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Abstract

Bald’s eyesalve is an Anglo-Saxon medicinal remedy that has been used through ancient

times to treat eye sty infections and may represent a source of ancientbiotics. This study

assessed the efficacy of Bald’s eyesalve against several strains of Staphylococcus

aureus and Pseudomonas aeruginosa, including a multi-drug resistant phenotype, and

identified the principal compound conveying antibacterial activity. Bald’s eyesalve formu-

lations were produced by combining garlic, onion or leek, wine, bovine bile, and brass,

with specific ingredient omissions in several formulations, followed by incubation at 4 ˚C

for 9 days. Bald’s eyesalve formulation ES-GBBr exhibited the greatest antibacterial activ-

ity against S. aureus and P. aeruginosa. Fractionation of ES-GBBr using molecular size

exclusion and organic solvent partitioning isolated its antibacterial activity to the small

molecule nonpolar fraction, and 1D 1H NMR revealed the identity of the antibacterial

agent to be allicin. Depletion of allicin from this fraction by addition of exogenous cysteine

established that all observable growth inhibition originated from allicin. Quantification of

allicin demonstrated that its concentration was significantly greater in ES-GBBr compared

to the ES-O formulation; however, this was not due to greater yield. The antibacterial

activity of allicin against S. aureus was antagonized by other ingredients within Bald’s

eyesalve, whereas they were additive or synergistic against P. aeruginosa. These results

suggest that neither leek nor onion is necessary for the antibacterial efficacy of Bald’s

eyesalve against S. aureus or P. aeruginosa, and while allicin was identified as the princi-

pal antibacterial agent present, its activity is influenced differentially in the presence of

additional Bald’s eyesalve ingredients when used against S. aureus compared to P. aeru-

ginosa. Ancientbiotics may provide a source of promising antibacterials; however, identi-

fying the source of activity and assessing distinct formulations for cooperative effects are
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essential to using ancient remedies, such as Bald’s eyesalve, effectively against drug

resistant pathogens.

Introduction

Ancient Anglo-Saxon medicinal remedies have been receiving renewed scrutiny concerning

their potential as rich sources of antibacterial compounds that could help combat modern

drug-resistant bacterial infections [1]. As the discovery and development of novel antibiotics

declines, the emergence of antibiotic resistant pathogens is an alarming threat to human

health, with an estimated 700,000 deaths resulting from drug-resistant infections per year. Pre-

dictions indicate that such infections will cause 10 million deaths annually by the year 2050 if

new antimicrobial compounds are not developed soon [2]. While ancient medical formula-

tions, such as Bald’s eyesalve, are being revisited for their antibacterial potency, little is known

regarding the specific agents responsible for their efficacy, the cooperative effects within these

complex mixtures, or whether such natural remedies could be utilized to effectively address

the threat of modern antibiotic resistant microbes.

The development of bacterial resistance to modern antibiotics is startling and has thus

prompted the investigation of ancient medieval remedies for promising antibiotic compounds.

Bald’s eyesalve originates from a 10th century English medicinal text, Bald’s Leechbook, and has

been used to treat bacterial infections of the eyelash follicle, commonly known as a sty. The

formulation consists of wine, garlic, an additional Allium species, such as onion or leek, and

bovine bile; these ingredients are combined within a brass or bronze vessel and left to incubate

for 9 days prior to use [3]. Common pathogens found in modern bacterial eye infections

include Staphylococcus aureus and Pseudomonas aeruginosa, including methicillin-resistant S.

aureus (MRSA) and drug resistant P. aeruginosa strains. In addition, these pathogens are

responsible for a wide variety of severe, chronic infections, including sepsis, pneumonia, and

chronic wound infections [4, 5].

In a 2015 study, Bald’s eyesalve was found to exhibit bactericidal activity against MRSA bio-

films in an in vitro synthetic wound model; however, its mechanism of action and the antimi-

crobial agent(s) responsible for its efficacy were never elucidated [6]. In the present study, we

sought to identify the principal antibacterial compound within Bald’s eyesalve using various

formulations, a multi-step fractionation process, 1D 1H NMR analysis, and minimum inhibi-

tory concentration (MIC) assays. Furthermore, we aimed to establish the efficacy of Bald’s

eyesalve against both Gram-positive and Gram-negative bacteria, such as S. aureus and P. aer-
uginosa, including the MRSA strain LAC and clinical wound isolate P. aeruginosa PA215.

Materials and methods

Bald’s eyesalve materials

The garlic (Allium sativum), yellow onion (Allium cepa L.), and leek (Allium ampeloprasum
L.) used in this study originated from Montana Stinking Rose Farm in Bozeman, Montana,

Easterday Farms Produce Company in Pasco, Washington, and Associated Food Stores Inc. in

Salt Lake City, Utah, respectively. Plant materials and white wine (2016 Pinot Grigio, La Fiera

Veneto; UPC 0-89832-90007-8) were purchased from Town & Country Foods in Bozeman,

Montana. Following purchase, produce and wine were stored at 4 ˚C prior to Bald’s eyesalve

preparation.
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Bovine bile salts were purchased from Sigma Aldrich (product no. B3883; lot no.

SLBH1798V), and 0.51-mm brass sheet (24 gauge; alloy 260) was purchased from Ace Hard-

ware in Bozeman, Montana (product no. 5024864).

Preparation of crude Bald’s eyesalve

Bald’s eyesalve formulations (Table 1) were prepared as previously described [6] unless noted

otherwise. In brief, garlic bulbs and yellow onion were peeled and coarsely chopped prior to

being minced in a food processor (Mainstays Food Chopper, model no. FPMEMC3002).

Leeks were chopped in half, and the leeks greens were coarsely chopped and the minced using

a food processor as described above, while the white root end of the leek was discarded.

Immediately following plant material preparation, equivalent volumes (25 mL) of minced

garlic bulb (~14.2 g), minced yellow onion (~22.2 g) or minced leek leaves (~8.8 g), white

wine, and bovine bile salts (87 mg/mL dissolved in sterile water) were combined in sterile 250

mL glass bottles. Nine 15-mm squares of 0.51-mm brass sheet were added to each bottle prior

to being wrapped in foil and placed at 4 ˚C for 9 days. One or more ingredients were omitted

from several formulations as described in Table 1. After incubation, formulations were centri-

fuged at 5000 rpm for 10 min. Supernatants were transferred to sterile 50 mL tubes and stored

at 4 ˚C, while insoluble materials were discarded.

Bacterial strains

Methicillin-susceptible S. aureus (MSSA) strain ATCC 6538 [7] was purchased commercially.

Community-associated methicillin-resistant S. aureus (CA-MRSA) strain LAC, pulsed-field

gel-electrophoresis type USA300 [8] was provided by Dr. Jovanka M. Voyich. P. aeruginosa
wild-type strain PAO1 [9] and clinical wound isolate strain PA215 [10] were provided by Dr.

Michael J. Franklin and Dr. Garth A. James, respectively.

Determination of minimal inhibitory concentration

MIC values were determined for each of the bacterial strains using a microdilution method in

96-well microtiter plates with cation-adjusted Mueller-Hinton broth (MHB). Inoculum cul-

ture growth conditions consisted of batch cultures grown at 37 ˚C, 220 rpm agitation to an

optical density reading at 600 nm of 0.45–0.5 for S. aureus (~ 2.5 × 108 colony-forming units

per mL (CFU/mL)) and 0.48 for P. aeruginosa (~ 3 × 108 CFU/mL). Inoculum was diluted

1:200 (v/v) with 2X MHB and then 1:1 (v/v) into 96-well microtiter plates containing serial

diluted eyesalve (40% to 0.3125% (v/v)) along with positive and negative control wells, con-

taining no eyesalve with and without inoculum respectively, for a total of 200 μL per well.

Microtiter plates were incubated at 37 ˚C for 20 hrs prior to evaluation for growth inhibition.

This method was based upon recommendations from the Clinical and Laboratory Standards

Institute [11]. An allicin standard (LKT Labs) was assayed using the same protocol, but with S.

aureus stain LAC and P. aeruginosa strain PA215 only.

Molecular size exclusion and solvent partitioning fractionation of Bald’s

eyesalve

The ES-GBBr formulation, consisting of garlic, wine, bovine bile, and brass, was centrifuged at

21000 x g for 10 min to remove any residual debris prior to fractionation. An aliquot of resul-

tant supernatant was removed and stored at 4 ˚C as crude eyesalve, while the remaining super-

natant was fractionated as described below.
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Small molecule (SM) fraction was prepared by means of filtering 40 ml of the initially pre-

pared crude eyesalve through a pre-washed Amicon Ultra-15 (cellulose) centrifugal filter unit

with a 3 kDa molecular weight cut-off by centrifugation at 4000 x g, 4 ˚C for 60 min. The pro-

teinaceous (PRT) fraction was prepared by restoring concentrate volume to 40 ml with sterile

water. Both SM and PRT fractions were stored at 4 ˚C.

Small molecule, polar (SM-P) and nonpolar (SM-NP) fractions were prepared by combin-

ing 6 ml of SM fraction with 3.6 ml of chloroform. This mixture was vortexed for 1 min prior

to phase separation by centrifugation at 5000 rpm for 10 min. The polar phase was removed

and stored at 4 ˚C. The nonpolar phase was dried under a stream of N2 gas and reconstituted

in 6 ml of sterile water prior to being stored at 4 ˚C.

NMR sample preparation

Bald’s eyesalve formulations/fractions prepared as described above were centrifuged at 21000

rpm for 10 min to remove insoluble debris. A 300 μL aliquot of resultant supernatant was

added to 300 μL of 2X NMR stock buffer (50 mM NaH2PO4/Na2HPO4, 0.8 mM imidazole as a

pH indicator, and 0.5 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) in 20% D2O, pH

7) and then transferred to a 5 mm Bruker NMR tube.

NMR experiments

All NMR spectra were collected at 298 K (25 ˚C) on a Bruker 600 MHz (1H Larmor frequency)

AVANCE III solution NMR spectrometer, equipped with an automatic sample loading system

(SampleJet), a 5 mm triple resonance (1H, 15N, 13C) liquid-helium-cooled TCI NMR probe

(Cryoprobe), and Topspin software (Bruker version 3.1).

1D 1H NMR experiments were performed using the Bruker “zgesgp” pulse sequence and

recorded with 256 scans and a 1H spectral window of 9615.38 Hz. Free induction decays were

collected with 32K data points and a dwell time interval of 52 μsec amounting to a data acquisi-

tion time of ~ 1.7 s, and a 1 s delay between acquisitions, which resulted in an overall ~ 2.7 sec

relaxation recovery delay between scans. 1D 1H NMR spectra were phase-corrected using Top-

spin software (Bruker version 3.1), and baseline correction was applied following import of the

NMR spectra into the Chenomx NMR Suite program (version 8.0; Chenomx, Inc., Alberta,

Canada). Subsequently, a recorded 1D 1H NMR spectrum of an allicin standard was added to

the Chenomx small-molecule library for 600 MHz (1H Larmor frequency) magnetic field

strength NMR using the ‘Compound Builder’ module of the Chenomx NMR Suite program

(version 8.0) and was used as a reference spectrum for this compound. Allicin and ethanol

Table 1. Composition of Bald’s eyesalve (ES) formulations.

ES-O ES-L ES-GBBr ES-GB ES-GBr ES-G

Garlic + + + + + +

Wine + + + + + +

Onion + - - - - -

Leek - + - - - -

Bovine bilea + + + + - -

Brassb + + + - + -

Bald’s eyesalve was prepared by combining equal volumes (25 mL) of garlic, wine, onion or leek, and bovine bile followed by addition of brass prior to incubation at 4

˚C for 9 days. + designates ingredients that were included, while - denotes those which were excluded.
a87 mg/mL dissolved in sterile water
bNine 15-mm squares of 24 gauge (0.51-mm) brass sheet metal (alloy 260)

https://doi.org/10.1371/journal.pone.0208108.t001
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were identified and quantified using the ‘Profiler’ module of Chenomx for each Bald’s eyesalve

formulation and/or fraction. The internal DSS (0.25 mM) standard was used for quantification

of metabolite concentrations.

Depletion of allicin

An aliquot of the SM-NP fraction of the ES-GBBr formulation was titrated with L-cysteine to

a final concentration of 15 mM and incubated at 4 ˚C for 1 hr. Allicin standard (0.5 mM),

diluted from stock using sterile water, was also incubated in the presence of 15 mM L-cysteine

under the same conditions, and resultant samples were analyzed by 1D 1H NMR.

Statistical analysis

Data analysis was performed on 4 independent replicates of each Bald’s eyesalve formulation.

Statistical significance was assessed by one-way analysis of variance (ANOVA), followed by

Tukey’s multiple comparisons post-test using GraphPad Prism program version 7.1 (Graph-

Pad Software, La Jolla, CA).

Results

Antibacterial efficacy of Bald’s eyesalve formulations against S. aureus and

P. aeruginosa
The antibacterial activity of four different Bald’s eyesalve formulations, prepared as described

in Table 1, was assessed against two strains of S. aureus and P. aeruginosa, including LAC and

PA215. This initial formulation selection included those denoted as ES-O, ES-L, ES-GBBr, and

ES-GB (Table 1). All crude Bald’s eyesalve formulations predominantly demonstrated strong

growth inhibition for S. aureus strains ATCC 6538 and LAC with MIC values ranging from

0.625 to 2.5% (v/v) (Table 2). ES-O, ES-L, and ES-GB largely exhibited weak activity towards

P. aeruginosa strains PAO1 and PA215 with MIC values ranging from 2.5 to 10% (v/v); how-

ever, the ES-GBBr formulation displayed moderate growth suppression for both P. aeruginosa
strains with an MIC value of 2.5% (v/v) (Table 2).

Isolation of antibacterial activity present in ES-GBBr formulation by

fractionation

The ES-GBBr formulation was fractionated using molecular size exclusion into a proteina-

ceous (PRT) and small molecule (SM) fraction, and the antibacterial activity of these fractions

Table 2. Susceptibility of bacterial strains to crude Bald’s eyesalve formulations.

Bacterial strains MICa

ES-O ES-L ES-GBBr ES-GB

S. aureus
ATCC 6538 0.625 0.625 0.625 0.625

LAC 2.5 1.25 1.25 1.25

P. aeruginosa
PAO1 5 5 2.5 2.5

PA215 10 5 2.5 5

MIC was determined using a broth microdilution method as described by the Clinical and Laboratory Standards

Institute. Reported values represent the median of at least 3 biological replicates.
aMIC values indicate the concentration of Bald’s eyesalve formulation in % (v/v)

https://doi.org/10.1371/journal.pone.0208108.t002
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was evaluated against the aforementioned bacterial strains. The PRT fraction showed notably

weak activity against all strains with MIC values ranging from 10 to greater than 40% (v/v);

furthermore, this reflected an MIC increase of 16-fold for S. aureus strain ATCC 6538, greater

than 16-fold for S. aureus strain LAC, and greater than 32-fold for P. aeruginosa strains PAO1

and PA215 when compared to crude ES-GBBr (Table 3). The SM fraction demonstrated

strong growth inhibition activity for S. aureus strains ATCC 6538 and LAC with MIC values

ranging from 0.625 to 1.25% (v/v), and moderate to weak activity towards P. aeruginosa
strains PAO1 and PA215 with MIC values ranging from 2.5 to 5% (v/v) (Table 3). These results

indicated that the SM fraction sustained full antibacterial activity relative to crude ES-GBBr

against all strains, except for P. aeruginosa strain PA215 which exhibited a 2-fold MIC increase

(Table 3).

Organic solvent partitioning was used to further fractionate the SM fraction of the ES-GBBr

formulation into a small molecule polar and small molecule nonpolar fraction, and the anti-

bacterial activity of these fractions was evaluated against all bacterial strains. The SM-P fraction

showed weak activity against all strains with MIC values ranging from 10 to greater than 40%

(v/v); correspondingly, this reflected an MIC increase of 16-fold for S. aureus strains ATCC

6538 and LAC, 16-fold for P. aeruginosa strain PAO1, and greater than 8-fold for P. aeruginosa
strain PA215 when compared to the SM fraction (Table 3). The SM-NP fraction demonstrated

strong to moderate growth inhibition activity for S. aureus strains ATCC 6538 and LAC with

MIC values ranging from 1.25 to 2.5% (v/v), and weak activity towards P. aeruginosa strains

PAO1 and PA215 with MIC values ranging from 5 to 10% (v/v) (Table 3). These results indi-

cated that the SM-NP fraction sustained partial antibacterial activity, relative to the SM frac-

tion, demonstrating a 2-fold MIC increase against all bacterial strains (Table 3).

Identification and validation of the principal antibacterial agent in Bald’s

eyesalve

To identify the principal antibacterial agent in Bald’s eyesalve, 1D 1H NMR spectra of the SM,

SM-P, and SM-NP fractions of the ES-GBBr formulation were recorded (S1 Fig). These 1D 1H

NMR spectra revealed notable NMR signals within the 5.1 to 6.1 ppm chemical shift range that

were present in the SM and SM-NP fractions while absent in the SM-P fraction (Fig 1). A 1D
1H NMR spectrum of an allicin standard was recorded, and this spectrum correlated with the

NMR signals observed within the 5.1 to 6.1 ppm chemical shift range in the 1D 1H NMR spec-

tra of the SM and SM-NP fractions (Fig 2, S3 Fig).

Table 3. Susceptibility of bacterial strains to ES-GBBr formulation fractions.

Bacterial strains MICa (FCb)

PRT SM SM-P SM-NP

S. aureus
ATCC 6538 10 (16) 0.625 (1) 10 (16) 1.25 (2)

LAC >40 (>32) 1.25 (1) 20 (16) 2.5 (2)

P. aeruginosa
PAO1 >40 (>16) 2.5 (1) 40 (16) 5 (2)

PA215 >40 (>16) 5 (2) >40 (>16) 10 (4)

MIC was determined using a broth microdilution method as described by the Clinical and Laboratory Standards

Institute. Reported values represent the median of at least 3 biological replicates.
aMIC values indicate the concentration of ES-GBBr formulation fraction in % (v/v)
bFC values indicate the fold change in the MIC relative to that of crude ES-GBBr

https://doi.org/10.1371/journal.pone.0208108.t003
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To demonstrate that the antibacterial activity observed in the SM-NP fraction of the

ES-GBBr formulation originated from allicin, depletion experiments were conducted by addi-

tion of exogenous free cysteine to the SM-NP fraction. Allicin depletion within this fraction

and an allicin standard was confirmed using 1D 1H NMR spectroscopy (S2 Fig) prior to evalu-

ation of antibacterial activity against S. aureus strain LAC and P. aeruginosa strain PA215. The

allicin-depleted SM-NP fraction demonstrated no observable antibacterial activity against the

aforementioned bacterial strains with an MIC value greater than 40% (v/v); furthermore, this

reflected an MIC increase greater than 16-fold for S. aureus strain LAC and greater than 4-fold

for P. aeruginosa strain PA215 relative to control SM-NP fraction (Table 4).

Allicin concentration and production within distinct Bald’s eyesalve

formulations

To assess whether the enhanced antibacterial activity of the ES-GBBr formulation was due to a

greater concentration of allicin, 1D 1H NMR and Chenomx NMR Suite software was used to

Fig 1. 1H NMR analysis of ES-GBBr formulation fractions establishes presence of unknown compound(s). Stacked 1D 1H NMR spectra (600 MHz,

10% D2O) in chemical shift regions (A) 5.1–5.6 ppm and (B) 5.75–6.1 ppm for ES-GBBr SM (black), SM-P (red), and SM-NP (blue) fractions. Asterisks

indicate NMR signals from molecule(s) of interest.

https://doi.org/10.1371/journal.pone.0208108.g001
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quantify the concentration of allicin in all Bald’s eyesalve formulations described in Table 1.

The ES-GBBr formulation exhibited a significantly greater concentration of allicin than the

ES-O formulation, with mean values of 1476.6 and 836.2 μg/mL, respectively (Fig 3A).

Although not significantly distinct from the ES-GBBr formulation, the average allicin concen-

tration in the ES-L, ES-GB, ES-GBr, and ES-G formulations were 977.3, 1127.3, 1170.4, and

1050.6 μg/mL respectively (Fig 3A).

Due to variations in final volume resulting from ingredient omission(s), allicin yield (mg)

was also calculated for each formulation. The average amount of allicin produced in the ES-O,

ES-L, ES-GBBr, ES-GB, ES-GBr, and ES-G formulations was 56.2, 64.2, 74.4, 50.0, 62.5, and

50.4 mg respectively; however, there was no significant difference in the amount of allicin pres-

ent between any of these formulations (Fig 3B).

Fig 2. Identity of unknown determined to be an organosulfur compound originating from garlic known as allicin. An overlay of 1D 1H NMR

spectra (600 MHz, 10% D2O) in chemical shift regions (A) 5.1–5.6 ppm and (B) 5.75–6.1 ppm for an allicin standard (black) and ES-GBBr formulation

SM-NP fraction (red).

https://doi.org/10.1371/journal.pone.0208108.g002

Antibacterial activity of Bald’s eyesalve

PLOS ONE | https://doi.org/10.1371/journal.pone.0208108 November 28, 2018 8 / 17

https://doi.org/10.1371/journal.pone.0208108.g002
https://doi.org/10.1371/journal.pone.0208108


Table 4. Effect of allicin depletion on susceptibility of multi-drug resistant bacterial strains to ES-GBBr formula-

tion SM-NP fraction.

Bacterial strains MICa (FCb)

Control Allicin-Depleted

S. aureus
LAC 2.5 (1) >40 (>16)

P. aeruginosa
PA215 10 (1) >40 (>4)

MIC was determined using a broth microdilution method as described by the Clinical and Laboratory Standards

Institute. Allicin depletion was conducted by addition of free cysteine and incubation for 1 hr at 4 ˚C prior to MIC

evaluation. Control was not subjected to allicin depletion. Reported values represent the median of at least 3

biological replicates.
aMIC values indicate the concentration of ES-GBBr SM-NP fraction in % (v/v)
bFC values indicate the fold change in the MIC relative to that of ES-GBBr SM-NP fraction

https://doi.org/10.1371/journal.pone.0208108.t004

Fig 3. Quantitation of allicin in eyesalve formulations reveals significant differences in concentration but not

overall yield. (A) Allicin concentration (μg/mL) was determined using Chenomx small-molecule library for 600 MHz

(1H Larmor frequency) magnetic field strength NMR. (B) Allicin production (mg) was calculated by accounting for

volume differences between formulations. Data are presented as mean ± SD (n = 4). Significant differences (p< 0.05,

one-way ANOVA, Tukey’s multiple comparisons post-test) between formulations are indicated with asterisks.

https://doi.org/10.1371/journal.pone.0208108.g003
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Cumulative effects regarding the antibacterial activity of allicin within

Bald’s eyesalve against S. aureus and P. aeruginosa
To evaluate whether interactions between ingredients within the Bald’s eyesalve ES-GBBr for-

mulation impact the efficacy of allicin against drug resistant phenotypes, the MIC values of an

allicin standard and allicin within crude ES-GBBr were determined against S. aureus strain

LAC and P. aeruginosa strain PA215. The allicin standard exhibited an MIC value of 12.2 μg/

ml against S. aureus strain LAC and 97.4 μg/ml against P. aeruginosa strain PA215, while alli-

cin within crude ES-GBBr displayed an MIC value of 24.3 μg/ml against S. aureus strain LAC

and 48.7 μg/ml against P. aeruginosa strain PA215 (Table 5). These results suggested that addi-

tional components within the Bald’s eyesalve ES-GBBr formulation act in an antagonistic

manner with the antibacterial activity of allicin against S. aureus strain LAC, but additively or

synergistically against P. aeruginosa strain PA215 (Table 5).

Discussion

In this study, we have shown that Bald’s eyesalve, an Anglo-Saxon remedy for eye sty infec-

tions, displays growth inhibitory activity against S. aureus and P. aeruginosa, including a

multi-drug resistant strain. This activity was more pronounced against S. aureus than P. aeru-
ginosa, which is consistent with the fact that Gram-negative bacteria, particularly Pseudomo-
nads, are notably more resistant to antibacterial agents than Gram-positive bacteria, including

Staphylococcus sp. [12]. Our data indicate that the specific formulation composition had little

impact on the inhibition of S. aureus. This is inconsistent with a previous report where the

presence of an additional Allium species, onion or leek, was found to significantly contribute

to the antibacterial activity of Bald’s eyesalve [6]; however, this previous study evaluated the

antibacterial activity using a synthetic wound model in which S. aureus inoculum was grown

as a biofilm for 24 hr prior to treatment and based upon colony-forming units [6]. Our con-

flicting results may be due to our assessment of the antibacterial activity of Bald’s eyesalve

exclusively against planktonic S. aureus rather than S. aureus biofilms, and we did not investi-

gate whether onion or leek are necessary for specific efficacy against bacterial biofilms. Previ-

ous studies have shown that quercetin, an antibacterial flavonoid found in onion [13], and its

derivatives demonstrate anti-biofilm and anti-quorum sensing activity against S. aureus and P.

aeruginosa [14, 15]. Although plant extracts have been shown to display growth inhibitory

activity against P. aeruginosa [16, 17], to our knowledge our study represents the first report of

the antibacterial efficacy of Bald’s eyesalve against P. aeruginosa.

Table 5. Evaluation of conjugative effects within crude ES-GBBr formulation against multi-drug resistant bacterial strains.

Bacterial strains MICa (FCb) Interaction

Control ES-GBBr ES-GBBr

S. aureus
LAC 12.2 (1) 24.3 (2) Antagonistic

P. aeruginosa
PA215 97.4 (1) 48.7 (-2) Additive or Synergistic

MIC was determined using a broth microdilution method as described by the Clinical and Laboratory Standards Institute. Control MIC values were determined using

an allicin standard. Reported values represent the median of at least 3 biological replicates.
aMIC values indicate the concentration of allicin in μg/mL
bFC values indicate the fold change in the MIC relative to control

https://doi.org/10.1371/journal.pone.0208108.t005
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Although all known Allium species contain organosulfur compounds, the chemical compo-

sition and resultant antibacterial activity of their extracts greatly varies [18]. Prior investiga-

tions have determined the main constituents of garlic essential oil to be diallyl disulfide

(DADS), diallyl trisulfide (DATS), allyl methyl trisulfide, diallyl sulfide (DAS), and diallyl tet-

rasulfide (DATTS), while the main constituents of onion and leek essential oils were found to

be dipropyl disulfide, dipropyl trisulfide, methyl propyl disulfide, methyl propyl trisulfide, and

1-propenyl propyl disulfide [18, 19]. Tsao et al. previously demonstrated that DAS, DADS,

DATS, and DATTS exhibit MICs of 20, 4, 2, and 0.5 μg/ml against S. aureus, respectively, and

80, 64, 32, and 12 μg/ml against P. aeruginosa, respectively [20, 21]. Little is known regarding

the antibacterial activity of dipropyl disulfide and dipropyl trisulfide against P. aeruginosa;

however, Kim et al. established the MICs of dipropyl disulfide and dipropyl trisulfide against

S. aureus to be>500 μg/ml and 50 μg/ml, respectively [22]. These findings suggest that the

antibacterial activity of the Allium species used in our study would be in the following order:

garlic > onion> leek. However, our data indicate that addition of leek to Bald’s eyesalve

results in greater antibacterial activity, in particular against clinical isolate strains, relative to

the addition of onion (Table 2). Additional studies are necessary to elucidate the activity of

organosulfur compounds derived from onion and leek, especially dipropyl disulfide and dipro-

pyl trisulfide with regard to clinical isolates.

Crude botanical extracts that display antibacterial activity are often subjected to repetitive

cycles of fractionation until relatively pure biologically active compounds are identified [23].

Many fractionation scheme variations have been utilized for the isolation of natural com-

pounds, with each offering its own specific advantages [24, 25]. Sub-fractions generated are

often less complex than the crude parent extract, thus simplifying the process of identifying

the active component(s) [26]. We fractionated Bald’s eyesalve formulation ES-GBBr using a

combination of molecular size exclusion and organic solvent partitioning methods to isolate

and identify its principal antibacterial agent. A review of the literature suggests that our study

is the first to characterize the activity of Bald’s eyesalve using fractionation in conjunction with

growth inhibitory assays; however, there are several limitations to bioassay-guided fraction-

ation. These include an inherent bias towards the most dominant bioactive compounds in the

extract or fraction, which can lead to a disregard of low abundant, yet biologically active, com-

ponents [27]. In addition, activity may be lost during fractionation, particularly if the bioactive

agent is temperature-sensitive or binds to the chromatographic resins employed [28, 29]. Due

to the instability of allicin at room temperature and in organic solvents [30, 31], a significant

amount of allicin may have been lost from our ES-GBBr formulation SM-NP fraction as sug-

gested by the NMR spectral features shown in Fig 1. In an attempt to reduce activity loss, we

stored our ES-GBBr formulation SM-NP fraction in water. This could explain the 2-fold MIC

increase observed for all bacterial strains upon exposure to the SM-NP fraction relative to the

SM fraction of our ES-GBBr formulation (Table 3); furthermore, these observations reinforce

our findings that allicin is the dominant antibacterial agent in Bald’s eyesalve.

This study identified allicin as the principal antibacterial compound present in Bald’s eye-

salve. Allicin (3-[(prop-2-ene-1-sulfinyl)sulfanyl]prop-1-ene) is a reactive sulfur species that is

used as a defense mechanism in garlic following tissue damage [32] and is known to be the

most significant bioactive component within fresh garlic extract; furthermore, allicin has been

shown to exhibit antibacterial activity against a diverse range of both Gram-positive and

Gram-negative bacteria, including Streptococcus spp., methicillin-sensitive and methicillin-

resistant S. aureus, Salmonella typhimurium, Escherichia coli, and Vibrio cholerae [33–36]. Pre-

vious studies have demonstrated that the mechanism of action of allicin is highly dependent

upon the capacity of its thiosulfinate group to alter the intracellular glutathione pool and

inhibit metabolic and oxidative stress enzymes by oxidation of thiols within cells [34, 37].
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Unlike most modern clinical antibiotics, allicin has an inherent advantage in that it does not

target any specific cellular component; therefore, the development of resistance by targeted

mutation is improbable, making allicin particularly suitable for application against drug resis-

tant bacteria [34]. We exploited the thiol-reactive nature of allicin to facilitate its depletion

from the ES-GBBr formulation SM-NP fraction by addition of exogenous free cysteine and

found that there was no observable antibacterial activity against either S. aureus or P. aerugi-
nosa following depletion of allicin. These results identify allicin as the primary antibacterial

compound present in Bald’s eyesalve.

Considering that the primary targets of allicin are intracellular thiols, such as those found

in reduced glutathione, we evaluated the concentration and yield of allicin between several

Bald’s eyesalve formulations. Our results indicated that there was a significant difference in

the concentration of allicin present in the ES-GBBr formulation when compared to the ES-O

formulation (Fig 3A); therefore, the enhanced antibacterial activity demonstrated by our

ES-GBBr formulation can be attributed to a greater concentration of allicin. Consequently, we

assessed total mg of allicin in all of our Bald’s eyesalve formulations to determine whether dis-

tinct ingredient combinations were more favorable for allicin production. Based upon previ-

ous studies demonstrating aqueous ethanol to be a superior extraction solvent for allicin [30,

38], we conclude that allicin is extracted from minced garlic in our Bald’s eyesalve formula-

tions and stabilized by the presence of ethanol from the addition of wine, which was deter-

mined to be 3–4% v/v (S1 Table). Although there was no statistically significant difference in

the yield of allicin among our formulations (Fig 3B), the formulations containing brass (ES-O,

ES-L, ES-GBBr, and ES-GBr) amassed on average more allicin than those that omitted this

ingredient (ES-GB and ES-G). In particular, the ES-GBBr formulation accrued the most allicin

at 74.4 mg. These results suggest that the combination of brass and bovine bile in Bald’s eye-

salve may be favorable for extraction of allicin from minced garlic. A previous study demon-

strated that alliinase, the enzyme responsible for the conversion of alliin to allicin, displays

increased activity in the presence of metal ions, most notably Fe2+, Mn2+, and Zn2+ [39]. We

hypothesize that dezincification [40, 41] of the brass 260 alloy included in several of our for-

mulations takes place due to the mildly acidic pH of Bald’s eyesalve (S1 Table) which may

cause corrosion. In addition, we suspect that bile salts act as a metal ion buffer in Bald’s eye-

salve, increasing dezincification and solubility of Zn2+ by the formation of micellar complexes

[42]. Future work is needed to identify the chemical processes by which brass and bile interact

to alter allicin production in Bald’s eyesalve.

While ethanol is a well-known and widely used disinfectant, its growth inhibitory activity

due to the addition of wine in Bald’s eyesalve can be considered minimal. Prior studies have

established the MIC and minimum bactericidal concentration (MBC) for ethanol against S.

aureus to be 6.25% and 25% (v/v), respectively, and against P. aeruginosa to be 1.56% and

>12.5% (v/v), respectively [43, 44]. Given the concentration of ethanol in our Bald’s eyesalve

formulations (S1 Table) and their corresponding MIC values (Table 2), we determined that

ethanol varied from 0.02 to 0.40% (v/v) at growth inhibitory concentrations of Bald’s eyesalve.

At bactericidal concentrations, ethanol can perturb the structure, function, pH gradient

(ΔpH), membrane potential (ΔC), and composition of cellular membranes [45, 46], inhibit

cell division and nutrient transport [45, 47], and reduce intracellular pH [47, 48]. Since ethanol

is present in such low concentrations within our Bald’s eyesalve formulations, we conclude

that any contribution ethanol could make to the overall antibacterial activity, aside from pro-

moting the extraction and stabilization of allicin, is negligible.

In an attempt to mitigate the increasing prevalence of drug resistant bacterial infections,

treatment regimens including multiple antibiotics are widely utilized. Antibiotic combinations

can generate additive or synergistic effects that enhance antibacterial activity and/or reduce
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the dosage required to eradicate infection [49, 50]; in addition, using multiple antibiotics with

distinct mechanisms of action reduces the risk of progressive resistance development following

treatment [51]. A recent study suggested that the antibacterial efficacy of Bald’s eyesalve may

be due to the combined activity of compounds arising from several ingredients in the formula-

tion, since it was determined that garlic, wine, and an additional Allium species were essential

to obtain full activity [6]. Our study revealed that the principal antibacterial agent within

Bald’s eyesalve is allicin derived from garlic; however, our MIC data also indicate that the alli-

cin present in this medieval remedy exhibits antagonistic antibacterial activity with other com-

pounds present in the formulation when used against S. aureus, whereas it displays additive or

synergistic activity against P. aeruginosa. Our data thus support the notion that the combinato-

rial formulation of Bald’s eyesalve is not a more effective means of treatment than allicin alone

against S. aureus, whereas it is more effective against P. aeruginosa. Previous studies have

shown that combining allicin with additional antifungal and antibacterial agents, such as

amphotericin B and silver nanoparticles, results in synergistic activity [52, 53]; however, we

have yet to identify the accessory agent(s) present in Bald’s eyesalve that results in additional

activity with allicin when used against P. aeruginosa. This study highlights the importance of

evaluating cumulative effects of antibiotics within complex mixtures and multi-drug treatment

regimens, particularly when the target bacteria responsible for the infection have been identi-

fied [54, 55].

Conclusions

Results from this study demonstrated that Bald’s eyesalve possesses antibacterial activity

against both Gram-positive and Gram-negative bacteria including phylogenetically distinct

strains of S. aureus and P. aeruginosa that exhibit variable degrees of antibiotic resistance and

virulence. In addition, our study identified allicin as the principal antibacterial agent present

in Bald’s eyesalve and determined that its activity among additional formulation components

is antagonistic against S. aureus, whereas it acts in an additive or synergistic fashion with other

Bald’s eyesalve ingredients when used against P. aeruginosa. These results emphasize the value

of establishing the source of antibacterial activity present in plant-derived natural products for

therapeutic use, including how to use complex natural mixtures to treat drug resistant bacterial

infections. Furthermore, our findings underline the importance of assessing the additive, syn-

ergistic, and/or antagonistic effects of combining different ingredients within these ancient

formulae as these have significant consequences with regards to the antibacterial efficacy of

these natural remedies.

Supporting information

S1 Fig. 1H NMR analysis of ES-GBBr formulation fractions. Stacked 1D 1H NMR spectra

(600 MHz, 10% D2O) in chemical shift regions (A) 0–5 ppm and (B) 5–10 ppm for ES-GBBr

SM (black), SM-P (red), and SM-NP (blue) fractions. Insets display the expanded 1D 1H NMR

spectrum in chemical shift regions (A) 0.5–4.5 ppm and (B) 5.1–8.5 ppm for the ES-GBBr

SM-NP (blue) fraction.

(TIF)

S2 Fig. Thiol-reactive nature of allicin is exploited to facilitate depletion from ES-GBBr

formulation SM-NP fraction. An overlay of 1D 1H NMR spectra (600 MHz, 10% D2O) in

chemical shift region 5.1–6.1 ppm for (A) an allicin standard and (B) ES-GBBr formulation

SM-NP fraction with (green/red) and without (black/blue) addition of exogenous free cysteine,
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respectively, followed by 4 ˚C incubation for 1 hr.

(TIF)

S3 Fig. Allicin structure and 1H NMR spectral data. The molecular structure of allicin is

shown in (A). Assignments, chemical shifts (δ, ppm), relative integrated intensities, multiplici-

ties, and coupling constants (J, Hz) from 1H NMR spectra are displayed for (B) an allicin stan-

dard and (C) allicin in ES-GBBr formulation SM-NP fraction.

(TIF)

S1 Table. pH and ethanol % v/v of Bald’s eyesalve formulations.

(XLSX)
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Software: Valérie Copié.
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