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Abstract

Cells polarize their movement or growth toward external directional cues in many different

contexts. For example, budding yeast cells grow toward potential mating partners in

response to pheromone gradients. Directed growth is controlled by polarity factors that

assemble into clusters at the cell membrane. The clusters assemble, disassemble, and

move between different regions of the membrane before eventually forming a stable polarity

site directed toward the pheromone source. Pathways that regulate clustering have been

identified but the molecular mechanisms that regulate cluster mobility are not well under-

stood. To gain insight into the contribution of chemical noise to cluster behavior we simu-

lated clustering using the reaction-diffusion master equation (RDME) framework to account

for molecular-level fluctuations. RDME simulations are a computationally efficient approxi-

mation, but their results can diverge from the underlying microscopic dynamics. We imple-

mented novel concentration-dependent rate constants that improved the accuracy of

RDME-based simulations, allowing us to efficiently investigate how cluster dynamics might

be regulated. Molecular noise was effective in relocating clusters when the clusters con-

tained low numbers of limiting polarity factors, and when Cdc42, the central polarity regula-

tor, exhibited short dwell times at the polarity site. Cluster stabilization occurred when

abundances or binding rates were altered to either lengthen dwell times or increase the

number of polarity molecules in the cluster. We validated key results using full 3D particle-

based simulations. Understanding the mechanisms cells use to regulate the dynamics of

polarity clusters should provide insights into how cells dynamically track external directional

cues.
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Author summary

Cells localize polarity molecules in a small region of the plasma membrane forming a

polarity cluster that directs functions such as migration, reproduction, and growth.

Guided by external signals, these clusters move across the membrane allowing cells to

reorient growth or motion. The polarity molecules continuously and randomly shuttle

between the cluster and the cell cytosol and, as a result, the number and distribution of

molecules at the cluster constantly changes. Here we present an improved stochastic simu-

lation algorithm to investigate how such molecular-scale fluctuations induce cluster

movement across the cell membrane. Unexpectedly, cluster mobility does not correlate

with variations in total molecule abundance within the cluster, but rather with changes in

the spatial distribution of molecules that form the cluster. Cluster motion is faster when

polarity molecules are scarce and when they shuttle rapidly between the cluster and the

cytosol. Our results suggest that cells control cluster mobility by regulating the abundance

of polarity molecules and biochemical reactions that affect the time molecules spend at

the cluster. We provide insights into how cells harness random molecular behavior to per-

form functions important for survival, such as detecting the direction of external signals.

Introduction

Cell migration, division, and differentiation require breaking the internal symmetry of the cell

and establishing an axis of orientation. This symmetry breaking is referred to as polarity estab-

lishment. In eukaryotes, polarity establishment occurs as polarity factors, such as Rho-family

GTPases, localize in a small region of the plasma membrane where they regulate the cytoskele-

ton to remodel cell morphology and generate motility [1]. In particular contexts, the polarity

site can be highly dynamic. For example, migrating cells frequently change their direction of

polarization as they navigate guided by changing environmental cues [2–4].

Polarity establishment has been well characterized in the budding yeast Saccharomyces cere-
visiae. Yeast polarize in the contexts of budding and mating. The first step involves the cluster-

ing of the conserved master regulator of polarity, the Rho-GTPase Cdc42, at a site on the

plasma membrane often referred to as the “polarity patch”. In the context of mating, detection

of pheromone secreted by a potential mating partner can trigger polarization. However, the

location of the initial polarity patch is inaccurate, and often misaligned with respect to the

pheromone source [5,6]. The patch then relocates so that it is adjacent to a neighboring mating

partner, allowing the two cells to fuse. Relocation of the polarity patch occurs in two stages.

Initially the polarity patch is highly dynamic, rapidly assembling, disassembling, and moving

along the cell membrane. In the next stage, Cdc42 organizes into a more concentrated patch

with reduced mobility [5,6]. The initial rapid movement of the polarity patch is thought to be

an exploratory phase to locate a mating partner. The remaining mobility of the patch during

the second stage may be necessary to correct errors made during the exploratory phase. This

view is supported by the observation that in experiments using externally imposed pheromone

gradients, cells that did not polarize toward the gradient during the exploratory phase were

able to reorient the polarity patch in the direction of the gradient [7–12]. Investigations com-

bining experimental studies with mathematical modeling showed that actin-based vesicle

delivery to the polarity patch is a key driver of patch movement during the second stage

[7,13,14]. However, the mechanisms responsible for generating highly dynamic clustering dur-

ing the exploratory phase and the transition to more stable polarity at the end of this stage are

not well understood.
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Recent studies revealed that the mobility of the polarity patch during mating is correlated

with MAPK activity [5,6]. Pheromone-induced MAPK activity triggers polarization and drives

changes in gene expression required for mating. During the early phases of mating when the

polarity patch is highly mobile, MAPK activity is low. As the dynamic cluster of Cdc42 explores

the membrane and relocates to a region near a mating partner, MAPK activity increases and the

cluster of Cdc42 at the membrane becomes stable. Hegemann et al. [5] proposed that MAPK

activity regulates patch mobility by inducing nuclear export of Cdc24, the GEF (activator) for

Cdc42, thereby increasing Cdc42 activation at the membrane. They also proposed that stochas-

tic fluctuations in the biochemical events underlying Cdc42 polarization drive the mobility of

the cluster during the exploratory phase. The plausibility of the second claim was supported

using a simple stochastic model for cell polarization adapted from [15]. Their mathematical for-

mulation, however, did not address the mechanism for cluster stabilization.

To gain further insight into how chemical noise can induce cluster mobility and how cells

can regulate cluster dynamics, we considered mechanistically detailed stochastic models of cell

polarization. In a previous study, we used particle-based simulations to demonstrate that

molecular-level fluctuations favor polarity establishment [16]. The stochastic simulations

resulted in an extended parameter range over which polarity occurs and shorter times (1–5

min) for the emergence of a single polarity site in comparison to a deterministic reaction-dif-

fusion version of the model. However, because particle-based simulations are computationally

expensive, we were not able to address the stochastic behavior of the polarity patch over the

time scales (10–100 min) associated with patch movement during yeast mating. Therefore,

there is a need for efficient approximate methods that faithfully capture intrinsic fluctuations

and allow simulations to be performed over biologically relevant time scales.

The reaction-diffusion master equation (RDME) provides an approximate method for

describing stochastic reaction-diffusion dynamics. In this framework, space is discretized into

a grid of volume elements which are assumed to be “well-stirred”. Within grid elements reac-

tions occur with a propensity proportional to rate constants usually referred to as “mesoscopic

rate constants”. This terminology is used to distinguish them from rate constants that appear

in macroscopic chemical rate equations derived under the assumption of mass action kinetics.

While solutions of the full RDME are typically difficult to achieve, computer simulations per-

formed with an optimized version of the Gillespie algorithm can be used to efficiently generate

realizations of the system’s spatiotemporal dynamics [17]. A limitation of the RDME approach

is that it is challenging to find mesoscopic parameters that faithfully capture the underlying

microscopic dynamics. Several modifications to the RDME approach have been developed to

overcome this shortcoming. These improved methods rely on mesoscopic rate constants that

take into account the finite size of the grid elements used to discretize space [18–20]. However,

we demonstrate that even with these improvements, RDME-based simulations lose accuracy

at the high molecular densities typical of the polarity system. To overcome this limitation, we

derived concentration-dependent mesoscopic rate constants, extending the work of Yogurtcu

et al [21]. We validated our approach in a 2D geometry by comparisons with particle-based

simulations. We then applied our approach to study the effects of molecular-level fluctuations

on the mobility of the polarity site in yeast. Key results were confirmed using full 3D particle-

based simulations.

We found that molecular-level fluctuations can induce high mobility in Cdc42 clusters

when clusters contain low numbers of the GEF for Cdc42 (the limiting polarity factor) and

Cdc42 rapidly cycles between the cluster and the cytosol. Cluster stabilization was observed

when GEF abundance increased or when the rate constant for association reactions between

membrane-bound molecules increased. Accelerating such reactions stabilized clusters mainly

by increasing the dwell time of Cdc42 or GEF molecules at the polarity patch. Interestingly,
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increasing the rate constant for formation of the Cdc42-GEF complex, which is involved in the

positive feedback for Cdc42 activation, produced a switch-like transition in patch dynamics,

suggesting its regulation may underlie patch stabilization during yeast mating.

Results

A. An improved approach for stochastic reaction-diffusion simulations

A.1. Background. At the microscopic level, second-order reactions can be thought of as

occurring in two steps. First, the two reactants must diffuse to close enough proximity for the

reaction to occur. Second, after the reactants encounter one another, there may still be enthal-

pic and entropic barriers to overcome before the reaction can proceed. Second-order reactions

are diffusion-limited when, the “search” time for two reactants to encounter one another is

substantially longer than the time for the reaction to proceed once the reactants are close

enough to interact. Conversely, the reactions are reaction-limited when the diffusional search

time is short in comparison to the reaction time.

Particle-based simulations that track the position of each molecule in the system provide a

microscopic representation of chemically reacting systems (Fig 1A). Typically, in these simula-

tions it is assumed that once the reactants meet, the reaction occurs instantaneously [22,23] or

requires a single kinetic step to proceed [24–26] (see Methods for a discussion of microscopic

models for second-order reactions). For the particle-based simulations presented here, we fol-

lowed an implementation of the latter approach in which molecules react with a rate λ when

their separation is within an interaction radius ρ [26]. Therefore, the microscopic parameters

required for simulating second-order reactions are the diffusion coefficients for the reacting

molecular species, ρ and λ. Simulating first order reactions, such as the dissociation of molecu-

lar complexes, requires specifying a single rate constant for the reaction. For particular cases,

mathematical expressions that relate the microscopic parameters to experimentally measured

macroscopic rate constants (i.e., rate constants that appear in mass action kinetics) have been

derived [21,24,26]. Such mathematical expressions can be used to parameterize particle-based

simulations that are consistent with experimental measurements.

Microscopically-detailed, particle-based simulations are typically computationally expen-

sive. Therefore, to reduce simulation times it is common to use an approximate description of

the system based on the reaction-diffusion master equation (RDME). In this approach, space

is discretized into a grid of volume elements and molecules are assumed to be “well-mixed”

within the volume elements (Fig 1B). This is a mesoscopic description in the sense that the size

of the grid elements is normally larger than the size of a molecule (microscopic scale), but still

significantly smaller than the whole system (macroscopic scale). Molecules can jump to adja-

cent grid elements with a propensity proportional to the diffusion coefficient and reactions

occur with a propensity proportional to the reactants’ abundances within the grid element and

a mesoscopic rate constant kmeso. As the exact solution of the RDME can be difficult to obtain,

realizations of the system are typically simulated with an efficient spatial version of the Gilles-

pie algorithm [17].

A challenge with RDME simulations is determining parameters that produce results consis-

tent with the underlying microscopic dynamics. This can be especially problematic when sec-

ond-order reactions are diffusion-limited because simulation results can strongly depend on

the grid spacing h [27]. This issue was addressed recently through the derivation of mesoscopic

rate constants in terms of microscopic parameters that ensure compliance with the micro-

scopic kinetics in the limit of low molecular abundances [18–20]. Specifically, this approach

considered a domain containing two diffusing molecules that undergo an association reaction.

A mesoscopic rate constant is then derived using the requirement that the mean association
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time for the mesoscopic description is equivalent to that of the microscopic representation

(Fig 1C, Methods). Because this mesoscopic rate constant depends on h, it has been referred to

as a “scale-dependent” rate constant. If the association reaction is reversible, a mesoscopic dis-

sociation rate constant is computed by ensuring that the equilibrium behavior of the meso-

scopic description is identical to that of the microscopic representation (Methods).

In Section A.2. we evaluate the scale-dependent mesoscopic rate kh derived in [19,20] by

comparing simulations of simple reaction schemes using kh with results from particle-based

simulations. We note that although kh yields accurate results at low concentrations, it shows

significant deviations from particle-based simulations in scenarios with high molecular abun-

dances. To address this issue, in Section A.3. we propose a concentration-dependent meso-

scopic rate kc that produces accurate results over a broad range of concentrations. In Section

A.4 we evaluate both kh and kc in a biochemical model for polarity establishment in yeast.

A.2. Evaluation of the scale-dependent mesoscopic rate kh. We evaluated the scale-

dependent mesoscopic rate kh [19,20] by considering two prototypical reactions: irreversible

Fig 1. Simulation of a bimolecular reaction using a particle-based method and the spatial Gillespie approach. In our particle-based

simulations (A) molecules undergo a random walk in continuous space and discrete time intervals Δt. If a pair of reacting molecules are within a

distance ρ, they can react with probability rate λ. In the spatial Gillespie approach (B), the domain is discretized using a grid, here with square

elements of size h. Molecule jumps to adjacent grid elements and reactions take place within grid elements at random times. The propensity of a

reaction within a grid element is proportional to the number of molecules (nA, nB) and a mesoscopic rate constant kmeso. (C) The scale-dependent

mesoscopic rate kh ensures that the mean association time of two molecules in the reaction-diffusion master equation (τc) matches an analogous

microscopic representation (τR). (D) A concentration-dependent mesoscopic rate constant is defined as kc = Ac/τRc where Ac is the mean free

area between molecules of the most abundant reactant in the grid element, estimated as Ac = h2/max(nA, nB), and τRc is the mean association time

calculated from a microscopic model of two molecules that react in a circular domain with area πRc
2 = Ac. See Methods section for further details.

https://doi.org/10.1371/journal.pcbi.1008525.g001
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association A+B! C and reversible association A+B$ C. A measure of the degree to which

the reaction is controlled by diffusion is the dimensionless ratio λπρ2/(DA+DB) where DA and

DB are the diffusion coefficients of the A and B molecules respectively. For the results pre-

sented in this section, we set the value of this ratio to 50 to ensure the reactions are strongly

controlled by diffusion. Because our goal is to model reaction and diffusion at the cell mem-

brane, simulations are performed in a 2D domain with periodic boundary conditions.

To test the accuracy of kh, we performed simulations in which either the size of computa-

tional domain was fixed and the molecular abundances varied (Fig 2A–2D) or the molecular

abundances fixed and the size of the computational domain varied (S1 Fig). For each case, we

present time series for the mean number of molecules of one of the reactants. At low reactant

concentrations, simulations using kh are consistent with the microscopic dynamics as expected

(Figs 2A and 2B and S1G–S1J) [19,20]. We observed small differences for the reversible reac-

tion that may be attributed to differences in the assumptions used to derive kh and the method

we used to perform particle-based simulations. At higher concentrations, however, the early

kinetics of both the reversible and irreversible reactions showed significant deviations from

the particle-based results (Figs 2C and 2D and S1A–S1F). At later times the deviations are

reduced as the number of molecules decreases. We note that it is not possible to achieve higher

accuracies by reducing the size of the grid elements, because for this parameter regime, it is

not possible to calculate kh for h smaller than ~5ρ (Methods) [19,20].

We also computed timeseries of the standard deviation to quantify the fluctuations around

the mean for each case in Fig 2A–2D (S2A–S2D Fig). This metric also showed agreement

between spatial Gillespie simulations using kh and particle-based simulations at low concentra-

tions, and increased deviations at high concentrations at early times. Overall, the mesoscopic

approach using kh provides a good approximation to the microscale dynamics for irreversible

and reversible diffusion-controlled reactions only if the density of reactants is low.

To understand why kh showed accurate results for systems with low abundances but loses

accuracy at high concentrations, remember that kh was derived to reproduce the association

time in a two-molecule system (Fig 1C, Methods). In a dilute system containing n pairs of

reacting molecules, the expected time for an association event is similar to that in a set of n
independent 2-molecule systems, and simulations using kh provide a good approximation of

the kinetics. At high concentrations, however, molecules are more likely to associate with part-

ners in their vicinity before diffusing over a significant portion of the spatial domain. Because

the derivation of kh does not consider such multi-molecule effects, simulations lose accuracy at

higher concentrations.

A.3. A concentration-dependent mesoscopic rate kc improves accuracy at high concen-

trations. As the concentration of reactants increases, the reaction rate becomes dominated

by the time for reactants within the same grid element to react, as opposed to the time for two

reactants to diffuse into the same grid element. Therefore, to improve accuracy at increased

concentrations with diffusion-controlled reactions, we applied a mesoscopic rate constant kc
that describes the kinetics within a grid element without assuming that the volume element is

“well-stirred”. This mesoscopic rate constant considers that a molecule’s mean-free-path

before reaction decreases with the concentration of its reacting partner. kc is defined as Ac/τRc,

where τRc is the mean association time for two molecules diffusing in a domain with area Ac,

with this area taken as the mean free area between molecules of the more abundant reactant

within the grid element (Fig 1D). As an estimate for Ac we use the grid element area h2 divided

by the number of molecules of the more abundant reactant. We present a derivation for kc in

the Methods section. This approach was inspired by the work of Yogurtcu et al [21], in which

the authors estimated a concentration-dependent rate constant for spatially homogeneous
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Fig 2. Comparison of spatial Gillespie simulations using the mesoscopic rates kh and kc with particle-based

simulations. (A-D) Results for the mean number of species A from spatial Gillespie simulations using the mesoscopic

rate kh with initial low abundance of reactants in (A, B) (total A = total B = 5, total C = 0 at t = 0) and initial high

abundance (total A = total B = 5000, total C = 0 at t = 0) in (C-D). (E-H) show corresponding simulations to (A-D) but

using the mesoscopic rate kc. In all the simulations, the degree of diffusion control is λπρ2/Dtot = 50, with Dtot = 2D and

D = 0.0025μm2/s, ρ = 0.005 μm and λ = 3183.1/s. The size of the domain is L = 1μm. For the reversible reaction A+B$

C, the microscopic dissociation rate constant kdmicro is 1/s in (B, F), and 10/s in (D, H).

https://doi.org/10.1371/journal.pcbi.1008525.g002
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systems. In our simulation approach, kc depends on the local concentration and therefore it

changes in space and time as the system evolves.

For the case of reversible second-order reactions, a concentration-dependent mesoscopic

dissociation rate kc
d is estimated in a similar way as for khd. That is, the equilibrium behavior

of a two-species system in the mesoscopic representation is matched to that of the microscopic

formulation for a pair of molecules diffusing in a domain with area Ac (Methods).

Even though kc was derived to provide accurate results at high concentrations, it main-

tained accuracy for low molecular abundances in the reaction A + B! C (Figs 2E and S1G–

S1J). In the reversible reaction A+B$ C, simulations showed deviations that decreased with

smaller grid element size h (Fig 2F). At high molecular abundance, kc showed increased accu-

racy compared to kh in both irreversible and reversible reactions (compare Fig 2C–2D with Fig

2G–2H, also see S1A–S1F Fig). The increase in accuracy using kc was also observed in the fluc-

tuations around average concentrations (compare S2C–S2D Fig with S2G–S2H Fig).

A.4. Evaluation of mesoscale simulations in a model of the yeast polarity circuit. It is

known that the RDME approach can generate anomalous behavior due to numerical artifacts

from using a finite grid [28]. Therefore, we compared results from the mesoscale rates kh and kc,
and particle-based simulations, in a reaction-diffusion model for polarity establishment in bud-

ding yeast adapted from [29] (Fig 3A). Central to this biochemical network is the Rho-GTPase

Cdc42. Cdc42 can exist in an inactive (GDP bound) form Cdc42D that shuttles between the

membrane and the cytosol, and an active (GTP bound) form Cdc42T that localizes to the cell

membrane. Deactivation occurs as Cdc42 hydrolyzes GTP into GDP, a process accelerated by

GTPase activating proteins (GAPs). GAP activity is considered implicitly using a pseudo-first

order deactivation rate constant. The activation of Cdc42 is catalyzed by the guanine nucleotide

exchange factor Cdc24 (GEF) that binds Cdc42D and facilitates the exchange of GDP for GTP.

GEF molecules can shuttle between membrane and cytosol, and at the membrane they activate

Cdc42. Once GEF binds Cdc42D, it activates the Rho-GTPase and dissociates from the resulting

Cdc42T in a single step. There is positive feedback in the levels of active Cdc42 because Cdc42T

can bind a GEF molecule forming a complex Cdc42T-GEF that can activate neighboring

Cdc42D molecules. In this model Cdc42T can recruit both membrane-bound and cytosolic GEF

molecules. In the following simulations, membrane and cytosol are represented as coincident 2D

square domains. What distinguishes the membrane and cytosol are the diffusion coefficients for

the molecular species in each domain. The parameters were adapted from a 3D macroscopic

model [13,29] into a 2D microscopic representation (Methods) and are presented in Table 1.

Particle-based simulations initialized with all Cdc42 and GEF molecules randomly located

in the cytosol evolved into a polarized distribution of total Cdc42T (Cdc42T and

Cdc42T-GEF) at the membrane (Fig 3B) [16]. At early times, small fluctuations in the levels of

Cdc42T are amplified by positive feedback reactions resulting in growing clusters of the active

Rho-GTPase (Fig 3B 10 s). Several clusters can form that compete for polarity factors in the

cytosol until just one cluster remains (Fig 3B, 60 s—120 s). The remaining cluster grows,

depleting polarity factors in the cytosol, until a steady state is reached when the inward and

outward fluxes of molecules to the cluster balance (Fig 3B 120 s– 300 s).

In Fig 3C and 3D we present snapshots of representative mesoscopic simulations using the

scale-dependent (kh) and concentration-dependent (kc) rates, respectively. To facilitate com-

parison with particle-based simulations, spatial pseudo-coordinates for each molecule were

obtained by randomly sampling within the grid element containing the molecule. Mesoscopic

simulations using both kh and kc reached a steady-state polarity cluster (Fig 3C and 3D 300 s)

with a size comparable to that of the particle-based simulation in Fig 3A. There were differ-

ences, however, in the time evolution of polarization between the different methods. The simu-

lation using kh took longer to evolve into a single polarity cluster, while the simulation using kc
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polarized faster compared to the particle-based approach. We note that these simulations were

run using a grid element h = 5ρ which corresponds to the finest grid possible using kh.
To quantify the dynamics of polarization we measured clustering of total Cdc42T with the

function H(r) (Fig 3B lower panels) [16,30,31] (Methods). H(r) has the desired properties that

H(r) = 0 for a random distribution of molecules, and for a clustered distribution, H(r) shows a

maximum at a value r = rmax which provides a measure of the cluster size. H(r) showed a maxi-

mum at r = 1.1 μm that increased over time (Fig 3B lower panels). We therefore chose H

(r = 1.1 μm) as a metric for polarization. We note that quantifying clustering with max H(r)
does not qualitatively change the results. In Fig 4A we show the time evolution of the mean of

H(r = 1.1 μm) over different realizations for the different simulation methods. The shading

indicates standard deviation to illustrate the variability in polarization dynamics. At early

times, simulations using kh matched particle-based simulations but showed deviations at later

times, taking longer to polarize. On the other hand, simulations using kc displayed overall

faster polarization than the other methods. By defining the polarization time as the moment

when the standard deviation stabilizes, it is apparent that simulations using kh have a longer

time of polarization (240 s) compared to particle-based simulations (180 s), while using kc
results in faster polarization (130 s).

Fig 3. Cdc42 polarization simulated with particle-based simulations and spatial Gillespie simulations using kh and kc. (A) Reactions in a

model for polarization in budding yeast. Species that are not bound to the membrane (brown), dwell in the cytosol. Membrane and cytosol

are represented in the simulations as juxtaposed 2D squared domains. (B) Time series of a particle-based simulation of the polarization

model in (A). In each snapshot, red dots show the positions on the membrane of all active Cdc42 molecules (Cdc42T and Cdc42T-GEF). The

lower panels in (B) show a quantification of active Cdc42 clustering using the H(r) function (see Methods for details). (C, D) Spatial Gillespie

simulations using kh (C) and kc (D) with the same model parameters as the particle-based simulation in (A) and grid element size h = 5ρ.

Pseudo-coordinates for each molecule are randomly sampled from the containing grid element and displayed as a red dot to facilitate

comparison with particle-based simulations. Model parameters are presented in Table 1.

https://doi.org/10.1371/journal.pcbi.1008525.g003
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We further characterized the simulation approaches by looking at the steady state behavior

for different amounts of available GEF molecules (Fig 4B). While particle-based simulations

lost polarity at GEF amounts of around 300 molecules, mesoscopic simulations using kh polar-

ized for GEF abundances of around 100, showing polarization in a regime where the micro-

scopic simulations do not spontaneously polarize. On the other hand, mesoscopic simulations

using kc showed polarization for GEF amounts greater than 400, failing to polarize at a value of

400 GEF where the microscopic approach shows polarization.

As the mesoscopic simulations with both kh and kc presented in Fig 4A and 4B showed dis-

crepancies with respect to particle-based simulations, we sought to obtain more accurate

results by reducing the grid element size, which so far was set to h = 5ρ. We were able to do

this only for simulations with the concentration-dependent rate kc, because for the parameters

of the model, kh cannot be computed for grid elements smaller than 5ρ (see Methods). For

h = 2.5ρ we observed a significant improvement in accuracy using kc both in the dynamics of

polarization (Fig 4C) and in the equilibrium behavior for different values of the number of

GEF molecules (Fig 4D).

The increase in accuracy using h = 2.5ρ came with a cost of� 5X increase in computation

time with respect to simulations using h = 5ρ. Particle based simulations, on the other hand,

were� 10X more computationally expensive with respect to mesoscopic simulations using

h = 5ρ. We note that particle-based simulations were performed with the highly optimized

simulation platform Smoldyn [22,23], whereas mesoscopic simulations were run using our

own custom written C code, which has not been optimized for computational performance.

Table 1. Model parameters. For reactions, the values listed are for microscopic rate constants. For second-order reactions, the corresponding λ values can be calculated

from Eqs 2 or 26, depending on the type of reaction. The parameters kh, khd, kc and kcd used in spatial Gillespie simulations are computed from Eqs 8, 13, 16 and 19, respec-

tively. The parameters for the 3D model correspond with the 2D parameters, except when they have been scaled to account for dimensionality (Methods). Both 2D and 3D

particle-based simulations were performed using Smoldyn [22,23] specifying reaction probabilities for second-order interactions. Such probabilities are computed from

the rate constants presented here as described in the Methods.

Description Param. 2D Model 3D Model

GEFc! GEFm k1a 0.1 s-1 0.07522 μm s-1

GEFm! GEFc k1b 10 s-1 10 s-1

Cdc42Dm + GEFm! GEFm + Cdc42T k2a 0.032 μm2s-1 0.032 μm2s-1

Cdc42T! Cdc42Dm k2b 0.63 s-1 0.63 s-1

Cdc42Dm + Cdc42T-GEF! Cdc42T-GEF + Cdc42T k3 0.07 μm2s-1 0.07 μm2s-1

GEFm + Cdc42T! Cdc42T-GEF k4a 0–2 μm2s-1 0–2 μm2s-1

Cdc42T-GEF! GEFm + Cdc42T k4b 10 s-1 10 s-1

Cdc42Dc! Cdc42Dm k5a 4 s-1 3.009 μm s-1

Cdc42Dm! Cdc42Dc k5b 6.5 s-1 6.5 s-1

GEFc + Cdc42T! Cdc42T-GEF k6 0.2 μm2s-1 0.15 μm3s-1

Cdc42Dc + Cdc42T-GEF! Cdc42T-GEF + Cdc42T k7 0.5 μm2s-1 0.376 μm3s-1

Diffusion coefficient in cytoplasm Dcyto 10 μm2s-1 10 μm2s-1

Diffusion coefficient on membrane Dmemb 0.0045 μm2s-1 0.0045 μm2s-1

Membrane surface area Am 64 μm2 64 μm2

Total Cdc42 Cdc42 5000 molecules 5000 molecules

Total GEF GEF 15–700 molecules 15–700 molecules

Membrane thickness Δz 0.0083 μm 0.0083 μm

Cell volume Vc 48.144 μm3 48.144 μm3

Membrane volume Vm 0.53 μm3 0.53 μm3

Vm/Vc η 0.011 0.011

Reactive radius ρ 0.02 μm 0.02 μm

https://doi.org/10.1371/journal.pcbi.1008525.t001
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In summary, we found that the mesoscopic rate kc provided more accurate results than kh
in simulations of elementary reactions at high concentrations. During simulations of the polar-

ity model, both high and low concentrations of reactants can exist simultaneously. Therefore,

it is harder to definitively establish which mesoscopic rate provides a better description of the

system. We favor the concentration-dependent rate kc for several reasons: 1) it shows more

accurate results at the higher concentrations found in the polarity site, 2) it does not artificially

generate polarization in parameter regimes where particle-based simulations do not polarize

(although it fails to show polarization for some parameters where the particle-based simula-

tions do polarize), and 3) kc allows the use of smaller grid elements producing increased

accuracy.

B. Mechanisms regulating mobility of the polarity site

B.1. Requirements for high patch mobility. When yeast cells are presented with phero-

mone from a potential mating partner, Cdc42 forms dynamic clusters that explore the mem-

brane for 10–100 min before stabilizing in a region close to the pheromone source [5,6].

Therefore, we sought to determine if intrinsic fluctuations are sufficient to explain patch

Fig 4. kh and kc are benchmarked against particle-based simulations by looking at polarization dynamics and

equilibrium. (A) Time evolution of the clustering of total active Cdc42 from simulations of the polarity model in Fig 3A with

parameters in Table 1. We contrast results from particle-based simulations and the spatial Gillespie approach using either kh or

kc and a grid element size h = 5ρ. Clustering at a particular timepoint is quantified as the mean of H(r = 1.1μm) over 30

simulations. Uncertainty intervals are computed as mean ± standard deviation and presented as a shaded region enveloping

the mean. (B) Clustering at equilibrium from simulations in (A) for different values of the total amount of GEF. The clustering

at equilibrium is computed as the mean of H(r = 1.1μm) between 250s and 300s. The box plots were generated with the

clustering at equilibrium from 30 simulations. (C) and (D) are corresponding figures to (A) and (B) respectively, the only

difference is that the spatial Gillespie simulations are run with h = 2.5ρ and using only kc as kh cannot be computed for such h
in this model (see Methods).

https://doi.org/10.1371/journal.pcbi.1008525.g004
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mobility by performing spatial Gillespie simulations using our new concentration-dependent

mesoscopic rate constants for bimolecular reactions.

To assess patch mobility, we tracked the centroid of the distribution for active Cdc42 over

time (Fig 5A). However, with our initial parameterization (Table 1), the patch did not move

significantly over a 60 min time interval. It has been suggested that the amount of GEF in the

cytosol strongly regulates cluster dynamics [5]. In previous modeling studies, GEF abundances

ranged from 500–2000 molecules [13,29,32,33]. These studies primarily focused on situations

where the patch was stable. However, immediately following exposure to pheromone, when

the polarity clusters are highly mobile, it is possible that the amount of available GEF is signifi-

cantly smaller. Therefore, we ran simulations with GEF levels of 700 molecules and fewer. To

quantify patch movement, we computed the mean squared displacement (MSD) of the patch

centroid over time and used these values to estimate an effective diffusion coefficient Dpatch

(Fig 5B). As anticipated, decreasing GEF abundance increased patch mobility, but the system

lost polarity at moderate GEF levels (� 450 molecules) before patch movement increased sub-

stantially. Therefore, we investigated if varying any of the rate constants would allow the sys-

tem to polarize at lower GEF abundances. After testing all the reactions in the model (S3 Fig),

we observed that the following modifications allowed the system to polarize with low GEF

abundances (100 or fewer molecules): 1) decreasing the rate constant k2b for Cdc42T deactiva-

tion, 2) decreasing the rate constant of dissociation of the Cdc42T-GEF complex k4b, 3)

increasing the rate constant k5a for membrane binding of cytosolic Cdc42D and 4) increasing

the rate constant k6 for association of Cdc42T with cytosolic GEF to form the Cdc42T-GEF

complex. We computed patch mobility in simulations where both k2b and k5a where modified,

(Fig 5C and 5D) and where k6 was increased (Fig 5E and 5F), because these changes resulted

in polarization down to 15 GEF molecules. Interestingly, as the total GEF abundance was

decreased, only increasing k6 generated highly mobile patches (compare Fig 5D and 5F which

are representative realizations from the points indicated by the red arrows in Fig 5C and 5E).

The rate constant k6 governs the direct recruitment of cytosolic GEF to the patch through

complex formation with Cdc42T. This reaction can occur rapidly, because diffusion in the

cytosol is fast compared to diffusion in the membrane. Another potentially fast reaction not

considered in the model is the recruitment of cytosolic Cdc42D directly to the patch. In cells,

most inactive Cdc42 molecules are found in the cytosol bound to GDI proteins that hold them

in their inactive state. In our original model, for a cytosolic Cdc42D molecule to be activated it

must first be inserted in the membrane, a step implicitly representing dissociation from the

GDI protein. Once at the membrane Cdc42D has to laterally diffuse to react with a GEF. How-

ever, prior work has suggested that GEFs may displace Rho-GTPases from their GDI proteins

[34,35]. Based on this observation, we updated our model to include a reaction where

Cdc42T-GEF recruits and activates cytosolic Cdc42D (Fig 5G). An analogous reaction was

included in a model for polarization by Klunder et al. (2013) [33]. Using a rate constant com-

parable to the one employed by Klunder et al. and maintaining the original values of the other

rate constants, we observed a highly mobile patch at low GEF abundances (Fig 5G and 5H).

Our results suggest that direct recruitment of fast diffusing cytosolic polarity factors to the

patch promotes mobility of the polarity cluster.

To gain further insight into mechanisms that generate a dynamic patch, we investigated

several different patch properties. We first observed that the models shown in Fig 5C and 5G,

which have substantially different patch mobility at low GEF abundance (replotted in Fig 6A

on a log-log scale as “High mobility” and “Low mobility” models), have nearly identical

amounts of active Cdc42 and Cdc42T-GEF complex, and the fluctuations in the abundance of

these species were also similar between the two models (S4 Fig). However, the dwell time of
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Fig 5. Direct recruitment of polarity factors to the patch enables highly mobile clusters. (A) Snapshots of the distribution of total active Cdc42 over a 1hr

simulation. The black dot in each frame is the centroid of the polarity cluster, and the green dot is the centroid when the polarity cluster first formed. (B)

Diffusivity of the centroid of the polarity patch (Dpatch) as a function of the total amount of GEF molecules in the simulations. Dpatch was obtained from the

mean squared displacement (MSD) of the patch centroid by fitting the equation MSD(Δti) = 4Dpatch Δtiβ to the data, where Δti is a particular time interval, and

β reflects the degree of anomalous diffusion. (C) Patch diffusivities as a function of total GEF for simulations where k2b has been decreased by a factor of 1/16

and k5a has been increased by a factor of 10 relative to the parameters in Table 1. For these simulations β� 1. (D) Snapshots from a representative simulation

in (C) as indicated by the red arrow. (E) Patch diffusivities as a function of total GEF for simulations where k6 has been increased to either 1 μm2/s or 50 μm2/

s. With k6 = 1 μm2/s polarization is lost when the number of GEFs is below 200. With k6 = 50 μm2/s the simulations show polarization at even lower GEF

amounts, in this case, β varied between 0.85 and 1. (F) Snapshots from a representative simulation in (E) as indicated by the red arrow. (G) Patch diffusivities

as a function of total GEF after adding Reaction 7 to the model. β values were� 0.85 for the two data points with highest mobilities, and close to 1 for the other

points. (H) Snapshots from a representative simulation in (G) as indicated by the red arrow. Error bars for patch centroid diffusivities are standard errors

from the least-squares fit use to compute Dpatch.

https://doi.org/10.1371/journal.pcbi.1008525.g005
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Cdc42T was shorter in the high mobility model, indicating a faster cycling of Cdc42 between

the cluster and the cytosol as compared to the low mobility model (Fig 6B).

We also observed that patches with high mobility appeared to show larger spatial fluctua-

tions in the distribution of active Cdc42 (Fig 6C), as compared to the low mobility case (Fig

Fig 6. Cluster mobility correlates with fast distribution fluctuations and short dwell times of Cdc42T. Comparison

of a “Low mobility” model (from Fig 5C) and a “High mobility” model (from Fig 5G). (A) Patch centroid diffusivities,

(B) dwell time of Cdc42T at the cluster, (C) Snapshots of the lateral profile of the concentration of total Cdc42T

molecules for the High mobility model and (D) Low mobility model. (E) Coefficient of variation of the distribution of

total Cdc42T molecules, CVpatch (see Methods), as a function of the number of total GEF molecules. (F) Patch centroid

diffusivity as a function CVpatch for the Low mobility and High mobility models. Error bars for patch centroid

diffusivities are standard errors from the least-squared fit used to compute Dpatch. For all other quantities, the error

bars are the standard deviation from estimations in 5 independent simulations.

https://doi.org/10.1371/journal.pcbi.1008525.g006
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6D). We quantified spatial fluctuations in the Cdc42T distribution by computing the coeffi-

cient of variation CVpatch (see Methods) and observed that this quantity strongly correlates

with Dpatch (Fig 6E).

These results suggest that patch mobility is correlated with spatial fluctuations in the

Cdc42T distribution, rather than fluctuations in the abundance of Cdc42T or its GEF. Further-

more, low GEF abundance and rapid Cdc42 cycling between the cluster and the cytosol are

required for high patch mobility.

B.2. Potential mechanisms for regulating polarity cluster dynamics. During mating,

the polarity site transitions from being highly mobile to a more stable state. Therefore, we

investigated mechanisms that would allow regulation of patch movement. We note that

increasing k6 or adding Reaction 7 in our original model enabled highly mobile clusters at low

GEF abundances, but reversing such modifications eliminates polarization instead of stabiliz-

ing the patch (see for example Fig 5E, k6 = 1 μm2/s). We therefore systematically evaluated

how all other reactions affect patch mobility in a model that included Reaction 7, which we

refer to as the updated model (Figs 7A–7C, S5 and S6). We found that the following reactions

robustly modulate cluster mobility: activation of Cdc42Dm by GEFm (k2a), activation of

Cdc42Dm by Cdc42T-GEF (k3) and association of Cdc42T with GEFm to form the

Cdc42T-GEF complex (k4a). We note that these reactions all involve the association between

two membrane-bound molecules.

To investigate the role of k2a, k3 and k4a in stabilizing the polarity site, we systematically var-

ied the GEF abundance and one of these rates, while setting the other two equal to zero in the

cases of k3 and k4a or a very small value in the case of k2a (a minimal value is required to start

Cdc42 activation) (Fig 7A–7C). We found that increasing k4a was most effective at reducing

patch mobility as it stabilizes the patch at lower values of the rate constant and a wider range of

GEF abundances compared to k2a and k3. To understand why varying k4a produced a more

dramatic effect on patch mobility, we quantified the amounts and dwell times of Cdc42T and

GEF at the patch as a function of k4a, k2a and k3 (Fig 7D–7I). Increasing any of the three rates

produced a modest increase in Cdc42, but only increasing k4a produced a substantial increase

in GEF at the patch (Fig 7D–7F). On the other hand, increasing k2a and k3 lengthened the

dwell time only of Cdc42, while increasing k4a extended the dwell time only of GEF (Fig 7G–

7I). These results suggest that k2a and k3 stabilize the patch mainly by prolonging the residence

time of Cdc42 at the patch, while k4a reduces cluster mobility by trapping GEF at the patch

and increasing its abundance.

Because k4a had the largest effect on patch mobility, we studied the effects of varying this param-

eter using the original set of parameter values in the updated model. Setting k4a equal to zero

resulted in an increase of more than an order of magnitude in patch mobility for low GEF abun-

dances (Fig 8A). Increasing k4a with GEF = 100 resulted in an abrupt change in cluster mobility

around a value of 0.003 μm2/s (Fig 8B), in agreement with the results seen using the reduced values

of k2a and k3 in Fig 7C. After this sharp decrease, the mobility of the patch gradually increased with

increasing k4a and appeared to plateau as the reaction becomes diffusion-limited.

C. Validation through 3d particle-based simulations

So far, all our results have been obtained using 2D simulations with periodic boundary condi-

tions and assumed the only difference between the membrane and cytosol is the rate at which

molecules diffuse. However, real yeast cells are 3D objects with distinct membrane and cyto-

solic compartments. Therefore, to ensure our results remained valid in 3D, we used Smoldyn

[22,23] to perform particle-based simulations on a sphere, translating 2D parameters to 3D as

described in the Methods. Because varying k4a had the largest effect on patch mobility, we
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chose to validate these results. In agreement with our 2D simulations, low values of k4a pro-

duced a mobile polarity patch and patch mobility decreased rapidly with increasing values of

this rate constant (Fig 9A). Quantifying patch movement as a function of k4a in the 3D simula-

tions produced similar trends as results from the 2D spatial Gillespie simulations (Fig 9B). We

note, however, that in the 3D particle-based simulations, the transition from a mobile to static

patch appears to take place at a slightly higher values of k4a (between 0.005 and 0.01 μm2/s),

and for each value of k4a, Dpatch is higher, in comparison with the 2D spatial Gillespie simula-

tions. The good agreement between the full 3D and approximate 2D simulation results

Fig 7. Association reactions at the membrane stabilize clusters by trapping polarity factors at the patch. Patch centroid diffusivity (Dpatch) as a function of the total

number of GEF molecules and k2a (A), k3 (B), k4a (C). The size of the dots reflects the magnitude of Dpatch as indicated in the legend at the right. For each case, the value of

the other two rate constants is shown above the panel. (D-F) The amounts of Cdc42 and GEF at the patch are quantified as the total Cdc42T (black) and Cdc42T-GEF

(blue) respectively for the corresponding points enclosed by dashed boxes in (A-C). (G-I) Dwell times at the patch of Cdc42T (black) and GEF (blue) for the

corresponding points enclosed by dashed boxes in (A-C) (see Methods for details). Error bars are the standard deviation from estimations in 10 independent simulations.

https://doi.org/10.1371/journal.pcbi.1008525.g007
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validates the use of the more computationally efficient 2D simulations to investigate dynamics

of the polarity patch. These results also provide further support for a mechanism for stabilizing

the polarity patch by increasing the rate at which membrane-bound GEF and Cdc42T

associate.

Discussion

How cells relocate polarity clusters at the cell membrane during different tasks such as migra-

tion [36,37], growth [38,39], sporulation [40] and mating [5,41] is a fundamental question that

has not been fully understood. By means of computational modeling, we investigated how

molecular noise can be exploited to promote lateral mobility of polarity clusters and how cells

can regulate cluster mobility. We focused on dynamic polarization observed during the early

stages of mating in budding yeast. When haploid cells are presented with pheromone from

Fig 8. Increasing the rate constant of Cdc42T-GEFm association (k4a) induces an abrupt change in patch mobility.

(A) Patch centroid diffusivity as a function of the number of GEF molecules for the model that includes Reaction 7

(Updated model, black) and the same model but setting k4a = 0 (red). (B) Patch diffusivity as a function of k4a for

simulations with GEF = 100. Error bars are standard errors from the least-squared fit used to compute Dpatch.

https://doi.org/10.1371/journal.pcbi.1008525.g008
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potential mating partners, the Rho-GTPase Cdc42 forms highly dynamic clusters that move

across the membrane and stabilize in the direction of an adjacent cell of the opposite mating

type.

Fig 9. 3D particle-based simulations recapitulate 2D spatial Gillespie simulations results from Fig 8. (A)

Snapshots of 3D particle-based simulations for different values of k4a. Cdc42T molecules are shown as red dots on a

spherical surface representing the cell membrane. Rate constants are estimated from the ones used in Fig 8B as

described in the Methods. Parameters are presented in Table 1. (B) Patch centroid diffusivity as a function of k4a for

3D particle-based simulations (red) with GEF = 100. For comparison we also show results from 2D spatial Gillespie

simulations in Fig 8. Error bars are standard errors from the least-squared fit used to compute Dpatch.

https://doi.org/10.1371/journal.pcbi.1008525.g009
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Efficient and accurate stochastic simulations

To investigate the effect of molecular-level fluctuations on cluster mobility, we performed sto-

chastic simulations of the biochemical network of Cdc42 polarization in yeast. Stochastic

effects are most accurately captured using particle-based (microscopic) simulations

[16,22,23,42–44] or a convergent reaction-diffusion master equation [45]. However, the long-

time scales associated with the movement of the polarity site make the use of such simulations

computationally prohibitive to perform extensive investigations. We therefore used less accu-

rate, but more computationally efficient simulations based on the spatial Gillespie method.

Despite improvements on the accuracy of spatial Gillespie simulations [18–20], we found that

simulations lost accuracy in the diffusion-limited regime at high molecular concentrations. To

increase the accuracy of such simulations, we implemented concentration-dependent meso-

scopic rate constants building on ideas from Yogurtcu et al [21]. An alternative approach that

could also provide accurate and computationally efficient results is using hybrid microscopic-

mesoscopic simulations [46–51], for example coupling a microscopic formulation of the cell

membrane with a mesoscopic representation of the cytosol. Such methods, of course, imply

higher implementation complexity.

Highly dynamic clusters

Relocation of polarity clusters has commonly been explained via negative feedback mecha-

nisms [52]. Negative feedback reactions can destabilize positive-feedback driven clusters

resulting in travelling waves [36], or oscillations where the clusters disappear and reappear at

different locations of the membrane [41,53]. Directed vesicle delivery is also a form of negative

feedback that dilutes the polarity cluster and induces wandering motion [7,13,14]. Here, we

document how biochemical noise can induce relocation of polarity clusters without an explicit

negative feedback mechanism. Essential for noise-driven cluster motion are low abundances

of limiting polarity factors and fast cycling of polarity factors between the cluster and the cyto-

sol. Fast cluster-cytosol cycling can be promoted by reactions where polarity factors are

directly recruited to the cluster.

Regulation of cluster dynamics

During yeast mating, stabilization of highly mobile clusters has been attributed to increased

cytosolic levels of the polarity factor Cdc24, the Cdc42 GEF, as pheromone induced MAPK

activity triggers its nuclear export [5]. Besides increased GEF abundance, our study suggests

that accelerating the kinetics of second-order reactions at the membrane involved in the acti-

vation of Cdc42 can stabilize highly dynamic clusters. Increasing the rate constants of such

reactions seem to stabilize a mobile cluster by increasing the abundance and trapping polarity

factors at the patch. Interestingly, modulating the rate constant of one such reaction, associa-

tion of membrane-bound Cdc42 and GEF, produced a switch-like transition from a mobile to

a stable polarity patch. The Cdc42/GEF interaction, therefore, is a likely target of pheromone

induced signaling during regulation of polarity cluster dynamics. Interestingly, this interac-

tion, which in yeast cells is bridged by the scaffold protein Bem1, is thought to be regulated in

another context involving cell-cycle control [54].

Further evidence highlights the importance of biochemical events taking place at the cell

membrane, and properties of the cell membrane itself in the regulation of polarity cluster

dynamics. In fission yeast cells, which also display mobile patches in the early stages of mating,

cluster dynamics is known to be under the control of a GAP (Cdc42 inactivator molecule) that

localizes at the cell membrane [55]. During spore germination of fission yeast, initial uniform

growth is associated with highly dynamic Cdc42 clusters. Upon rupture of the outer spore
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wall, the clusters stabilize into a single cluster in the direction where rupture takes place, giving

rise to directed growth [40]. Other studies have documented that membrane tension [56] and

membrane curvature [57,58] can influence cluster stability. Additional mechanisms that may

be used by cells to regulate biochemical events at the membrane and control cluster dynamics

include crowding of signaling molecules [59,60], restricting the diffusion of molecules with

cytoskeletal barriers [11,61,62] and confining molecules into high affinity subdomains [63].

In summary, our results demonstrate the power of using accurate and efficient mesoscopic

simulations to inform more detailed, but computationally costly, particle-based simulations.

Our studies also provided considerable insight into the mechanisms used by cells to harness

random molecular behavior and regulate the dynamic properties of their polarity sites.

Methods

Spatial Gillespie simulations

In this coarse-grained approach, space is discretized into grid units, and the state of the system

is given by the number of molecules of each species in each grid unit. The system evolves con-

tinuously in time according to the reaction-diffusion master equation, which is the spatial

extension of the chemical master equation for well-mixed systems. We simulated individual

realizations with the Next Subvolume method [17] which is an efficient implementation of the

spatial version of the stochastic simulation algorithm [64]. We ran simulations on a square

domain of size L discretized with a Cartesian mesh with grid element size h. In the spatial Gil-

lespie algorithm, diffusion is treated as a reaction that results in a molecule transitioning from

its current location to a neighboring grid unit. If there are n molecules of a given species in a

particular grid unit, the propensity kjump for one of those molecules to transition to a neighbor-

ing grid unit is n D/h2, where D is the diffusion coefficient. In 2D, there are 4 neighbor cells

and the total propensity of jump is 4 n D/h2. The reaction propensities within a grid unit are

estimated in the same way as the well-stirred Gillespie algorithm [64]. For example, the pro-

pensity of a second-order reaction for the association of the species A and B, is computed as

kmeso nA nB/h2 where kmeso is the mesoscopic rate constant and nA and nB are the numbers of

molecules A and B in the particular grid unit. The difference in the versions of the spatial Gil-

lespie methods we use here are the different ways in which kmeso is computed.

Microscopic models for reacting particles

There are two common and related models for describing bimolecular reactions at the micro-

scopic level, we refer to them as the Smoluchowski model [24], and the λ-ρ model [25,26].

Both consider diffusing molecules as particles undergoing Brownian motion, but they differ

in how reactions are described. The Smoluchowski model represents reacting molecules as

solid spheres that can react when separated exactly by a distance σ. In this model a molecule

A will react with probability rate kmicro[B]σ, where [B]σ is the concentration of its reactive part-

ner B at the reactive distance σ. In the λ-ρ model, reacting molecules are considered point-

particles that react with probability rate λ when they are separated by a distance equal or less

than ρ.

Both formalisms provide expressions for the macroscopic rate constant k in terms of the

microscopic parameters for 3D systems [24,26]. In the reaction-limit where 4πσD>> kmicro

(Smoluchowski model) or D>> λ ρ2 (λ-ρ model), where D is the sum of the diffusion coeffi-

cients of A and B, k = kmicro and k = 4πρ3λ/3 in the Smoluchowski and λ-ρ models respectively.

In the opposite limit, when reactions take place immediately when the molecules meet (diffu-

sion-limit), the corresponding equations are k = 4πσD and k = 4πρD.
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In 2D there are no general closed form expressions relating macroscopic and microscopic

rate constants. However, in the reaction-limit, which in 2D requires D>> kmicro in the Smolu-

chowski model or D>> λρ2 in the λ-ρ model, macroscopic rate constants can be approxi-

mated as k = kmicro and k = πρ2λ, respectively. For diffusion-limited reactions macroscopic

rates are not well defined and depend on local concentrations [21].

Because it is easier to implement, we followed the λ-ρ formalism and treated particle-based

simulations based on this description as the ground truth. However, because the derivations of

kh and kc make use of the Smoluchowski model, to compare particle-based and RDME simula-

tions we take σ = ρ and used an approximate relation between λ and kmicro. To obtain this rela-

tion we formulated a microscopic rate equation for the probability rate that a molecule A

reacts when there is a B molecule within a distance ρ:

l ¼ kmicro½B�r; ð1Þ

and defining [B]ρ = 1/(πρ2) in 2D we obtain:

kmicro ¼ lpr
2: ð2Þ

The scale-dependent mesoscopic rate constant kh in a 2D system

To account for the fact that, in the RDME setting, the encounter time of two molecules, and

therefore, the reaction time, diverges as the grid element size decreases, Hellander et al. [19]

derived a mesoscopic rate constant kh using the condition that the mean association time for

two molecules diffusing in a specified domain in the RDME representation is equivalent to the

exact result for a microscopic description following the Smoluchowski approach.

The mean association time τmicro for two molecules diffusing on a domain with area A in

the microscopic formulation can be estimated from [18]. Assuming that one molecule diffuses

on a circular domain with reflective boundary conditions and radius R such that πR2 = A, and

the other is static at the center of the domain:

tmicro ¼
pR2

kmicro
1þ aFðnÞ½ � ð3Þ

with

F nð Þ ¼
lnð1=nÞ
ð1 � n2Þ

2
�

3 � n2

4ð1 � n2Þ
; ð4Þ

n ¼
r

R
; ð5Þ

where ρ is the reactive radius and the parameter α is defined as:

a ¼
kmicro

2pD
; ð6Þ

where D is the sum of the diffusion coefficients of the two molecules.

The mean association time in the mesoscopic formulation τmeso is estimated for a square

domain of length L with square grid units of length h [19] as:

tmeso ¼
L2

2pD
log

L
h

� �

þ
0:1951L2

4D
þ

L2

kmeso
: ð7Þ

kh is the mesoscopic rate constant that ensures that τmeso = τmicro provided that L2 = πR2. This
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leads to the following expression for kh:

kh ¼ kmicro 1þ
kmicro

D
G

� �� 1

ð8Þ

where

G ¼
1

2p
log

h
ffiffiffi
p
p

r

� �

�
1

4

3

2p
þ 0:1951

� �

: ð9Þ

Note that kh can be computed only if:

1þ
kmicro

D
G > 0: ð10Þ

This implies a lower bound on h:

h >
ffiffiffi
p
p

e
3þ2�0:1951p

4
� 2pD
kmicror: ð11Þ

When h is below this bound, there is not kh for which the equality τmeso = τmicro holds.

Mesoscopic dissociation rate khd

The mesoscopic dissociation rate constant is derived so that the steady state concentrations of

a reversible second-order reaction of a two-molecules system are the same in the mesoscopic

and microscopic formulations [20]. The steady state is characterized by the ratio of the average

unbound time to the total time, which can be computed as the ratio of the mean rebinding

time to the sum of the mean rebinding time and the mean dissociation time. Therefore, the

condition to be satisfied is:

trebindmeso

trebindmeso þ t
d
meso

¼
trebindmicro

trebindmicro þ t
d
micro

: ð12Þ

The mean rebinding time in the mesoscopic simulation τmeso
rebind was shown to be

L2/kmeso and a good approximation for the mean rebinding time in the microscopic formula-

tion τmicro
rebind in the 2D disk domain is L2/kmicro. The mean dissociation times in the meso-

scopic (τmeso
d) and microscopic (τmicro

d) formulations are respectively 1/kmeso
d and 1/kmicro

d.

After replacing kmeso and kmeso
d by kh and khd the equilibrium condition then reduces to:

kdh ¼ kdmicro
kh

kmicro
: ð13Þ

Mesoscopic concentration-dependent rate constant kc

The mesoscopic rate constant kc aims to provide accurate results in systems with high concen-

trations relative to the space discretization. In this case, several reacting molecules are often

found together in a grid element. Therefore, reaction rates are dominated by the time it takes

for molecules to react once they are in the same grid element and it is reasonable to ignore the

time for molecules to diffuse into the same grid unit.

Let us consider a grid element containing a single A molecule and one or more of its react-

ing partner B at a concentration [B]h. In this scenario we define kc via the mesoscopic rate

equation:

kc½B�h ¼ 1=tRc; ð14Þ
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where τRc is the mean reaction time. To account for the fact that at higher [B]h the mean-free-

path before reaction is shorter (and therefore, so is the reaction time), τRc is approximated as

the mean association time of two molecules diffusing on a domain with area Ac = h2/nB where

nB is the number of B molecules in the grid element. The time τRc is computed using Eq 3 with:

R ¼ RC ¼

ffiffiffiffiffi
Ac

p

r

: ð15Þ

Taking [B]h = h2/nB = 1/Ac and replacing in Eq 14 we get:

kc ¼ kmicro 1þ aF
r

Rc

� �� �� 1

; ð16Þ

where the function F and the constant α are defined in Eqs 4 and 6.

For crowded situations where Rc� ρ, we set kc = kmicro. Although technically there is not a

lower bound on h, for realistic simulations h should be greater than ρ.

In the more general case where there can be more than one A or B molecules in the grid ele-

ment we get:

Ac ¼
h2

maxðnA; nBÞ
; ð17Þ

where max(nA, nB) is the number of the most abundant reactant within the grid, and kc is com-

puted from Eq 16 using:

RC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

pmaxðnA; nBÞ

s

: ð18Þ

Mesoscopic dissociation rate kcd

We estimate the mesoscopic dissociation rate kcd in a similar way as described above for a two-

molecule system (Eqs 12 and 13) under the assumption that the pair of molecules diffuse on a

domain with area Ac:

kdc ¼ kdmicro
kc

kmicro
: ð19Þ

2D particle-based simulations

The simulations performed to benchmark our methods (Fig 2) were carried out using our own

custom written software. All particle-based polarity simulations (2D and 3D) were performed

using Smoldyn [22,23]. In all particle-based simulations used the λ-ρ approach for second-

order reactions. While this is not the default scheme in Smoldyn, which typically approximates

the original formulation of Smoluchowski model where reacting molecules always react upon

contact, the software also admits λ-ρ parameters as described below.

In these particle-based simulations space is continuous and time is discretized in intervals

Δt. Molecules are considered point particles and their Brownian motion is simulated with the

Euler-Maruyama method: If x(t), y(t) are the position coordinates of a given particle at time t
moving in a 2D domain, the position coordinates at time t + Δt are calculated as:

xðt þ DtÞ ¼ xðtÞ þ Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p
; ð20Þ

yðt þ DtÞ ¼ yðtÞ þ Zj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p
ð21Þ
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where Zi, and Zj are independent random numbers drawn from a standard normal distribu-

tion, and Dm is the diffusion coefficient. Every time step, the new positions of all the particles

are calculated.

Bimolecular reactions occur with probability P = 1-exp(-λ Δt) during a time interval Δt,
when two reactants are within a distance ρ (the reaction radius). This probability is approxi-

mated as P� λ Δt for small Δt. For simulations with Smoldyn we input to the software the

probability P.

First-order reactions in our custom made simulations (Fig 2), occur during a time interval

Δt with probability Pi = 1-exp(-ki Δt), which can be approximated as Pi = ki Δt for small Δt,
where ki is the reaction rate constant. For simulations performed with Smoldyn we only input

the rate constant.

In our custom-made simulations (Fig 2), when a dissociation event for two molecules in a

complex occurs, one molecule is set at the position previously occupied by the complex and

the second is placed at distance ρ + ε apart from the first. ε is a small number just to ensure

reactants will not be within a reactive distance the next simulation time step, and the orienta-

tion of the second molecule is chosen randomly from a uniform distribution. For simulations

with Smoldyn, dissociation reactions are handled with the software default routines, but we

specify the separation distance after dissociation as ρ + ε.

Simulations of simple reversible and irreversible reactions (Fig 2) were performed with

Δt� (0.1ρ)2/(4Dtot) with Dtot = 2Dm. This ensures a root mean squared displacement < 0.1ρ
over a simulation time-step resulting in accurate results at the expense of computational

resources. The parameters of such simulations are given in the captions of the corresponding

figures.

In the polarity simulations we used Δt = (ρ)2/(4Dcyto) after observing similar results with

preliminary simulations using smaller time steps. In this case, the root mean squared displace-

ment over a simulation time-step for cytosolic components is ρ, and it is less than ρ for mem-

brane components since Dcyto>> Dmemb.

The parameters for the polarity establishment model are given in Table 1. We present the

reaction parameters as microscopic rate constants kmicro. For second-order reactions, the input

to Smoldyn is the reaction probability P = λ Δt, and λ is related to kmicro as λ = kmicro/πρ2

according to Eq 2.

Reactions of the polarization model

GEFc! GEFm R-1a

GEFm! GEFc R-1b

GEFm + Cdc42Dm! GEFm + Cdc42T R-2a

Cdc42T! Cdc42Dm R-2b

Cdc42T-GEF + Cdc42Dm! Cdc42T-GEF + Cdc42T R-3

Cdc42T + GEFm! Cdc42T-GEF R-4a

Cdc42T-GEF! Cdc42T + GEFm R-4b

Cdc42Dc! Cdc42Dm R-5a

Cdc42Dm! Cdc42Dc R-5b

Cdc42T + GEFc! Cdc42T-GEF R-6

Cdc42T-GEF + Cdc42Dc! Cdc42T-GEF + Cdc42T R-7

In the above reactions, GEFc and GEFm are cytosolic and membrane bound GEF, respec-

tively. Cdc42Dc and Cdc42Dm are cytosolic and membrane-bound inactive Cdc42

(Cdc42-GDP), respectively. Cdc42T is membrane-bound active Cdc42 (Cdc42-GTP).

Cdc42T-GEF is the membrane-bound complex of Cdc42T and GEF.
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Rate constants for the 2D stochastic polarization model

The rate constants for the 2D model in Fig 3A, presented in Table 1, were adapted from [13]

which is a modified version of the model in [29]. That model is based on deterministic reac-

tion-diffusion equations and is therefore a macroscopic representation. On the other hand,

our stochastic simulations are parameterized with microscopic rate constants. For first-order

and second-order reaction-limited reactions, the macroscopic rate constants from the model

in [13] can be used directly in our simulations. However, for 2D diffusion-influenced reactions

the conversion is more complicated [16]. For the purposes of this work, we used the macro-

scopic rate constants in [13] as a first approximation for the microscopic parameters and

explored the effects of varying the rate constants over several orders of magnitude.

While the cell cytosol is a 3D compartment, in our 2D simulations the cytosol and the

membrane are juxtaposed two-dimensional domains. This is a computationally efficient repre-

sentation that neglects cytosolic gradients perpendicular to the membrane since, diffusion at

the cytosol is fast compared to the timescale of reactions. To obtain equivalent rate constants

for this purely 2D system we scaled cytosolic concentrations in the rate equations in [13] as:

½Cc�
2D
¼

Vc

Am
½Cc�

3D
; ð22Þ

where [Cc]
3D is the molar concentration of the cytosolic component Cc in the original equa-

tions, [Cc]
2D is the concentration of Cc in the 2D cytosol, Vc is the volume of the cell cytosol

and Am is the membrane area.

In [13], concentrations at the membrane are expressed in molar units assuming that the

membrane was a volumetric compartment with thickness Δz. We therefore also scaled concen-

trations of species at the membrane as:

½Cm�
2D
¼ Dz½Cm�

3D
; ð23Þ

where [Cm]2D is the concentration of the membrane-bound species Cm in units of mass/area,

and [Cm]3D is the molar concentration of Cm. From the scaled reaction-diffusion equations we

obtain the scaled 2D reaction rate constants k2D in terms of the rate constants k3D in [13]:

• Rate constants for first-order reactions that involve a transition from the cytosol to the mem-

brane (R-1a and R-5a) are scaled as:

k2D ¼ k3D DzAm

Vc
¼ k3DZ: ð24Þ

• Second-order rate constants for reactions taking place at the membrane (R-2a, R-3, R-4a)

are scaled as:

k2D ¼ k3D 1

Dz
: ð25Þ

• Second-order rate constants for reactions in which a cytosolic species reacts with a mem-

brane-bound species (R-6, R-7) are scaled as:

k2D ¼ k3D Am

Vc
: ð26Þ
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• The rate constants for first-order reactions in which the reactant and the product are bound

to the membrane (R-2b and R-4b) are unchanged.

• Reactions 1b and 5b are the reverse of reactions 1a and 5a respectively, and to obtain the 2D

rate constants it is necessary to multiply the corresponding volumetric rate constants by a

factor of 1/η. However, that factor cancels out with a factor of η present in the reaction-diffu-

sion equations used in [13,29], which takes into account the difference between the cytosol

volume and the effective volume of the membrane. Therefore, k1b and k5b are unchanged.

The resulting 2D rate constants are presented in Table 1 using molecules as the unit of mass

and μm as the unit of length.

We note one significant difference between the model parameters used here, and those

used by McClure et al. We used a smaller number of total Cdc42 molecules based on the work

of Watson et al. [65]. For our particle-based simulations, we used a smaller reaction radius ρ
than in our previous publication [16] to make this value closer to the size of the reacting pro-

teins. This modification reduced the rate of Cdc42 activation, affecting polarization. To com-

pensate for this effect, we increased the rate constants of Reactions 5a, 5b and 6 by a factor of

10.

3D particle-based simulations

3D simulations were performed using Smoldyn [22,23]. Membrane-bound species diffuse on

the surface of a sphere with radius R and cytosolic components diffuse within the interior of

the sphere. The parameter values used in the particle-based 3D simulations are given in

Table 1. They correspond with the 2D parameters except when they have been converted to

account for differences in the system dimensionality as described below.

The reaction rate constants were obtained from the 2D model. Rate constants for reactions

that take place exclusively in the membrane do not need to be modified. These are Reactions

1b, 2a, 2b, 3, 4a, 4b and 5b.

The rate constants for reactions in which a cytosolic species binds the membrane or a mem-

brane-bound molecule (Reactions 1a, 5a, 6, and 7) are estimated from the 2D model using the

scaling introduced in the Methods subsection “Rate constants for the 2D stochastic polariza-

tion model” ignoring the factor Δz. With that scaling these 3D rate constants are obtained by

multiplying the corresponding 2D rate constants by the factor Vc/Am.

Although we report the microscopic rate constant for all reactions, we parameterized sec-

ond-order reactions within Smoldyn, providing the probability of reaction P during a time-

step Δt when the separation of reactants is within ρ, approximated as P = λ Δt, for small λ Δt.
For reactions where both reactants are at the membrane, the relation between λ and kmicro is

the same as in the 2D simulations (Eq 2).

For second-order reactions where a cytosolic molecule reacts with a membrane-bound

molecule and the product is at the membrane (Reactions 6, 7) λ is expressed in terms of kmicro

as:

l ¼ kmicro
3

2pr3
: ð27Þ

This follows from an expression equivalent to Eq 1 for the probability rate that a membrane

bound molecule Am reacts with a cytosolic molecule Bc located within a distance ρ:

l ¼ kmicro½B
c�
r
; ð28Þ

where [Bc]ρ = 3/(2πρ3) is the concentration of a molecule in a half sphere of radius ρ.
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Quantification of clustering with H(r)
Before introducing the function H(r) let us consider some typical metrics to quantify mole-

cules aggregation. We first introduce the pair-wise molecule density n(r):

n rð Þ ¼
PN

i¼1
miðrÞ
N

; ð29Þ

where mi(r) Δr is the number of molecules between distance r and r + Δr from molecule i and

N is the total number of molecules. In a 2D domain with area A, if molecules are uniformly

distributed, n(r) should converge to nunif(r) = 2 π r (N-1) / A. The pair-wise correlation func-

tion g(r), commonly used in physics, can be computed as g(r) = n(r)/nunif(r), so that g(r) = 1 for

a uniform distribution of molecules. Alternatively a distribution of pair-wise distances P(r)
can be obtained normalizing n(r) by the N -1 comparisons involved in the calculation of each

mi(r) [31],

P rð Þ ¼
nðrÞ
N � 1

¼

PN
i¼1

miðrÞ
NðN � 1Þ

: ð30Þ

For a uniform distribution of molecules Punif(r) = 2 π r / A.

The H(r) function quantifies the difference between the cumulative distribution function
R r

0
Pðr0Þdr0 (sometimes referred to as the Ripley’s K function) from the system of interest and

the case with uniformly distributed molecules. In 2D, H(r) is defined as:

H rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
p

R r
0
Pðr0Þdr0

r

� r: ð31Þ

With this definition H(r) = 0 if the molecule distribution has no structure (uniformly dis-

tributed) since
R r

0
Punif ðr0Þdr0 ¼ pr2

A . Also, H(r)< 0 indicates dispersion and H(r) > 0 indicates

clustering or aggregation. Furthermore, the value of r where H(r) is maximum provides an

estimate of the cluster length-scale [30].

Mean squared displacement (MSD) and effective polarity cluster diffusivity

(Dpatch)

After a polarity cluster has formed, the distribution of active Cdc42 is translated to the center

of the domain to reduce border effects, and the centroid of the distribution is recorded every

1min. The centroid of the patch is calculated accounting for the toroidal geometry of the

domain resulting from the periodic boundary conditions. The mean squared displacement

(MSD) for a particular time interval Δti is computed from all centroid trajectories over time

intervals of length Δti from multiple simulations. We discarded centroid jumps over the

domain boundary by breaking trajectories containing jumps larger than a maximum jump

maxjump into sub-trajectories containing only jumps smaller than maxjump. We empirically set

maxjump = 6μm from visual inspection of centroid trajectories. Each MSD curve is obtained

from 50 simulations of 1hr each except for S6 Fig where we used 5 simulations. The effective

diffusivity of the polarity cluster (Dpatch) can be obtained by fitting the equation MSD(Δti) =

4Dpatch Δtiβ to the MSD data, where Δti is a particular time interval, and a reflects the degree of

anomalous diffusion. In practice we took logarithms to the data and fit the equation log(MSD

(Δti)) = log(4Dpatch) + β log(Δti) using only the first data points that showed a linear behavior

in a log-log plot. The MSD during the smallest interval computed (1min) reflects rapid varia-

tions in the position of the centroid within the polarity cluster and do not contribute to the

long scale displacement of the distribution. We therefore subtracted MSD(1min) to all MSD
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data before estimating Dpatch. MSDs in the 3D particle-based simulations were computed from

geodesic displacements of the cluster on the spherical surface.

Coefficient of variation of the distribution of active Cdc42T: CVpatch

CVpatch was computed as a weighted average over space of the local coefficient of variation

over time of the amount of Cdc42T. The average over space is weighted by the mean local

abundance of Cdc42T:

CVpatch ¼

PA
j CV

T
j hCdc42Tji

T

PA
j hCdc42Tji

T : ð32Þ

Here CVj
T is the mean divided by the standard deviation over a time interval T of the

amount of Cdc42T at location j.<Cdc42Tj>
T is the average amount of Cdc42T at location j

over a period of time T. The space average is computed over the whole simulation domain (A)

as Cdc42T is mainly located at the polarity site. The time averages are computed over a short

period T = 1 min to ensure the mean distribution of Cdc42T does not relocate significantly.

One estimation of CVpatch is obtained from a single simulation that has reached steady state

with samples taken every second to compute time averages. In Fig 6E and 6F we plotted the

mean and standard deviation (error bars) from 5 independent measurements of CVpatch.

Dwell times at the patch

To compute the dwell time of Cdc42 at the patch, we introduced in the model additional

tagged Cdc42 species (Cdc42m
tagged, Cdc42Ttagged, Cdc42Ttagged-GEF) that have the same

behavior as the untagged versions, except that if Cdc42m
tagged jumps from the membrane to

the cytosol it converts into untagged Cdc42Dc. Simulations are initialized with no tagged spe-

cies, and are run until the distribution of polarity factors reaches steady state. At this point,

Cdc42m, Cdc42T, Cdc42T-GEF are converted into the tagged versions in a region surrounding

the polarity patch and we record the decay in the amount of the tagged molecules. The same

idea is used to estimate the dwell time at the patch of GEF (introducing GEFm
tagged and

Cdc42T-GEFtagged). For Cdc42, we ignored the initial rapid decay coming from membrane

detachment of inactive Cdc42. The dwell time at the patch is obtained by fitting an exponential

decay function to the data. We reported the mean and standard deviation (error bars) from 10

or 30 independent measurements of the dwell time.

Supporting information

S1 Fig. Spatial Gillespie simulations of the reactions A+B! C and A+B$ C using the

mesoscopic rates kh and kc benchmarked against particle-based results for different

domain sizes. We present the mean total number of species A as a function of time. The

domain sizes are L = 0.4 μm (A, B), 0.8 μm (C, D), 1.6 μm (E, F), 3.2 μm (G, H) and 6.4 μm (I,

K). Initial molecule abundances are A = B = 2000, C = 0. In all the simulations, the degree of

diffusion control is λπρ2/Dtot = 50, with Dtot = 2D and D = 0.0025μm2/s, ρ = 0.005 μm and λ =

3183.1/s, with Dtot = 2D and D = 0.0025μm2/s. h = 5ρ and the number of grid elements is N2 =

(L/h)2. For the reversible reaction (B, D, F, H, K), the microscopic dissociation rate constant

kdmicro is 10/s.

(TIF)

S2 Fig. Fluctuations around the mean for spatial Gillespie simulations of the reactions A

+B! C and A+B$ C using the mesoscopic rates kh and kc are compared particle-based
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results. The mean as a function of time is shown in Fig 2 of the main text. We present the stan-

dard deviation of total number of species A as a function of time. (A-D) show spatial Gillespie

simulations using the mesoscopic rate kh with initial low abundance of reactants in (A,B)

(total A = total B = 5, total C = 0 at t = 0) and initial high abundance (total A = total B = 5000,

total C = 0 at t = 0) in (C-D). (E-H) show corresponding simulations to (A-D) but using the

mesoscopic rate kc. In all the simulations, the degree of diffusion control is λπρ2/Dtot = 50,

with Dtot = 2D and D = 0.0025μm2/s, ρ = 0.005 μm and λ = 3183.1/s. The size of the domain is

L = 1μm. For the reversible reaction, the microscopic dissociation rate constant kdmicro is 1/s in

panels (B, F), and 10/s in panels (D, H).

(TIF)

S3 Fig. Plots of H(r = 1.1μm) (left panels) and total active Cdc42 (right panels) as a func-

tion of GEF molecules for different values of various model parameters (k1a, k1b, k2a, k2b,

k3, k4a, k4b, k5a, k5b, k6). In each panel the rate constant in the title of the figure is varied as

indicated in the legend. For each parameter set, the simulations were initialized with an unpo-

larized random distribution with all GEF and Cdc42 in the cytosol and 10 min were simulated

to provide enough time for the system to polarize. Mean and standard deviation (error bars)

were calculated sampling every 30s for the last 5min of each simulation with data from 3 inde-

pendent simulations.

(TIF)

S4 Fig. Comparison of different metrics as a function of total GEF molecules for a “Low

mobility” model (from Fig 5C) a “High mobility” model (from Fig 5G). (A) Mean number

of total Cdc42T, (B) coefficient of variation (CV) of total Cdc42T, (C) mean number of

Cdc42T-GEF, (D) CV of Cdc42T-GEF.

(TIF)

S5 Fig. The rate constant k3 affects patch mobility when k4a = 0. (A) Effective diffusivity of

the patch (Dpatch) as a function of total available GEF in the updated model (including Reac-

tion 7) for k3 = 0 and k3 = 1 μm2/s. (B) Similar to (A) except with k3 = 0 and k3 = 1 μm2/s keep-

ing k4a = 0. (C) Effective diffusivity of the patch (Dpatch) as k3 is varied with 300 GEF

molecules. Error bars are standard errors from the least-squared fit used to compute Dpatch.

(TIF)

S6 Fig. Effective diffusivity of the polarity patch as a function of different parameters

(indicated in the x-axis). The panels on the left are for k4a = 2 μm2/s and for the ones on the

right k4a = 0. Simulations were run with different GEF abundances as indicated. Missing points

in each panel correspond to simulations that did not show robust polarization. Each data point

was obtained from 5 simulations of 3600s each as described in the Methods. Error bars are

standard errors from the least-squared fit used to compute Dpatch.

(TIF)

S1 Text. Descriptions for S3, S5 and S6 Figs.

(DOCX)
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