. The solid arrows
illustrate data input whereas the dashed arrows represent the
feedback data used for model validation in support of further
optimisation.

probability distribution functions to simulate cell propaga-
tion and evolution of the tumour, for example, Monte Carlo
(MC) methodology. Monte Carlo methodology enables a
system to be modelled from first principles. It is a form
of computation using random sampling and iteration to
simulate the evolution of a physical or biological system
and involves the use of probability distribution functions for
decision making, for example, for the allocation of parameter
values from a range of possible values. This technique
is useful for modelling systems with a large number of
coupled degrees of freedom, which are difficult to solve using
equation-based methods.

Tumours are complex entities, divers and heterogeneous,
yet all share the ability to proliferate beyond the constraints
limiting the growth in normal tissue. The growth of tumours
is best represented by an exponential increase of cell number
in time. Exponential growth is the simplest mode of growth
assuming no cell loss or infertility. By growing exponentially,
the tumour volume increases by a constant fraction in equal
time intervals. Many human tumours during their growth
show exponential behavior; however, there are tumours
going through irregular or decelerating growth [31]. A more
accurate description for the irregular tumour growth is
given by the Gompertzian growth curves (Figure 2). During
Gompertzian growth, the doubling time increases steadily
as the tumour grows larger. The progressive slowing of
Gompertzian growth may be more the result of decreased cell
production rather than increased cell loss [31].

It is generally accepted that human cancers grow in an
exponential or Gompertzian manner. This assumption is
based on analysis of the growth of transplantable animal
tumours and on averages of tumour growth in human
populations. Although not valid for all individual tumours,
exponential growth may accurately describe averages of
human tumour growth [32]. However, there is data showing
inconsistencies with exponential or Gompertzian kinetics,
explainable by irregular growth kinetics.

Model parameterisation greatly depends on the available
pool of biological, biochemical, or biophysical quantities
used within the equations or model algorithm. When it
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Figure 2: Tumour growth curves.

comes to tumour growth, modelling of both kinetic and
dynamic properties are envisaged. Cellular composition,
volume doubling time, growth factor, cell loss factor,
labelling index, cell cycle phase-related properties (length,
radiosensitivity), and oxygenation status are some of the
most commonly implemented modelling parameters. Also
depending on the objective of the model, treatment-related
factors are often found among input parameters.

2.2. Avascular Tumour Growth Models. One of the earliest
models of tumour growth and cell cycle simulation using the
Monte Carlo approach is CELLSIM [1]. CELLSIM operates
with a large initial number of cells, placed in different
phases of the cell cycle whereby cells are modelled in groups
rather than being followed individually. Therefore each
group enters and exits a state together. When the number
of groups reaches a certain limit, a reassignment algorithm
will combine them making larger groups, where the new
parameters are calculated using the weighted average of the
previous ones. CELLSIM simulates cell cycle and distribution
of cells along the cycle with and without cytotoxic treatment
and it does not focus on tumour growth curves. However,
the description of the model implies exponential growth
behaviour.

Cellular automata models, also known as tessellation
automata or cellular structure models, are one of the first
types of cellular growth models developed in silico. These
models consist of a regular grid of cells, each cell having
assigned a certain state. New generations of cells are created
based on predefined rules determining the state of each cell.
For tumour growth simulations, cellular automata models
became popular due to their ease of use. Qi et al. [33]
developed such model describing the surveillance of the
immune system against cancer by taking into account as
main parameters the microscopic mechanisms of malignant
growth (cell proliferation), the cytotoxic behaviours of the

immune system as well as the mechanical pressure inside
the tumour. The influence of these parameters on the
Gompertzian growth of tumours is modelled.

Several early tumour growth models have also considered
the Gompertzian distribution to describe the shape of the
tumour growth curve. Gyllenberg and Webb [34] explained
the Gompertzian growth curve by expressing the rates
of cells transitioning reversibly between the proliferative
and resting states as a function of tumour size, therefore
incorporating variable growth fractions. Their mathematical
model employs quiescence as a mechanism to explain
characteristic Gompertz-type growth curves. The model
distinguishes between two types of cells within the tumour,
proliferating and quiescent. The theory behind the tumour
growth model is based on empirical data suggesting that the
larger the tumour, the more likely it is that a proliferating
cell becomes quiescent and the more unlikely it is that
a quiescent cell reenters the proliferating cycle, therefore
diminishing the growth fraction. The same group [35] has
later incorporated into the model a new parameter defining
the size of individual cells and modelled the dependence
of tumour growth on this parameter, in addition to cell
transition between compartments.

A stochastic model of tumour growth and invasion
looking into the relationship between the histological pattern
of tumours and their functional properties was developed
by Smolle and Stettner [36]. The model showed that cell
division, migration, and death are influenced by both
autocrine and paracrine growth factors, inducing therefore
changes in tumour pattern. These findings support the
observation whereby the functional properties of tumours
together with the tumour microenvironment dictate the
histological pattern of tumours.

The implementation of growth regulation and con-
trol mechanisms into three-dimensional models (spatio-
temporal) of epithelial cell populations was the focus of an
individual cell-based model aiming to simulate the growth
pattern and behaviour of a number of different epithelial cell
populations from undifferentiated stem cells up to tumour
cells [37]. The mechanisms implemented in the model are:
cell-cell adhesion, which plays a role in the inhibition of
epithelial growth at high cellular density, and cell-substrate
interaction, with role in cell cycle progress. The interplay
between cell parameter variation and selective knockouts
of regulations and control mechanisms shows that the cell-
substrate anchorage has the largest impact on the population
morphology. Furthermore, the balance between the strength
of cell-substrate anchorage and the trigger for contact
inhibition determines the way the intrinsic cell growth time
affects the population growth. The authors have underlined
the advantages of individual cell-based models which are
parameterized by measurable cell properties in describing the
complex process of cell population growth.

2.3. Vascular Tumour Growth Models. When modelling
clinical-sized tumours comprising up to 108 to 1010 cells,
simulating tumour oxygenation is generally considered a
requirement for most tumour types in order for model
growth curves to match well with in vivo data. Lack of oxygen
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in tissue, hypoxia, is commonly defined by a pO2 (partial
pressure of oxygen) threshold of 10 mm Hg, although clinical
trials may use 2.5 or 5.0 mm Hg thresholds when reporting
experimental results such as the Hypoxic Fraction (HF) of
cells in the tumour. It is now commonly known that low
tumour oxygenation results in radioresistance and is a major
contributor to treatment failure due to tumour recurrence
[38]. Consequently tumour growth model research often
involves the consideration of tumour cell oxygen levels and
the mechanisms by which the cells receive the oxygen from
blood vessels, for example, radial diffusion from cylindrical
vessel to the surrounding tumour tissue. In models, the
vessels may be simulated three-dimensionally within a
lattice, or more simply, the final oxygen distribution to the
cells may be modelled without specifically modelling the
vessels themselves.

Since the initial experimental and subsequent mathemat-
ical modelling of tissue hypoxia by Gray et al. [39] based on
diffusion theory [40], interest in modelling tumour hypoxia
has been relatively constant, although segmented in its aims.
After initial interest in the late 1950s and into the 1970s
[41–45] during which more basic mathematical diffusion
based models and animal experimental work were carried
out regarding tumour hypoxia and growth, the 1980s to the
early 21st century saw the emergence of models that aimed
to simulate vascularised tumour treatment and/or growth
in the literature [2, 7, 46–51]. The modelled mechanisms
of oxygen delivery and responses of the tumour in these
models range from considerations of simple oxygen diffu-
sion to considerations of oxygen consumption rates, vessel
size/density/location, slowing of the cell cycle, induced cell
death via necrosis and application of oxygen enhancement
ratios relating to ionising radiation sensitivity.

The 1980s saw the first real-time stochastic applications
of tumour computer models, which paved the path for
the complex Monte Carlo simulations of the current era.
The tumour models reported on during the last decade
tend to involve more detailed cell line specific kinetics and
also include one or more treatment modalities with the
option of individual patient data input, for example, spatial
PET imaging hypoxia information, the review of which will
be encompassed in the proceeding sections of this paper.
However, a group concentrating on tumour growth based
on the work of Anderson et al. [52, 53] provides a good
example of new modelling research not only on the process
of angiogenesis but also the distribution of chemical factors
including VEGF, ECM, DMA, and molecular oxygen [54].
Consequently distributions of blood vessel pressure and fluid
velocity related spatial distributions within a tumour could
be produced and their impact on tumour growth studied.
This group provides a thorough review of angiogenetic
modelling in their publications. Stochastic tumour growth
models from the 1980s to the present often simulate not
only tumour growth dynamics but also treatment of a virtual
tumour, for example, the work of Duchting et al. [7, 8],
Borkenstein et al. [20, 21], Stamatakos et al. [14, 15], Harriss-
Phillips et al. [29] and Marcu and Bezak [55].

3. In Silico Cancer Treatment Models

3.1. Modelling of Radiotherapy-Induced Cell Kill. Predicting
the outcomes of fractionated radiotherapy using models
was initially developed utilising theories such as the Power
Law equation of the Nominal Standard Dose theory of
fractionated cell kill [56] and various extensions to the
theory, as well as multitarget and multihit cell kill models
of the 1960’s and 1970’s, for example, Cohen’s target-cell
model [57]. However from the early 1980s onwards, the
Linear Quadratic (LQ) model of radiation induced cell kill
has dominated the literature for its use in predicting the
relationship between fractionated radiation dose and cell
kill for doses per fraction near 2 Gy. LQ theory was based
on the pioneering work of Lea and Catcheside [58] and
on the hypothesis of single strand and double strand DNA
aberrations as the source of radiation induced cell damage.

Use of the standard LQ equation became extremely
popular in the mid 1980s and was soon extended by many
authors by the addition of various modification factors for
modelling effects such as the “time-factor” [59] for rapidly
responding tumours and the oxygenation enhancement ratio
(OER) [60] for tumours experiencing radioresistance due to
hypoxia. Other equation-based models such as the binary
misrepair model and models of repair capacity saturation
were also devised and later compared to the LQ model [61],
which yielded similar results under specific conditions, for
example, 2 Gy per fraction. Dale and Jones have provided a
thorough review of the history of mathematical fractionated
radiotherapy models [62], which is recommended as a key
text for all tumour model researchers, as are review articles
by Fowler [63, 64] and Bentzen [65].

Alongside the development and widespread clinical
implementation of the LQ model, other models were emerg-
ing in the last two decades of the 20th century. These models
were initially mathematical based; however, a subset of
modellers soon branched out into the utilisation of stochastic
modelling techniques to describe the action and impact of
ionising radiation on living tissue. As the models became
more sophisticated, so too did the requirement not only to
describe the effects of radiation more accurately, but also
to model on smaller and smaller scales. Imaging modalities
were beginning to collect data on the “mm” to cellular scales
depending on the modality used, creating huge data sets
when modelling tumours of macroscopic volumes.

Macroscopic tumour modelling is most relevant for
comparisons to human data and eventual translation into
clinical use, consequently the modelling of the tumour
vascular system became of interest. Inclusion of oxygenation
parameters in models was driven by the increasing realisation
of the importance of tumour hypoxia as reported from large
clinical trials for certain tumour sites, for example, head and
neck [66–68]. Consequently, use of techniques and theories
such as diffusion theory for the transport of oxygen through
tissue [40] were employed by modellers. This particular
theory was not a new one; however, theories such as this were
now becoming increasingly utilised and incorporated into
new sophisticated mathematical and hybrid mathematical-
stochastic (automaton) models [6, 45].
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Due to the advances and increasing usability of personal
digital computers in the 1980s, the field of tumour and
treatment modelling was boosted, particularly in the US and
in European countries such as Germany and Norway. One
of the first stochastic tumour growth and/or radiotherapy
models of avascular tumours was called CELLSIM and later
the 2D CELLGROW [1, 2], as previously mentioned in this
paper. The treatment component of this model involves
randomised “cell groups” (representing groups of cells)
death based on LQ surviving fractions (SF) and focuses on
cell cycle kinetics the impact of cell grouping on the statistical
outcomes of phase blocking and cytotoxic drugs.

In the following decade, a mathematical model describ-
ing the changes in tumour growth during development and
LQ-based cell kill emerged [3], simulating exponential cell
proliferation at small sizes and Gompertzian-shaped growth
at larger sizes. Deterministic equations are used to plot
tumour mass curves as a function of time. Radiotherapy
is modelled, with varying regimes, and the surviving cell
fraction determined as a function of time. In the 1980s and
well into the 1990s, groups lead by Duchting and Kocher
were each developing stochastic models of tumour growth
and radiotherapy. Duchting et al’s. work was the first to
explore cell by cell modelling of a tumour cell population
in a growth medium (tumour spheroids), with the inclusion
of cellular oxygenation parameters as well as many cellular
kinetic and radiation schedule parameters (six schedules
reported on) available for modification by the user [7–
10]. Kocher et al.’s work [11, 12] also considered cellular
oxygenation by modelling a regular array of vessels in 3D
within a tumour mass, with 3 different schedules simulated.
Both groups modelled slow versus rapid growth kinetic
and studied the impact on treatment response, and either
manipulated with the LQ equation by means of single OER
values or unique α and β parameter values for hypoxic tissue.

Another mathematical model was reported in the late
1990s from Wouters and group [13, 69], which was also
concerned with modelling tumour oxygenation and also
the process of reoxygenation, considering two levels of oxic
status versus a full range of pO2 values. In the next few
years a stochastic model of tumour growth was developed,
simulating cells with ranges of proliferative capacity (epithe-
lial hierarchy), and investigating the kinetics of accelerated
repopulation and treatments including radiotherapy and
chemotherapy [4, 5, 70]. The model showed that while
cellular recruitment from the quiescent phase into the cell
cycle does not constitute a key mechanism in tumour
repopulation after radiotherapy, loss of asymmetry in stem
cell division, even for a small percent of stem cells, could be
the key process in tumour regrowth.

In 2002, two mathematical tumour treatment mod-
els incorporating stochastic parameter distribution were
reported on, one aiming to model and clinically verify accu-
rate microvascular density and heterogeneity in a 2D tumour
cross section with cylindrical vessels [18, 19] and the other
simulating the delivering altered doses to different cells based
on oxygen status. In the later model, chronic (permanent) as
well as acute (temporal) hypoxia was investigated, and overall
a 20% to 50% boost in dose to the hypoxic cell population

(up to 20% chronic hypoxic volume) required the same dose
to control the tumour as for an oxic tumour.

Søvik and colleagues [27] have developed a model
aiming to “dose-paint” radioresistant tumour subvolumes
with higher than normal doses, using clinically relevant
oxygenation distributions in a mathematical spatial automa-
ton model. Reoxygenation was also considered. The group
concluded that prescribing varying doses to different parts
of the tumour can significantly increase tumour control
probability although the rate of reoxygenation was found to
be the crucial parameter. Tumours with no reoxygenation
had the most benefit of dose redistribution. The level of
chronic hypoxia influenced outcome more than the level of
acute hypoxia.

The modelling work of Daşu et al. [23, 71, 72] explored
not only the measurement process of key parameters in
tumour models and the effects of hypofractionation, but
also the effects of chronic and acute hypoxia on tumour
control in a mathematical probabilistic model [24, 25].
Results justified the need for a full description of tumour
oxygenation to predict treatment outcomes and showed that
temporal oxygenation changes between treatment fractions
are less important than the presence of chronic hypoxia.

Finally, there have been a number of stochastic vas-
cularised tumour growth and/or radiotherapy treatment
models produced in the past decade. Of those reviewed
herein, one is a purely temporal model, while the others are
spatial-temporal. In general, most modern models simulate
cell growth on an individual cell basis; however, there is
a trend in some models to average cellular properties and
model “tumour voxels” or “geometrical” cells. This is often
performed because of the large tumour volumes being
applied and owing to the direct input of imaging (anatomy
and/or functional) data into the models. This direct input
is used in some model as an alternative to simulating the
tumour growth process, and rather the tumour is created
at full size based on clinical data, ready for treatment
simulation. There are advantages and disadvantages to this
technique, including the lack of understanding/research into
microscopic aspects of the tumour, that is, cellular kinetics
and how kinetic parameters change with tumour volume, but
also the benefits of individualising the model for a particular
patient and therefore providing more direct outcomes to
compare with clinical data.

The Greek modelling group led by Stamatakos have
published many papers regarding their models of growth
and radiotherapy for lung and brain tumours. Initial work
began with a 3D discrete time step model [16] (extending
upon pioneering work by Duechting in the 1980s) with
spatial visualisation and modelling in vitro tumour spheroids
for small lung cell carcinoma. Since 2004, the group has
published models of in vivo tumour systems [14, 15, 17,
73–75], concentrating on glioblastoma multiform and the
incorporation of experimental and clinical data into the
model. The model now uses the concept of a “geometrical
cell” (GC) to average cellular properties obtained from
imaging data and uses a grid size of up to 1203. A comparison
between six radiotherapy fractionation schedules has been
performed by varying parameters such as the cell loss factor,



6 Computational and Mathematical Methods in Medicine

OER, OERβ, cell cycle time and mutated versus wild type p53
status. Results show that accelerated schedules are superior to
conventionally fractionated ones and that wild type tumours
(higher α/β) respond well compared to mutated tumours.

Borkenstein et al. [20] considered angiogenesis in their
work and used an individual cell approach to spatially model
tumour growth and radiotherapy treatment. Capillaries are
placed at intervals in a 3D lattice, with cellular oxygenation
based on the distance to the nearest capillary cell. Cells in
a hypoxic state secrete an angiogenesis factor in proportion
to the number of hypoxic cells in the tumour. Radiotherapy
is based on LQ theory, with reoxygenation and accelerated
repopulation also modelled. Various radiotherapy schedules
have been compared, using OER values of 3.0 and 2.5. Results
show that total doses of 86 Gy versus 78 Gy are required
to achieve tumour control for conventional and accelerated
schedules, respectively. Harting has extended the work by
modelling a hypoxia-induced angiogenesis factor excreted
radially from hypoxic cells [21, 22].

HYP-RT is a temporal stochastic model [29, 30], sim-
ulating individual tumour cell division and the effects of
fractionated radiotherapy, with assumed randomised spatial
cell placement in the tumour. The model is based on the
proliferative hierarchy of epithelial cells, simulating head and
neck squamous cell carcinoma growth and radiotherapy,
with hypoxia modelled using realistic oxygen distributions
and a dose per fraction dependent OER curve. The model is
capable of simulating the effects of reoxygenation of hypoxic
tumours as well as accelerated repopulation. Results show
that accelerated repopulation and the percentage of stem
cells are the two most important parameters controlling
growth rate and radiotherapy outcome. An average simulated
hypoxic tumour requires an extra 16 Gy in total dose to
achieve tumour control using conventional fractionation.
Accelerated repopulation had the effects of requiring an
increase in dose per fraction of 0.5 to 1.0 Gy to control the
extra cell growth. Hyperfractionated schedules using 2 ×
1.1 Gy per day were found to be most effective, justified by
efficient cell kill and relatively low early and late normal
tissue toxicities, as predicted by biological effective dose.

A stochastic tumour simulation model [28] using cell line
specific parameters and functional pretreatment PET/CT
data was developed to investigate the effects of oxygenation
on the radiation therapy outcome for HNSCC. Rather than
using a three-dimensional lattice, this group uses a one-
dimensional list of “cell groups” to store temporal cellular
data, in order to minimise the number of stochastic cal-
culations and processes. Patient data is imported (oxygena-
tion and proliferation information) based on image voxels
from PET scans, with one voxel representing approximately
106 cells. LQ cell kill is applied to simulate radiotherapy,
with OER values for voxels taken into account. Chronic
hypoxia and reoxygenation is considered, as were individual
cell cycle phases and radiosensitivities. The results show
that tumour responses vary as tumour oxygenation levels
decrease and that oxygenation varied in time throughout
treatment in a similar manner to human tumours. Tissue

growth curves followed in vitro cell line data for un-
irradiated and irradiated cell lines (HNSCC-1), with an
accurate time delay of tumour shrinkage predicted.

As mentioned in a number of the preceding model
outlines, the majority of modern models use the standard LQ
theory as a basis for stochastic cell kill; however, some models
attempt to readdress cell survival theory by means of new
equation sets. Such an example of this is the model by Hanin
and Zaider [76] who have aimed to develop a cell survival
model accounting for micro-dosimetric effects of radiation
damage. Poisson based theory of DNA damage is no longer
followed, instead normal shaped distributions are utilised
making the model potentially suited to low, intermediate and
high dose per fraction regimens.

In-silico tumour growth and/or treatment models have
various degrees of complexity, with numerous assumptions
applied, as is inherent in all modelling applications. Com-
monly, the goal of the modeller is to determine the optimal
treatment strategy, for example, dose fraction sizes and
timing, to achieve tumour control or total cell kill for a
specific tumour type. The goal should also be to achieve
optimised tumour cell kill within minimal normal tissue
toxicity levels, ideally on an individual patient basis. This
goal, however, is very challenging for reasons including:
data gathering from reliable in vivo experiments, the large
and varied patient sets in clinical trials and the extremely
complex biological and chemical processes involved in
carcinogenesis and tumour evolution. Tumour radiotherapy
modelling requires not only accurate radiation damage
models but also the implementation of how the tumour cells
respond to sublethal or lethal damage, which may change
with dose received, tumour volume, oxygenation levels and
numerous other cell line specific and individual tumour-
based factors. Nevertheless, the development of models
has and will continue to assist radiobiologists and clini-
cians in predicting tumour behaviour and understanding
microscopic mechanisms and impact upon macroscopic and
measurable tumour parameters, and as such the research
should continue and be encouraged.

A selection of key tumour models from the literature are
tabulated below regarding avascular tumour radiotherapy
models (Table 1) and vascular tumours (Table 2). Readers
should note that many hundreds if not thousands of articles
have been published in peer-reviewed scientific journals on
expansions and clinical data fitting to the models mentioned
in this paper and many other models in the literature (for
example, the use of mathematical distributions of values
for radiosensitivity parameters or oxygenation parameters,
as well as splitting up the equations into those tailored
specifically for late and early responding tissues [77–81]).
However, it is beyond the scope of the current review to
explore the use and/or interpretation of clinical data by
means of in silico radiotherapy models.

While the vast majority of tumour growth and treatment
response models (such as the ones presented above) are
simulated on a cellular level, models on a smaller scale are
a hot topic of current investigation. Monte Carlo models
targeting the cell nucleus and cytoplasm have been developed
using the ever-expending GEANT4 MC simulation toolkit.
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Table 1: Models that simulate tumour growth and/or radiotherapy, without tumour oxygenation considerations (avascular tumours).

Model details Objectives Key parameters Model outcomes

Stochastic, CELLSIM, and
CELLGROW, Donaghey,
1981–1983 [1, 2]

Individual cell/cell group growth
model

Phase transition probabilities,
proliferation-based commands
on up to 90 cell groups, contact
inhibition modelled

Monolayer cell growth achieved
and RT/drug therapy applied

Mathematical,
O’Donoghue, 1997 [3]

Modelling exponential
proliferation at small tumour
sizes and Gompertzian at larger
sizes

3 LQ based parameters, 2 growth
related parameters and 1
radiation induced death rate
parameter

The effects of RT described in
terms of cure (clonogenic cell
sterilization) and/or tumour
regression/regrowth

Stochastic, Marcu et al.,
2002–2006 [4, 5]

Modelling tumour growth and
response to radiotherapy

Cell cycle specific surviving
fractions (SF2) based on LQ
model. Repopulation
mechanisms during RT such as
cell recruitment, accelerated stem
cell division, and asymmetry loss
in stem division

The effect of conventional and
altered fractionation
radiotherapy on cell survival
evaluated. The contribution and
likeliness of repopulation
mechanisms assessed

Barberet et al. have modelled different cell geometries found
in a typical cell population in order to evaluate the absorbed
energy from alpha particles and their response to different
irradiation protocols [82]. The pictorial results of this sub-
cellular model of energy deposition after alpha-particle inter-
action were in agreement with the experimentally obtained
images of DNA double strand breaks signalling proteins.
Absorbed dose after cellular irradiation on a nano-scale was
the focus of another, technically similar paper, incorporating
different alpha-particle sources [83]. While the emphasis of
these papers is on the microdosimetric aspects of radiation
interaction with tumour cells, this different perspective can
bring more insight into the radiobiological processes on a
nano-scale, therefore a better understanding of the impact
of radiation on cell behaviour in its microenvironment.

3.2. Modelling of Chemotherapy-Induced Cell Kill. Chemo-
therapy agents act via many different pathways and they
vastly differ in biochemical structure, molecular mode of
action, pharmacology, clearance, and side-effects. Further-
more, in chemotherapy there is no formalism equivalent to
the linear quadratic model used in radiotherapy which would
describe, in a simplistic yet practical way, cell survival.

While quantitative modelling has great potential, it
requires knowledge of the numerical values of multiple
parameters in order to characterize the chemotherapy dose
regimens. This information is rarely available; therefore, the
modelling of combination-chemotherapy regimens (drug
cocktails), or of large classes of chemotherapy agents, can
induce errors and inaccuracies in the simulation process.

The pool of chemotherapy-induced cell kill models is
vast. Similarly to radiotherapy, chemotherapy models are
divided between analytical and stochastic and they target var-
ious aspects of drug kinetics/dynamics and tumour response.
In the paragraphs below, the main chemotherapy model
categories are presented by listing the most representative
papers from each group. Besides the most common cell
kill models that investigate the correlation between tumour

kill and drug concentrations/exposure times (area under
the time-concentration curve), there are models studying
the effect of various drugs on tumour cell kill along the
cell cycle as well as compartment models focusing on
drug pharmacokinetics. In addition, there are models which
tackle the problem of drug resistance and repopulation
during chemotherapy—two major factors which can lead to
treatment failure. While models of drug resistance are more
commonly reported in the literature, tumour repopulation
during chemotherapy is usually a neglected factor when it
comes to modelling.

One of the first reviews on chemotherapy modelling was
published by Aroesty et al. [84]. The main focus of the paper
was on the effects of cell-cycle specific therapy on tumour
growth and on the distribution of cells along the cell cycle.
Several mathematical models of chemotherapy were devel-
oped afterwards considering generalized analytical models
for cycle-specific and cycle-non-specific therapies, respec-
tively. The main differences between these two categories lie
in the parameters quantifying cycle specificity and variation
in growth fraction [85]. Many such models assume that
the growth fraction of the tumour cell population responds
instantaneously to cell killing by chemotherapy. This is not
realistic, as drug pharmacokinetics indicates the existence of
a drug “binding time” to achieve cell damage, which does not
occur instantaneously. Some chemotherapeutic agents need
several hours to form cytotoxic DNA adducts [86]. Moreover,
numerous drugs express cytostatic properties, thus arresting
the cells into one of the cycle phases before dying. Cell arrest
can last for days [87]; therefore, the instantaneous kill is not
validated.

Despite the obstacles imposed by chemotherapy mod-
elling, models of drug pharmacokinetics and pharmacody-
namics have been developed in the past, using either ana-
lytical or probabilistic methods [85]. In fact, the first model
to describe pharmacodynamic effects by means of drug-
induced tumour growth inhibition in vitro was reported by
Hill in 1910 [88]. Hill’s model, also called the logistic model,
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Table 2: Models that simulate tumour growth and/or radiotherapy, incorporating tumour oxygenation (vascularised tumours).

Model details Objectives Key parameters Model outcomes

Mathematical,
Tannock, 1972
[6]

To relate oxygen tension,
radiosensitivity, and distance from
blood vessels

Distance to blood vessel (radial), pO2

vessel radius, coefficient of diffusion, rate
of O2 consumption, diffusion maximum
radius

A full range of oxygen tension values are
required to accurately model tissue
oxygenation and radiosensitivity with
good agreement to clinical data

Stochastic,
Duchting et al.,
1981–1995
[7–10]

To grow and treat in vitro tumour
spheroids (mouse brain and lung)
in a nutrient medium as well as the
surrounding normal tissue
(epidermis)

Rapid versus medium or slow
proliferation (CCT adjustment 10 to 30
hours), 120 hour dead cell clearance, LQ
radiosensitivity with separate αhypoxic and
βhypoxic terms, 30% repair probability of
sublethal damage, 10% G0 phase
recruitment, individual cell cycle phase
times

Six RT schedules simulated and
compared in terms of cell kill to assess
TCP and likelihood of epidermal side
effects, 3 no./day produced high toxicity
and a reduction from 60 to 50 Gy total
doses is suggested

Stochastic,
Kocher et al.,
1997–2000
[11, 12]

Brain tumour growth and RT in a
regular 3D lattice

Cell cycle times of 2 or 5 days, regular
capillary placement in the lattice, 100 μm
oxygen diffusion limit to define hypoxia
and 140 μm to define necrosis, constant
OER value of 3.0, 5 day dead cell
clearance

Three RT schedules simulated, with
accelerated RT more effective on fast
growing tumours

Mathematical,
Wouters and
Brown, 1997
[13]

Equation-based modelling of
hypoxic tumour LQ cell kill for
tumours with a 2-compartment
oxygen level make-up versus
intermediate (0.5 to 20 mm Hg)
oxygen values

Radial distance of a cell from the tumour
boundary to determine oxygenation
(2-component model or complete range
of pO2 values considered)

Small impact of full reoxygenation
between fractions: hypoxia plays a
significant role in determining outcome,
10% hypoxia and 30× 2 Gy radiotherapy
equates to 104 times less cell kill using a
full pO2 range compared to the
2-component oxygenation model

Stochastic,
Stamatakos et
al., 2001–2010
[14–17]

Simulating lung and brain tumour
growth in a 3D lattice to determine
optimal individualised RT schedules

Gaussian probability cell cycle times, G0

phase on 25 hours, reoxygenation during
shrinkage, S phase versus non-S phase LQ
radiosensitivity values, cellular hypoxia if
more than three cells from nutrient
source, OER ranging from 1.0 to 3.0 with
separation into OERα and OERβ

OERβ values of 3.0 to 3.5 provide cell kill
in agreement with cell culture survival
curves, accelerated schedules are
beneficial, wild type tumours (higher
α/β) respond well compared to mutated
tumours

Mathematical,
Nilsson et al.,
2002 [18]

Simulating realistic oxygenation
gradients and cell densities to
explore their impact on
radiosensitivity at both the
microscopic and macroscopic scale

Oxygenation, vessel geometry parameters
(density, radius, heterogeneity), oxygen
consumption rate, distance from a vessel

Vascular heterogeneity impacts
significantly on the hypoxic fraction,
local and global dose responses are
predicted from LQ theory using the
initial clonogenic cell number and the
effective radiation distance

Mathematical
(stochastic
components),
Popple et al.,
2002 [19]

Predicting tumour control
probability after selective boosting
hypoxic subvolumes within a
tumour mass

Reoxygenation between doses, OER of 2.0
for hypoxic cells, boost and nonboost
spatial cell compartments.

A 20% to 50% boost in dose to a
subpopulation of hypoxic cells increased
tumour control probability equal to that
of an oxic tumour, a boost dose to regions
of transient hypoxia has little effect

Stochastic,
Borkenstein et
al., 2004–2010
[20–22]

Simulating hypoxic tumour growth
and RT considering hypoxia and
angiogenesis

OER= 2.5 and 3.0 (continuous cell
oxygenation range in later work), vessels
modelled in a regular lattice, angiogenetic
factors to induce vessel growth and hence
pO2 delivery to cells, distance of a cell
from a vessel.

An increase in capillary cell cycle time
affects tumour doubling time as does the
intercapillary distance, doses of 86 Gy
versus 78 Gy are required to control the
simulated tumours for conventional and
accelerated schedules, respectively

Mathematical
(stochastic
components),
Daşu et al.,
1999–2009
[23–26]

Simulating 2D cell distributions to
investigate the effects of cell
heterogeneity, hypoxia (acute and
chronic) on RT outcome

2-compartment oxygenation (2.5 mm Hg
hypoxic threshold) versus full
oxygenation range, cell heterogeneity

Temporal oxygenation changes between
treatment fractions are less important
than the presence of chronic hypoxia, and
a small degree of hypoxia during every
treatment fraction has an effect on
tumour response regardless of the
changes in spatial hypoxia, a
2-component hypoxia model is not
sufficient in describing tumour
oxygenation
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Table 2: Continued.

Model details Objectives Key parameters Model utcomes

Mathematical
(stochastic
components),
Søvik et al.,
2007 [27]

Optimising tumour control through
redistribution of the delivered dose,
“dose painting”

pO2 histograms (0 to 102.5 mm Hg),
hypoxia defined by 5.0 mm Hg threshold,
reoxygenation modelled, heterogeneous
cell density, dose delivery based on four
pO2 thresholds: 2.5, 5.0, 20.0,
102.5 mm Hg, OERα,max and OERβ,max of
2.5 and 3.0, OER equation maximum of
3.28

Prescribing varying doses to different
parts of the tumour can significantly
increase TCP although the rate of
reoxygenation is crucial. Tumours with
no reoxygenation have the most benefit
of dose redistribution. Chronic hypoxia
influences outcome more than acute
hypoxia

Stochastic, Titz
and Jeraj, 2007
[28]

Simulating cell line specific
parameters and functional
pre-treatment 3D PET/CT data to
investigate the effects of oxygenation
on RT outcome

5-day cell dead clearance, 36-hour
average cell cycle time, OER with K value
of 3.0, full pO2 range, 1 mm Hg necrotic
threshold, individual phase
radiosensitivities

Tissue growth curves and reoxygenation
data follow in vitro and human clinical
data, with an accurate time delay of
tumour shrinkage predicted

Stochastic,
“HYP-RT,”
Harriss-Phillips
et al., and
Tuckwell et al.,
2008–2011
[29, 30]

Simulating hypoxic tumour growth
and reoxygenation during RT of
HNSCC

LQ-based cell kill with OER
consideration, full cellular pO2

distribution (1 to 100 mm Hg), OER
curve changing with dose per fraction,
reoxygenation as well as accelerated
repopulation between dose fractions

Hyperfractionation using 2× 1.1 Gy per
day is optimal for HNSCC, hypoxic
tumours require 16 Gy extra dose during
conventional radiotherapy compared to
oxic tumours, and the maximum value
and shape of the oxygen enhancement
ratio curve that may be dependent on
dose per fraction are crucial for
prediction of TCP

is still commonly used to illustrate the concentration-effect
relationship for various drugs based on statistical fits to a
sigmoidal curve. However, when cell cycle specificity comes
into play, the model has its own limitations.

There are several models studying the effect of various
drug concentrations and exposure times on tumour control.
Gardner [89] proposed an exponential kill model to predict
the shape of dose-response curves based on several param-
eters: cycle phase specificity of the drug, cycle time, drug
concentration, and exposure time. The analytical equations
presented are able to predict the inhibitory concentration to
achieve a certain percentage of cell kill.

Numerous studies have used the “area under the time-
concentration curve” (AUC) as an approach to model
chemotherapy. The area under the curve is a commonly
used measure of total drug exposure and is obtained by
plotting the concentration of the agent as a function of
time and obtaining AUC by integration. While for some
drugs (like alkylating agents) the effect is proportional
to the AUC [90], for others, the duration of exposure
may be more important than concentration; therefore, the
relationship between AUC and tumour response is weaker.
For certain drugs, such as Cisplatin, studies show that AUC
is a good predictor of response [91–93]. Moreover, since the
magnitude of exposure to Cisplatin is, through the DNA-
adducts formation, the major determinant of the response
rate, the AUA (area under the DNA adduct-time curve), also
offers a reliable prediction in tumour response [93].

The AUC models are usually based on in vitro data
regarding time dependency of drug potency, slope of the
concentration-effect curves, and relative degree of drug

resistance. Levasseur et al. [92] have created a pharmacody-
namic model to facilitate the quantitative assessment of the
growth-inhibitory effect of anticancer agents as a function
of concentration and exposure time. Empirical mathematical
expressions were built into a global concentration-time-
effect model which showed that it was possible to modulate
drug effect, response heterogeneity, and drug resistance by
altering the time of exposure to the agents.

Compartment Models. There are convenient ways to de-
scribe drug pharmacokinetics inside the body, that is, the way
plasma concentration of a drug changes over time. Depend-
ing on their properties (distribution, metabolism, clearance)
drugs follow multicompartmental behaviour (usually two or
three-compartment models) (Figure 3). The common aim of
these models is to find optimal tumour control in cancer
chemotherapy via cell cycle specificity. One-compartment
models are very simplistic as they consider the whole body as
a single unit (compartment) in which the drug concentration
is assumed to be uniform. This assumption is not valid
for tumours, as the uptake of chemotherapeutic agents
varies as a function of cellular proliferation (cytotoxic agents
preponderantly target cells with high mitotic index). In
two compartment models drug disposition is biexponential,
whereby the drug is distributed into a second compartment
but is eliminated from the first. Three compartment models
are more complex as they have two peripheral compartments
where drugs are distributed before elimination from the
central compartment. Compartment models are commonly
used in PET studies to evaluate the pharmacokinetics of
specific radioisotopes.

On a cellular level, compartment models are designed
for investigations into cell-cycle kinetics. In these models,



10 Computational and Mathematical Methods in Medicine

Peripheral
compartment

Distribution

Redistribution

Drug
elimination

V1V2 V3Peripheral
compartment

Distribution

Redistribution

Drug
administration

 Central
compartment

Figure 3: Schematic representation of a three-compartment model.

the compartments are represented by the phases of the cell
cycle, starting with the growth phase G1 which leads into
the DNA synthesis phase S, followed by another growth
phase G2 which then leads to mitosis, M. The options are
to divide the cell cycle into two (usually G1 + S and G2 +
M) or three compartments (usually G1, S and G2 + M).
This division into compartments facilitates the modelling
of cell cycle-specific drugs, that is, different classes of
chemotherapeutic agents (such as cytotoxic agents, cytostatic
agents or recruiting agents—when the G0 resting phase is
also taken into account). This type of cell cycle kinetics
modelling was introduced by Swierniak et al. in the 1980s
[94] and later extended into more complex simulations [95,
96].

Chemo-related factors such as drug diffusion, uptake/
binding, clearance and their effect on cell cycle progression
are individually incorporated in various spatio-temporal
models [97–99]. A more complex mathematical simula-
tion has accounted for all the above parameters with the
intention of modelling the interaction between drugs and
the heterogeneous tumour microenvironment [100]. In this
work, a multicompartment pharmacokinetic analysis of two
drugs (paclitaxel and 5-fluorouracil) with different transport
characteristics is modelled with emphasis on drug diffusion,
clearance, and cytotoxicity, leading to a cell distribution
along the cycle similar to experimentally obtained data. A
major finding of the simulation was the observation that
cell-cycle specific drugs might not offer unique advantages
over cell-cycle nonspecific drugs. An added result of the
model is the chemoresponsiveness to paclitaxel of slowly
growing tumours which was shown to be higher than of fast
growing ones due to high repopulation in between cycles of
chemotherapy in the latter tumour group (which could not
be compensated by the drug’s cytotoxic effect).

Another multi-compartment model to predict cellular
response of different cell lines to mitotic arrest when exposed
to paclitaxel was developed by Basse et al. [101] with
statistical results validated against flow cytometry analyses.

On similar principles of compartment modelling, the
pharmacodynamics of Cisplatin have been simulated [91]
by considering transport reaction processes between extra-
cellular and intracellular compartments, with drug species
classified into extracellular concentration, intracellular con-
centration, concentration bound to DNA and concentration

released from DNA as a result of DNA repair. The model
is based on the assumption that cell kill depends on the
peak level of DNA-bound intracellular platinum and for
short exposure times it yields predictions similar to those
resulting from AUC-type models. The major problems with
compartment models, as with any other chemotherapy
simulations, are the identification of cell cycle parameters
which can influence drug kinetics, thus short- and long-term
effects.

One of the major challenges of chemotherapy is asso-
ciated with drug resistance caused by mutations in cancer
cells. Models of drug resistance started to be developed in the
late 1970s, with the Goldie Coldman [102] model on the
theory of evolution of drug resistance by clonal selection.
Their model was based on biological assumptions stating
that drug resistance results from clonal selection of randomly
occurring mutants which are completely impervious to the
drug. The analytical model followed the development of
the mutant cell population as well as the sensitive tumour
cells, considering that the same growth kinetics applies to
both groups of cells. Clinically, such an assumption is not
realistic, as sensitive cells are killed more easily than mutant
resistant ones. Another oversimplification of their model was
to consider drug resistance as all-or-none (mutants, deemed
to be more resistant, were completely unreceptive to the
drug). Therefore, progressively higher levels of resistance can
be expected to emerge with continued treatment.

Birkhead et al. [103] have designed a model that brings
the principles of the Goldie-Coldman model closer to the
actual clinical practice. The modelled tumour includes three
cell categories: cells presenting with intrinsic resistance,
the second group characterized by acquired resistance, and
the third group being a sensitive population, responsive
to the drug. Various drug concentrations are administered
to study tumour response in time. The model relates to
chemotherapy treatment in general, therefore, in order to
simulate treatment strategies, specific values have to be used
for cell-kill and resistance. This requirement is a limitation
to the model, due to the lack of biological data and the
uncertainties in the existing values for larger groups of
patients.

Mathematical models of gene amplification were devel-
oped by Kimmel and Axelrod [104] to study cellular drug
resistance. Their models are based on the principle whereby,
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at each cell generation, there is a probability of increas-
ing/decreasing the gene copies per cell. The consequence of
this probabilistic mechanism is reflected in the increased
number of genes (gene amplification) found in tumour
cells which confer resistance to chemotherapeutic agents.
The novelty of the model lies in the description of the
probabilities of the changes in numbers of gene copies
in each cell, that is, the rates of gene amplification and
deamplification. The model investigates the mechanisms
and conditions responsible for a stable distribution of the
number of gene copies as supported by experimental data.

Ample modeling of drug resistance was undertaken by
Komarova [105] and Komarova and Wodarz [106]. Using a
stochastic approach involving a discrete state space Markov
process, their model allocates each cell type resistance
properties. Cells can acquire resistance to drugs by means
of mutations (where resistance to one drug does not imply
resistance to another drug). In order to develop resistance to
a number of n drugs, a cell must accumulate n mutations.
Drug-induced cell death is regulated by the extent of drug
resistance, whereby cells resistant to all drugs are not killed by
the drug while cells susceptible to certain drugs are labelled
with a drug-induced death rate dependent on treatment
intensity. The model concluded that the success of the treat-
ment is independent on turnover rate (the ratio of the natural
death rate and replication rate) for one-drug treatments but
dependent on turnover rate for multiple-drug treatments.
A more specific Monte Carlo model, looking into tumour
resistance to Cisplatin was developed by Marcu et al. [107]
by modelling two classes of drug-resistance mechanisms: one
leading to low drug uptake and the other responsible for
the decreased susceptibility to the induction of apoptosis. To
quantify the extent of drug resistance, the Cisplatin resistance
factor (CRF) was defined. Drug resistance was shown to be a
cumulative process: for low drug uptake, resistance seemed to
cumulate linearly or even supralinearly for very low uptake.
When decreased susceptibility to the induction of apoptosis
was modelled, resistance increased over a sigmoid pattern.

Modelling of crossresistance in cyclic chemotherapy
treatment was tackled by Katouli and Komarova [108]
showing that the general rule in cyclic treatment in order
to avoid cross-resistance would be “best-drug-first, worst-
drug-longer,” meaning that the optimal strategy is to start
the chemocycle with the more powerful drug but use longer
cycles for the weaker drug.

While repopulation during radiotherapy is an extensively
studied aspect associated with treatment failure, tumour
repopulation during chemotherapy is usually a neglected
factor. As shown by Davis and Tannock [109] the impact of
repopulation between cycles of chemotherapy on treatment
response may be comparable to that of intrinsic or acquired
chemoresistance. These findings have been confirmed by
a stochastic model of tumour growth and response to
chemotherapy [110]. Cellular recruitment was modelled by
releasing various percentages of quiescent cells into the
mitotic cycle after each drug-caused cell kill. The onset
of repopulation was also simulated, with both immediate
onset and late onset of cell recruitment. Repopulation
during chemotherapy was shown to be a highly potent

phenomenon; similar to drug resistance, therefore it should
not be neglected during treatment.

Models are useful tools to simulate novel treatment
schedules designed to improve treatment outcome by means
of higher therapeutic ratio. Such a novel regimen for
Cisplatin was suggested by Marcu and Bezak [55] in a
neoadjuvant setting, based on previously grown tumour
model using probabilistic methods of tumour development
and response to therapy. The proposed model suggests that
Cisplatin be delivered every three days leads to similar
tumour control as the daily regimen, but with better organ
sparing and higher therapeutic ratio than the weekly drug
schedule.

Mechanistic mathematical models developed to improve
the design of chemotherapy regimen were summarised by
Gardner [111] and Gardner and Fernandes [112]. Mechanis-
tic models are tools which incorporate patient-specific cell
kinetic parameters and allow for prediction of heterogeneous
outcome across patients. Such models, based on drug phar-
macokinetics and dynamics incorporating subpopulation
drug resistance, cell division, and apoptotic rates were
designed by Gardner [113] to kinetically tailor treatment
(KITT model) to individual patients. An impressive number
of 26896 tumours were modelled to build a decision tree
for prognosis and the simulated predictions were in good
accord with clinical trial results. These models are needed
to explain multiple-drug interactions, the evolution of drug
resistance inside tumour cells, cellular kinetics and the choice
of chemotherapeutical agents.

The literature on chemomodelling shows that optimum
treatment strategies are hard to derive mainly because of lack
of quantitative knowledge of the biological parameters of
cancer chemotherapy. While quantitative data for a specific
drug can be obtained from specific in vitro experiments, the
number of unknown parameters originating from multidrug
interaction turns modelling into an exigent task.

3.3. Modelling of Tumour Response to Combined Treatment.
The literature is scarce on combined chemoradiotherapy
models, a possible reason being the lack of quantitative
experimental data on radiation-drug interactions. Studies
which model combined treatment techniques aim their
focus towards factors such as (1) timing between agents,
(2) optimal combined schedules, (3) the extent of agent
interaction (additive, antagonistic, or synergistic), (4) dose-
effect and (5) acquired resistance to treatment, to name just
a few.

Goldie and coworkers [114] simulated alternating chem-
otherapy and radiation on a hepatoma, based on experi-
mental data. The model was built on a previously developed
tumour growth model with three discrete compartments:
stem cells, differentiating cells, and end cells. The main focus
of the model was on stem cells, which have been classified
into various resistant groups: cells resistant to chemotherapy
but radiation sensitive, cells resistant to radiation but chemo
sensitive, cells sensitive to both treatments, with the final
group of cells resistant to both therapies. The aim of
the combined model was to alternate radiotherapy with
chemotherapy (cyclophosphamide) in various protocols in
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Table 3: Difficulties in tumour growth and treatment response modelling relating to suitable input biological data.

Parameters/information that are
difficult to obtain (quantitatively)

Reason for the difficulty Overcoming the difficulty

Aggressiveness and time of onset of
accelerated repopulation

Intertumour variability that is unknown
cannot measure/estimate for individual
patients without cell biopsy sample used in in
vitro tests which may alter results

Grouping patients into tumours that are likely
to have slow or fast repopulation by some
means of genetic/pathologic testing—however
methods currently unknown

The extent of various mechanisms
responsible for tumour
repopulation during treatment

The interplay between recruitment, accelerated
stem division, abortive division and loss of
asymmetrical division, in stem cells makes it
difficult to evaluate their individual effect

Research stem cell properties for rapidly
proliferating tumours.
Sensitivity study on each individual and
combined parameter when modelling

Input of individualised tumour
data, for example, intrinsic
radiosensitivity, differences in
stem/transit or quiescent cell
radiosensitivity

Currently no pretreatment testing due to
logistics and time of testing

Research cell type/proliferative
capacity-dependent radiosensitivities for
different tumour cell lines, individualised
radiosensitivity pre-treatment testing (requires
staff/money/time)

Tumour oxygenation/reoxygenation

Different in every tumour, changes in time,
access to equipment, for example, daily/weekly
PET, invasive nature of in vivo quantitative data
gathering, for example, Eppendorf/Oxy Lab
probe

Access and research into to the feasibility and
drug development for daily/weekly PET scans,
with tracers that can image hypoxic regions
with various thresholds, for example, 2.5, 5.0,
10 mm Hg

Drug pharmacokinetics Lack of quantitative in vivo assays
Using in vitro data if existent, parameter
estimation and sensitivity study. Molecular
pharmacological modelling is required

Cell survival data for chemotherapy
Lack of mathematical formalism equivalent to
the LQ model used in radiotherapy

Using in vitro data if existent for that particular
agent

order to achieve an optimal tumour control. They have
concluded that combined regimen is more effective in
eliminating the stem cells than any of the two modality
regimens alone.

Cisplatin and radiotherapy for advanced head and neck
cancers was stochastically modelled by Marcu et al. [70]
looking at cell survival (tumour control) after various
combined schedules. The treatment modules were applied on
a previously developed virtual tumour consisting of kinetic
parameters characteristic to squamous cell carcinomas of
the head and neck. The model showed that while weekly
Cisplatin, which is the current standard of care, has improved
radiotherapy by only 6%, daily administration of Cisplatin
led to a 35% improvement in tumour control as compared
to radiation alone. Furthermore, optimal treatment outcome
was obtained when Cisplatin was administered very closely to
radiotherapy (immediately before or after irradiation) due to
Cisplatin pharmacokinetics.

Besides radiotherapy and chemotherapy, immunother-
apy has become an important aspect of today’s cancer
management. Based on logistic tumour growth law, the
combination of chemotherapy with immunotherapy was
recently simulated by Hu and colleagues [115] to address
the antagonistic, additive and/or synergistic effect of the
combined treatment in silico, in order to select an optimal
chemotherapeutical protocol. The theoretical model simu-
lates the dynamic evolution of tumour population density
under dual coupling periodic interventions (treatment). The
model outcome is in fine agreement with Loewe’s additivity
model, a universal reference model for drug interaction,
showing that the curative effect of the combined treatment

is strongly dependent on the intensity, nature (sub/supra-
additive) and the timing of the individual treatments. This
study could serve as a useful preclinical pharmacokinetic
assessment of drug-drug or drug-immunotherapy interac-
tion.

4. Conclusions

To further increase the power of complex tumour modelling
into the future, greater depth of knowledge of tumour
biology on an individual tumour basis will be required.
This data is likely to be at micro(cellular) level as well as
genetic and chemical level within the tumour. The data
required for model input, necessitating the need for in vivo
tumour measurement and/or imaging (before and at regular
intervals during treatment), may include levels of specific
protein synthesis and activity, a full description of tumour
oxygenation from 0 to approximately 40 mm Hg, intrinsic
radiosensitivity levels and cell kinetic behaviour of all cell
types involved including all primary tumour cell types, vessel
(endothelial cells), surrounding normal cell information,
patient condition variable such as immune system responses
in the form of DNA damage repair efficiency.

Specific difficulties of data gathering for tumours models
are listed in Table 3 and generally include the following:

(i) variations between patients;

(ii) the dynamic nature of the parameters desired;

(iii) time/expense due to complexity of testing proce-
dures, for example, protein analysis;
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(iv) understanding the mechanisms of microscopic pro-
cesses within the tumour which are often interrelated.

While overcoming the difficulties imposed by these param-
eters can be a complicated task due to clinical confines
in obtaining quantifiable data, there is always an option
to undertake computational sensitivity studies of specific
parameters within biologically plausible limits.

The future of in silico tumour modelling is challenging,
but wide open for expansion through the dedication of
radiobiology, medical physics, and computational science
researchers. Assumptions, estimations, idealisations, and
trial-end-error situations will constantly be part of the mod-
elling process. Nevertheless, despite its limitations, mathe-
matical and computational modelling is already playing an
integral role in several aspects of cancer management and
it is expected to gain more ground in the near future by
complementing other preclinical studies.
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