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Abstract: Trogocytosis is a mode of internalization of a part of a live cell by nibbling and is mech-
anistically distinct from phagocytosis, which implies internalization of a whole cell or a particle.
Trogocytosis has been demonstrated in a broad range of cell types in multicellular organisms and is
also known to be involved in a plethora of functions. In immune cells, trogocytosis is involved in
the “cross-dressing” between antigen presenting cells and T cells, and is thus considered to mediate
intercellular communication. On the other hand, trogocytosis has also been reported in a variety of
unicellular organisms including the protistan (protozoan) parasite Entamoeba histolytica. E. histolytica
ingests human T cell line by trogocytosis and acquires complement resistance and cross-dresses
major histocompatibility complex (MHC) class I on the cell surface. Furthermore, trogocytosis
and trogocytosis-like phenomena (nibbling of a live cell, not previously described as trogocytosis)
have also been reported in other parasitic protists such as Trichomonas, Plasmodium, Toxoplasma, and
free-living amoebae. Thus, trogocytosis is conserved in diverse eukaryotic supergroups as a means
of intercellular communication. It is depicting the universality of trogocytosis among eukaryotes.
In this review, we summarize our current understanding of trogocytosis in unicellular organisms,
including the history of its discovery, taxonomical distribution, roles, and molecular mechanisms.

Keywords: trogocytosis; phagocytosis; unicellular eukaryotes; Entamoeba histolytica; parasites;
cross-dressing; intercellular communication

1. Introduction

Phagocytosis is a fundamental cellular process in eukaryotes. It is generally ac-
cepted that the last eukaryotic common ancestor emerged by internalization of an α-
proteobacterium by a phagocytic archaeon, which leads to the mitochondrion, the multi-
functional powerhouse of eukaryotes. Furthermore, phagocytosis is believed to be opera-
tive in early unicellular eukaryotes as a mechanism for feeding and for defending against
predators [1]. Thus, phagocytosis is believed to have played significant roles during the
evolution of eukaryotes [2]. In this context, all eukaryotes are, or were, at least some
time in evolution, capable of bona fide phagocytosis. However, a majority of cells other
than professional phagocytes in multicellular organisms are apparently and presumed
to be non-phagocytic. A series of recent studies have revealed that phagocytosis is also
present in non-professional phagocytes, and is presumed to play a broader range of roles
in multicellular organisms.

While canonical phagocytosis is being demonstrated in a broad range of cell types
in multicellular organisms, a new mode of phagocytosis, called trogocytosis, has gained
attention. The word “trogo” in Greek means “to nibble” and implies ingestion by piecemeal,
which is distinct from phagocytosis, in which a cell internalizes a prey not as pieces, but
as a whole without disintegration. Besides morphological differences, the biological
role of trogocytosis also seems to be distinct from that of canonical phagocytosis. For
instance, trogocytosis has been demonstrated to be involved in a plethora of biological
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functions in multicellular eukaryotes, such as immune modulation, anti-cancer and anti-
pathogen activities, neural homeostasis, embryogenesis, and transmission and propagation
of infective agents. In immune cells, trogocytosis is involved in the “cross-dressing”
between antigen presenting cells and T cells, and is thus considered to serve for intercellular
communication. On the other hand, trogocytosis has been also reported in a variety of
unicellular organisms. Trogocytosis has been demonstrated in Entamoeba histolytica, the
protistan (protozoan) parasite, which ingests human T cell line by trogocytosis and acquires
complement resistance and cross-dresses major histocompatibility complex (MHC) class I
on the cell surface. Trogocytosis and trogocytosis-like phenomena (nibbling of a live cell,
not previously described as trogocytosis) have been also reported in other parasitic protists
such as Trichomonas, Plasmodium, Toxoplasma, and free-living amoebae. Thus, trogocytosis is
conserved in diverse eukaryotic supergroups as the means of intercellular communication,
thus, depicting the ubiquity among eukaryotes. In this review, we aim to show the ubiquity
of trogocytosis in eukaryotes. We summarize our current understanding of trogocytosis in
unicellular organisms, including history of discovery, taxonomical distribution, biological
roles, and molecular mechanisms of trogocytosis.

2. Initial Discovery of Cell Nibbling in Unicellular Eukaryotes

Probably, the first report that described trogocytosis by a unicellular organism was
made on a free-living amoeba, Amoeba proteus [3] (Table 1). In this report, A. proteus
demonstrated an unusual ingestion behavior: it attached a paramecium, but ingested only
half of the pray, leaving the other half uninternalized. Subsequently, it was also reported
that A. proteus partly ingested the ciliate Frontonia [4] (note that all evidence was provided
by illustrations, not photos). Later, fine microscopic images of cell nibbling of a live cell
by A. proteus and another free-living amoeba, Chaos carolinensis, were documented [5].
Trogocytosis was also demonstrated in the slime mould, Dictyostelium caveatum, which
internalized a sibling species Dictyostelium discoideum [6,7]. Since Dictyostelium can also
ingest bacteria as prey, internalization of D. discoideum by D. caveatum was presumed to play
a role other than nutrient acquisition. In parallel, Culbertson and colleagues conducted a
series of studies on the nibbling behavior of Naegleria fowleri (called N. aerobia then). In their
studies, trogocytosis-like events by two species (considered then as two morphologically
distinguishable strains of a species) of soil amoebas, N. fowleri HB-1 and Hartmannella-
Acanthamoeba A-1 [8,9], were described. When those amoebae were inoculated into guinea
pigs, it was demonstrated by pathological examination that the amoebae in the thrombi
internalized erythrocytes only halfway (i.e., trogocytosis) [9]. Later, trogocytosis of a mouse
embryonic cell by N. fowleri was also demonstrated by immunofluorescence assay and
electron microscopy [10]. In this report, the word “trogocytosis” was used for the first time.
Trogocytosis was also described in the enteric parasitic protist, E. histolytica, although the
phenomenon regained attention due to presumed contribution to pathogenesis, but had
not been referred as trogocytosis [11–15] until recently [16].

Table 1. Trogocytosis by unicellular eukaryotes. List of unicellular protozoa in which trogocytosis or
a trogocytosis-like process was demonstrated.

Trogocyte Life Style Life Cycle Trogocytosis
Target References

Amoeba proteus free-living trophozoite
ciliate

(Paramecium,
Frontonia)

[3,4]

Chaos carolinensis free-living trophozoite ciliate
(Blapharisma) [5]

Dictyostelium
caveatum free-living trophozoite

other
Dictyosterium

(D. discoideum)
[6,7]
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Table 1. Cont.

Trogocyte Life Style Life Cycle Trogocytosis
Target References

Naegleria fowleri
free-

living/parasititc
(extracellular)

trophozoite mammalian cell [8–10]

Harmannella-
Acanthamoeba

free-
living/parasititc

(extracellular)
trophozoite mammalian cell [8,9]

Entamoeba
histolyca

extracellular
parasite

(intestine)
trophozoite mammalian cell [16,17]

Teichomonas
vaginalis

extracellular
parasite

(urogenital tract)
trophozoite mammalian cell [18,19]

Plamodium
falciparum

intracellular
parasite

(erythrocyte)

erythtocytic
(trophozoite)

parasitizing
erythrocyte [20–23]

Toxoplasma gondii
intracellular

parasite
(nucleated cells)

tachyzoites;
bardizoites

parasitizing
mammalian cell [24]

3. General Role of Trogocytosis in Eukaryotes

Several biological roles of trogocytosis have been experimentally demonstrated in
unicellular eukaryotes, while other roles were only suggested: feeding/nutrient acquisi-
tion, defense/self-protection, pathogenicity, self-nonself discrimination, and intercellular
communication. Among these roles, trogocytosis (or trogocytosis-like process) is evidently
involved in the three former functions in many protozoa. Also, intercellular communication
was demonstrated between E. histolytica and human cells. Self-nonself discrimination was
experimentally shown in a Dictyostelium species, however, the molecular mechanism is not
fully elucidated.

3.1. Feeding/Nutrient Acquisition

The internalized preys can be used as nutrient source in both free-living and parasitic
amoebas. Several studies demonstrated degradation of ingested materials [3,4,25–29].
However, a conundrum remains unsolved: what is the advantage of trogocytosis, i.e.,
partial ingestion of the prey? Possible reasons include thrift: a less amount of membrane
(and thus lipids) and energy are used for trogocytosis than phagocytosis. This is quite
against intuition because trogocytosis of target cells such as Paramecium, which has firm
surface cytoskeleton composed of epiplasmin and actin, and surface cilia connected to
the cytoskeleton [30–32], requires high energy and is not energetically economical. It
is also of note that apoptotic cells are less elastic than live cells [33]. Another possible
advantage of trogocytosis over phagocytosis is that trogocytosis allows selective acquisition
of components such as membranes and exclusion of toxic substances such as oxygen and
nitrogen radicals in phagosomes from professional phagocytes.

3.2. Pathogenicity

Trogocytosis of unicellular organisms has been often studied in the context of pathogenic-
ity. Trogocytosis is involved in pathogenicity and virulence in at least three ways: 1. direct
killing of target cells for cell and tissue damage; 2. elimination of immune cells; 3. gen-
eration of niche for symbiosis and parasitism; and 4. acquisition of host molecules for
mimicry (see Section 3.4). It has been described in many free-living and parasitic protists
such as Naegleria, Hartmannella-Acanthamoeba, and Entamoeba that trogocytosis was clearly
implicated in virulence mechanisms [8,9,13,16]. The involvement of proteases in the inter-
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section of trogocytosis and pathogenicity was shown in E. histolytica. Trogocytosis of live
Jurkat cells by E. histolytica, but not phagocytosis of dead Jurkat cells, was inhibited by a
cysteine protease inhibitor E-64 [34]. Trogocytosis of Trichomonas vaginalis trophozoite by a
neutrophil was also inhibited by an elastase inhibitor, AEBSF, while the inhibitor did not
affect phagocytosis of the dead parasite [35]. In both organisms, proteases are involved in
host cell degradation and tissue destruction [36–41]. Furthermore, contribution of proteases
to pathogenicity was also demonstrated in Naegleria and Acanthamoeba [42–45]. It needs to
be elucidated in those organisms whether protease(s) are also involved in trogocytosis per
se. Furthermore, it is necessary to elucidate how proteases are involved in trogocytosis:
surface receptor processing, inflammasome formation, and downstream signaling.

3.3. Self-Nonself Discrimination

Self-nonself discrimination is often used in the context of immune recognition and
immunological tolerance. However, there is also a significant numbers of cases in which the
term was used in a broader sense with the representative case being cannibalism between
close species of the free-living eukaryotes [46–49]. Trogocytosis has been suggested to
play a role in self-nonself discrimination in the social amoeba Dictyostelid species. They
are known to generate multicellular fruiting body under starvation conditions. When
two different species are mixed, each species is segregated from each other and forms
an independent fruiting body. However, in case where D. caveatum was mixed with
D. discoideum, only the fruiting body of D. caveatum was formed [6] as D. caveatum ingested
and killed D. discoideum by trogo- (and phago-) cytosis [6,7]. D. caveatum also trogocytosed
themselves, suggesting that self-nonself discrimination mechanisms were selectively lost in
this species [50]. The gene involved in self-recognition was identified in Dictyostelid [51,52].
Dictyostelium-specific polymorphic (among D. discoideum strains) transmembrane proteins,
TgrB1/TgrC1 (Tgr = Tiger, Transmembrane, IPT, IG, E-set, Repeat protein), serve as a
ligand-receptor set unique to each strain [52,53]. Importantly, the TgrB1/TgrC1 system
is conserved in a limited group of Dictyostelium species, and neither of the proteins is
conserved in D. caveatum [54]. Although further study is necessary to better understand
the role of trogocytosis per se in the potential self-nonself discrimination mechanisms,
D. caveatum is a unique example to understand the role of trogocytosis in kin discrimination.
Kin discrimination of Entamoeba was also reported, however, neither responsible genes for
self-recognition nor its relationship with trogocytosis has been identified [55].

3.4. Intercellular Communication

It has been demonstrated in immune cells that phagocytes receive surface proteins
from target cells by trogocytosis, which are subsequently displayed on the surface of the
phagocytes. This phenomenon is called cross-dressing and is known in a broad range
of cell type pairs including natural killer (NK) cells, basophils, and T cells expressing an
artificial chimeric antigen receptor (CAR) (CAR T cells) [17,56–58]. NK cells are known
to dress MHC II, which is derived from dendritic cells (DC), and natural killer group 2
membrane D ligand (NKG2DL) from T cell lymphoma cells. As NK cells do not express
co-stimulatory molecules necessary for MHC II antigen presentation, the removal of MHC
II from DC and cross-dressing on NK cells causes reduction of the MHC II on DC and
suppresses antigen presentation by DC [17]. NKG2DL on T cell lymphoma cell stimulates
NKG2D on the NK cell to activate effector activity, leading to killing of T cell lymphoma
cells by activated NK cells. NK cells cross-dressing NKG2DL derived from T cell lym-
phoma cells are killed by other NK cells [56]. This may be considered as one of the escape
mechanisms of T cell lymphoma. Basophils were also demonstrated to acquire MHC II
from DC by trogocytosis. Basophils then conducts antigen presentation to naïve CD4+ T
cells and also provides IL-4 to promote differentiation into Th2 cells [57]. This Th2 reaction
is considered to be involved in basophil-mediated allergy. Finally, CAR T cells receive
CD19, a B cell antigen, from B cell lymphoma cells by trogocytosis and cross-dress CD19
on CAR T cells [58]. This cross-dressing of CD19 on CAR T cells causes fratricide of CAR
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T cells and reduction of CD19 on the B lymphoma cells, which eventually gives rise to
tumor relapse. It was demonstrated that E. histolytica acquired complement resistance
via trogocytosis of Jurkat T cells. Importantly, complement resistance was not gained by
phagocytosis of dead cells [59]. It has been demonstrated in Plasmodium falciparum, that
complement resistance is achieved by acquisition of complement inhibitory molecules
CD55 and CD59 on the parasite or infected erythrocytes [60]. This suggests that E. histolytica
also acquire CD55 and/or CD59. These molecules are GPI-anchored proteins. It was shown
that transfer of GPI-anchored protein appears to occur directly between live cells and via
exosomes [61–63]. Contrary, in E. histolytica, it was reported that the transfer of comple-
ment resistance depends on actin and direct contact between cells. It was also shown
that E. histolytica cross-dresses transmembrane domain-containing MHC I, derived from
Jurkat cells [59]. These observations may suggest a new paradigm wherein trogocytosis is
involved in immune evasion of eukaryotic pathogens [64].

4. Trogocytosis in Parasitic Protists

Among unicellular organisms, trogocytosis and trogocytosis-like processes have been
recently reported in a wide range of parasitic protists, including E. histolytica, Excavata
including Giardia intestinalis, and T. vaginalis and Apicomplexan (Plasmodium falciparum
and Toxoplasma gondii) (Table 1). If trogocytosis is a shared common mechanism among
eukaryotes, we might find similar cell nibbling behavior in other protists than those so
far reported. Among them, trogocytosis in E. histolytica is the best studied, and will be
described in a later Section 5.

4.1. Trichomonas Vaginalis

T. vaginalis mainly colonizes the vagina and causes one of the most common sexually
transmitted diseases worldwide, trichomoniasis [65]. T. vaginalis causes symptoms in
humans by its cytopathic effects on host cells, including phago- and trogocytosis, induction
of inflammation, and affecting microbiota [18,66]. T. vaginalis displays multiple morpho-
logically discernible developmental stages, among which the amoeboid form is capable of
phago- and trogocytosis [19,66]. It is of note that escape from complement attack is one
of the essential immune evasion mechanisms of T. vaginalis [67,68]. T. vaginalis acquires
CD59 from mouse erythrocytes by cross-dressing [69]. CD59 is a GPI-anchored mem-
brane protein and protects the cell from complement attack by disturbing the formation of
membrane attack complex. Although trogocytosis was not described per se, nibbling of
live genitourinary epithelial cells by T. vaginalis was demonstrated [70]. It is conceivable
that T. vaginalis utilizes trogocytosis for immune evasion by cross-dressing CD59 from
mouse erythrocytes.

4.2. Giardia Intestinalis

Another anaerobic parasitic protist is G. intestinalis, which resides in human and
animal small intestines. G. intestinalis was previously believed to internalize extracellular
nutrients and essential factors from the extracellular milieu exclusively via fluid-phase and
receptor-mediated endocytosis. Thus, it was considered that G. intestinalis lacks the capacity
to carry out phagocytosis, until it has been recently demonstrated [71]. It was shown that
G. intestinalis trophozoite generates pseudopods and forms phagocytic cup and phagosome
to internalize bacteria, yeasts, and polystyrene or carboxylated microspheres [71]. It was
demonstrated that internalization occurred through the entire cell surface, but, more
frequently through the ventral flagella’s exit, where clathrin is abundant and receptor
mediated endocytosis is operated [72]. Although neither nibbling nor trogocytosis per
se was reported, it is conceivable that G. intestinalis is also capable of trogocytosis or
trogocytosis-like internalization. Similar to E. histolytica and T. vaginalis, G. intestinalis is
also attacked by complement. However, the mechanisms of complement resistance in
G. intestinalis remains elusive [73,74].
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4.3. Trypanosoma and Leishmania

Trypanosoma and Leishmania belong to the Kinetoplastida in the super group of Exca-
vata, which Trichomonas and Giardia also belong to, and include a number of species that
can cause diseases in humans and animals. The Trypanosoma brucei group causes African
sleeping sickness in humans and nagana in cattle, while Trypanosoma cruzi causes Ameri-
can trypanosomiasis, Chagas’ disease, in humans, and is endemic in Central and South
America [75,76]. A complex of Leishmania species is responsible for visceral, cutaneous,
and mucocutaneous leishmaniasis in human worldwide [77–79]. It was demonstrated that
T. cruzi epimastigotes (the insect stage, living in the insect mid- and hindgut) and amastig-
otes (the intracellular mammalian stage, living in the host cell cytoplasm) [80–82] display
the cytostome-cytopharynx complex, which resembles elongated trogo- and phagosomes.
The cytostome-cytopharynx complex is a structure that extends from a position adjacent to
the flagellar pocket located at the root of the flagellum, to the distal end in the posterior
near the nuclear periphery in the cell. The cytostome-cytopharynx seems to be unique
to T. cruzi and has not been demonstrated in either T. brucei or Leishmania [20,21,83–85].
In T. brucei and Leishmania, endocytosis exclusively occurs at the flagellar pocket [21,22],
whereas in T. cruzi endocytosis occurs at both the flagellar pocket and the cytostome. Since
T. cruzi amastigotes reside in the host cell cytoplasm, amastigotes can directly internalize
the cytoplasmic components at the flagellar pocket. It was demonstrated that endocyto-
sis at the flagellar pocket is clathrin-dependent, whereas endocytosis at the cytostome is
clathrin-independent. However, it remains elusive if T. cruzi amastigotes can ingest the
host cell membranes and the membrane-bound organelles (e.g., ER, Golgi, endosomes, and
mitochondria) via the cytostome.

4.4. Plasmodium

Five Plasmodium species, which belong to the Apicomplexa, cause malaria in humans
and are responsible for over 0.45 million mortality annually among mostly children of
<5 years old in sub-Saharan Africa [86]. Intracellular malaria parasites are segregated from
the host cells by two layers of membranes [the parasitophorous vacuole (PV) membrane
derived from the host cell and the parasite’s plasma membrane] in the host nucleated and
anucleated cells. Therefore, malaria parasites are not expected to ingest host components.
However, there is a line of evidence suggesting the presence of phago- or trogocytosis-like
phenomena. The structure called the cytostome, which was also described in T. cruzi as
above, was well documented in the blood (erythrocytic)-stages of P. falciparum, which need
to utilize hemoglobin present in the erythrocyte cytosol, for growth [23,87,88]. P. falciparum
displays the cytostome during an actin-dependent invagination of the erythrocyte cyto-
plasm into the parasite. The cytostome morphologically resembles the structure that forms
during trogocytosis in other organisms and may be considered to be the structure related
to a trogocytosis-like process. However, a unique electron-dense ring structure localized
at the neck of the cytostomal invagination appears to be unique to Plasmodium, while a
narrow tube which connected the cytostome with the food vacuole, called cytopharynx,
may be functionally homologous to the tubular bridge found between a mature trogosome
and primary (newly formed) trogosome frequently found in E. histolytica. [84,89–92]. Note
that the term “trogosome” is defined as the endomembrane endosome-like system formed
by trogocytosis, equivalent to the phagosome formed by phagocytosis, but most likely com-
positionally different from phagosomes and generated in a distinct molecular mechanism
from phagosomes. It was shown that the cytostome-cytopharynx is eventually pinched
off from the PV membrane and the erythrocyte cytoplasmic content is internalized to be
decomposed in the food vacuole [91]. Since partial ingestion of live prey is the definition
of trogocytosis, the cytostome-cytopharynx related phenomenon resembles trogocytosis.
For instance, a subsequent association of Rab5A and PtdIns3P binding proteins (a FYVE
domain containing protein, FCP, and Atg18) with the food vacuole, in the course of cy-
tostome and trogosome formation, and inhibition of cytostome and trogosome formation
by a PI3K inhibitor [24,93–95] are shared mechanisms by both of the processes. It has not
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yet been demonstrated that P. falciparum is able to cross-dress a protein that originated from
the PV membrane.

4.5. Toxoplasma Gondii

Toxoplasma gondii, which also belongs to the Apicomplexa, causes toxoplasmosis, the
most widespread zoonotic parasitic disease in humans [96]. One-third of the world human
population is reported to be infected with T. gondii. T. gondii infection is often presented
without serious symptoms in healthy individuals; however in immunocompromised in-
dividuals, it potentially leads to lethal encephalitis [97]. Similar to Plasmodium, T. gondii
lives in the PV of nucleated cells. The endocytosis-like phenomenon, and a unique cellular
structure associated with the phenomenon, the micropore, which is a characteristic electron-
dense ring structure at the neck of the invagination in tachyzoites and bradyzoites [98], have
been well documented. Different from the cytostome of P. falciparum, T. gondii apparently
does not internalize the PV membrane by the micropore [98]. This observation was contra-
dicted by recent studies [99–101], in which it has been shown that the micropore can pinch
off the PV membrane. Furthermore, it was proposed that T. gondii exploits a trogocytosis-
like pathway to engulf host Rab small GTPases-marked Golgi or Golgi-associated vesicles,
which T. gondii closely resides to, in order to gain sphingolipids [102,103]. It was further
demonstrated that the Golgi-associated vesicles are first sequestered to the intervascular
network (IVN), the membrane tubules invaginated from the PV membrane, and subse-
quently internalized by the parasite [104]. The phenomenon represents one good example
of intercellular information exchange in intracellular protozoa. However, it needs to be
further validated at the molecular level whether the phenomenon in T. gondii is functionally
comparable to trogocytosis or a trogocytosis-like process because the event in T. gondii relies
on microtubules but not actin, which is different from trogocytosis in other organisms.

5. Molecular Mechanisms of Trogocytosis in E. histolytica

Among unicellular eukaryotes, trogocytosis have been best studied in E. histolytica
at the molecular level [16,29,34,105,106]. Proteins and lipids involved in trogocytosis are
largely conserved between human and E. histolytica. So far, only one protein, AGC kinase 1
(AGCK1) from E. histolytica, clearly differentiates trogocytosis and phagocytosis [105,107].
However, a series of events that exclusively and selectively occur in trogocytosis, but
not in phagocytosis, and the underlying mechanisms, need to be demonstrated to better
understand the physiological significance of trogocytosis. In this part, we divided the
sequential events that occur in trogocytosis into 6 major phases: (1) target recognition
via a receptor on the plasma membrane, (2) triggering of phosphatidylinositol (PtdIns)
and calcium signaling on the plasma membrane; (3) recruitment of effectors; (4) actin
rearrangement leading to eventual internalization of the target; (5) closure of the trogosome;
and (6) acidification and maturation of the trogosome. We summarized below the current
knowledge on the key events that occur during trogocytosis in E. histolytica (Figure 1 and
Table 2). Although we assume that a majority of the events are common for trogocytosis
and phagocytosis, this assumption needs to be experimentally proven in future (Table 2).
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Figure 1. Molecular mechanisms of trogocytosis in E. histolytica. Schematic representation of molecules
known or predicted to be involved in trogocytosis in E. histolytica. (a) Receptors that are presumed to
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be involved in the initiation of trogocytosis, by analogy to phagocytosis. A series of major events
and molecules involved at each step during the (b) early(from ligand binding to PIPs and Ca2+

signaling), (c) middle (from Rho activation to invagination), and (d) late (from closure to maturation
and acidification of the trogosome) phases of trogocytosis, respectively. Abbreviations: AK, atypical
kinase; Arp2/3 complex, actin related protein 2/3 complex; C2PK, C2 domain-containing protein
kinase; CaBP, calcium binding protein; DRP, dynamin-related protein; GPCR, G protein-coupled
receptor; GPI, glycosylphosphatidylinositol; IP3, inositol trisphosphate; IP4, inositol tetrakispho-
sphate; PI3K, phosphatidylinositol 3-kinase; PIPK, phosphatidylinositol phosphate kinase; PPV,
prephagosomal vacuole; PtdIns, phosphatidylinositol; RhoGDI, Rho guanine nucleotide dissociation
inhibitor; RhoGEF, Rho guanine nucleotide exchange factor; SNX, sorting nexin; SREHP, serine rich
Entamoeba histolytica protein.

Table 2. Proteins involved in trogocytosis and phagocytosis in E. histolytica. See Figure 1 for details.

Category Molecules Trogocytosis Phagocytosis

Adherence Surface Molecules Gal lectin

Gal lectin
Transmembranare kinases

SREHP/Ariel
EHI_098510
EhGPCR-1

Signaling

Phosphatidylinositol kinases PI3K PIPKI
PI3K

Protein kinases
C2PK

AGCK1
AGCK2

C2PK
AGCK2

AK1

Calcium binding proteins Unknown CaBP1/3/5

Formation Cytoskeletal proteins and
regulators actin

Actin
Formin

Arp2/3 complex
EhRho1
EhRacA

Closure Cytoskeletal proteins and
regulators Unknown Myosin IB

Maturation Phospholipids, vesicular
traffic-related proteins

PtdIns3P
Vps26 (retromer)

Atg8

PtdIns3P
Vps26 (retromer)

Atg8

5.1. Receptors and Downstream Signaling

Trogocytosis and phagocytosis are induced by ligand-receptor binding. In model organ-
isms, a variety of ligand-receptor systems involved in direct recognition of pathogens are
known, including pathogen-associated molecular patterns (PAMPs) and pattern-recognition
receptors (PRRs). It was well established that PRRs such as Dectin-1, Mincle, MCL, and
DC-SIGN trigger phagocytosis [108]. Alternatively, pathogens are first decorated with im-
munoglobulins or complement C3bi and subsequently recognized by Fc-γ and CR3 recep-
tor, respectively [109]. Apoptotic cells are also directly or indirectly (via phosphatidylserine-
binding proteins) recognized by receptors for externalized phosphatidylserine [110]. In
E. histolytica, surface receptors had been previously identified before the concept of trogo-
cytosis regained attention. Thus, in a strict sense, most of the receptors were demonstrated
to be involved in phagocytosis, but not trogocytosis per se. Such receptors include trans-
membrane kinases (TMKs) [TMKB3-96 (PATMK), TMKC-39, and TMKB1-9], serine rich
Entamoeba histolytica protein (SREHP)/Ariel, EHI_098501, and G protein-coupled receptor
(EhGPCR1) [111,112] (Figure 1a).

It was demonstrated that Gal/GalNAc-specific lectin (Gal lectin), composed of the
transmembrane domain-containing heavy subunit and the GPI-anchored light and inter-
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mediate subunits, is involved in trogocytosis using a specific antibody against the heavy
subunit [16]. However, Gal lectin is not specifically involved in trogocytosis, but also
phagocytosis. Gal lectin is involved in the adhesion to bacteria, erythrocytes, live CHO
cells, live and dead Jurkat cells, and mucin [16,113–119]. However, downstream signal-
ing directly elicited by the binding of a ligand to Gal/GalNAc specific lectin is not well
understood. The integrin-like domain in the 41 a.a.-long cytoplasmic region of the heavy
subunit is assumed to play a role in inside-out signaling and adherence to the target [120].
Besides, neither recognizable domains nor potential binding proteins have been identified
for the lectin, leaving no clue for downstream signaling events [121–123]. It was shown that
expression of GFP fused to the transmembrane domain and the C-terminal cytoplasmic
region of the heavy subunit caused dominant negative effect on the adhesion to CHO
cells, and liver abscess formation in the animal model. However, ingestion of erythro-
cytes, complement resistance, and cytolysis toward mammalian cells were unaffected [120],
which were counter-intuitive, but maybe indicative of attachment and downstream events
occur independently. Involvement of TMKs, SREHP/Ariel, EHI_098501, and EhGPCR1 in
trogocytosis is not demonstrated, while they were shown to be engaged in phagocytosis of
erythrocytes, mammalian cells, and bacteria [111,112].

We recently identified a potential trogocytosis-specific isotype of the heavy subunit of
the lectin. This protein is apparently involved in the trogocytosis of fresh human erythro-
cytes, and, to a lesser extent, phagocytosis of aged or damaged erythrocytes (unpublished).

5.2. Phosphatidylinositol, Calcium Signaling, and Protein Kinases

The role of phospholipids and calcium signaling on the plasma membrane in tro-
gocytosis and phagocytosis has been well documented [16,105,124–126]. Wortmannin,
a phosphatidylinositol 3-kinase (PI3K) inhibitor was shown to inhibit trogocytosis and
phagocytosis [16,124,127] (Figure 1b).

Neither the compartment of Ca2+ storage nor the mechanisms for Ca2+ release in
E. histolytica has been clearly demonstrated. However, it was shown that inositol 1,4,5-
trisphosphate (IP3) and inositol 1,3,4,5-tetrakisphosphate (IP4) likely regulate Ca2+ mobiliza-
tion [128,129]. These second messengers are generally generated from phosphatidylinositol
4,5-bisphosphate [PtdIns(4,5)P2] by the action of phospholipase C (PLC), although homo-
logues for PLC and IP3 receptor are lacking in E. histolytica [125,129]. It may be possible
that an unknown phospholipase other than PLC cleaves PtdIns(4,5)P2, or an alternative
pathway exists to generate IP3 and IP4 like what was reported in Dictyostelium [130]. The
absence of predictable orthologs for IP3 receptor is observed in several protozoa, and is
currently attributed to the low levels of conservation at the primary sequences, as shown in
Trypanosoma cruzi [131,132]. Later, it has been shown that Dictyostelium has an alternative
pathway to generate IP3 from Ins(1,3,4,5,6)P5 [133]. C2 domain containing protein kinase a
calcium-binding protein, C2PK, is translocated to the plasma membrane and binds to phos-
phatidylserine in a Ca2+ dependent manner [124]. C2PK subsequently recruits Ca2+ binding
protein 1 (CaBP1) and other effectors including CaBP3, CaBP5, atypical kinase 1 (AK1),
Arp2/3 complex, and myosin IB, which consist the “phagocytosis complex” [124,126,134].
Since both C2PK and CaBP1 are actin-binding proteins [124], calcium signaling plays a
pivotal role in actin dynamics during trogocytosis and phagocytosis. The involvement of
C2PK in trogocytosis has been shown: expression of kinase dead C2PK caused defect in tro-
gocytosis and phagocytosis. It is conceivable to speculate a possibility that the components
of the phagocytosis complex may vary between trogocytosis and phagocytosis.

Among a number of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] bind-
ing proteins, AGCK1 was shown to be exclusively involved in trogocytosis [105,135]
(Figure 1c). AGCK1 and another isotype of AGCK, AGCK2, were identified by affinity pull
down using PtdIns(3,4,5)P3-immobilized beads in our attempt to isolate PtdIns(3,4,5)P3
binding proteins [105]. It was clearly demonstrated that AGCK1 was exclusively involved
in trogocytosis, but not phagocytosis, by reverse genetic studies in which expression of
AGCK1 or AGCK2 was specifically repressed by small antisense RNA-medicated tran-
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scriptional gene silencing, or when kinase dead mutants were expressed. In contrast to the
specific role of AGCK1 in trogocytosis, AGCK2 was shown to be involved in a broad range
of endocytic processes including fluid-phase endocytosis, trogocytosis, and phagocytosis.
AGCK1 and AGCK2 also showed distinct recruitment and localization profiles during tro-
gocytosis. Prior to trogocytosis, AGCK2 was localized at the attachment site of the plasma
membrane. Upon initiation of trogocytosis, AGCK2 was concentrated at the invagination
site in the plasma membrane proximal region. At the same time, AGCK1 was localized at
the tunnel structure that connected the partially ingested target cell and the newly formed
(not yet enclosed) trogosome (called the trogocytic tunnel). Generation of the trogocytic
tunnel structure appears to be the key event of trogocytosis. AGCKs are generally acti-
vated downstream of class I PI3K [136]. The E. histolytica genome encodes 24 AGCKs and
6 class I PI3Ks [125,137,138]. It is important in future studies to determine whether other
AGCKs are also specifically or universally involved in trogocytosis and phagocytosis,
and which class I PI3Ks activate such AGCKs. Furthermore, two Rho guanine nucleotide
exchange factor (RhoGEFs) and one formin domain containing protein were identified as
PtdIns(3,4,5)P3 binding proteins [135], which also reinforces the notion that PtdIns(3,4,5)P3
is involved in cytoskeleton reorganization (see below).

5.3. Cytoskeletal Reorganization via Rho Small GTPases

Rho small GTPases are known to play a pivotal role in actin cytoskeleton reorgani-
zation (Figure 1c) and may be key players to differentiate trogocytosis and phagocytosis.
In model organisms, it is known that three representative Rhos – RhoA, Rac, Cdc42,
and RhoGEF, which is activated via receptor signaling, are involved in the formation of
stress fiber, lamellipodia, and filopodia [139,140]. Lamellipodia formation is associated
with and is necessary for trogocytosis and phagocytosis. In human macrophages, it was
demonstrated that activation of RhoA, instead of Rac, enhanced nibbling (trogocytosis)
and reduced removal of necroptotic cells [141]. E. histolytica possesses 19 Rho small GT-
Pases. Although there are only limited studies on each Rho available, specific roles of
some isotypes were demonstrated. For example, EhRacA is involved in phagocytosis of
erythrocytes, but not in fluid phase endocytosis [127], whereas EhRacG is involved in
cytokinesis and uroid formation [142]. EhRho1 contributes to phagocytosis and formation
of membrane blebs [143,144]. Thus, it is conceivable that specific Rhos are differentially
involved in trogocytosis and phagocytosis in E. histolytica.

5.4. Closure of Trogosomes

To complete internalization of the prey, sealing of the trogocytic cup and pinching-off
of the newly formed trogosome is needed (Figure 1d). Generally, dynamin or BAR domain-
containing sorting nexin (SNX) is responsible in pinching-off of the plasma membrane
invagination. Dynamin-1 and LST4 (SNX9) were demonstrated during trogocytosis in
C. elegans [145]. E. histolytica possesses 4 dynamin-related proteins (Drps), two of which
are in the cytosol while the other two are in the nucleus [146]. While these two cytosolic
Drps are involved in mitosome fission, they may also be involved in trogosome pinch-off.
E. histolytica also possesses 30 BAR domain proteins. However, no SNX protein with dual
BAR and PX domains is present [29], leaving a potential involvement of BAR domain
proteins in trogosome formation an open question. It was previously shown that myosins
are involved in the closure of the phagosome in macrophages [147]. E. histolytica has a
single myosin, myosin IB, and its role in cooperation with CaBP3 in phagosome closure was
demonstrated [148]. In phagocytosis, CaBP1 recruits AK1, which further recruits Arp2/3
complex. The Arp2/3 complex binds to CaBP3, which is a myosin IB binding protein, in a
Ca2+ dependent manner. This series of events localizes myosin IB and CaBP3 at the site of
phagosome closure [148]. Thus, it is plausible that CaBP3 and myosin IB also play a similar
role in trogocytosis [148].
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5.5. Maturation of Trogosomes vs. Phagosomes

It is not well understood if molecules involved in the maturation of the trogosome differ
from those in phagosome maturation. Several key molecules are apparently shared in both
trogocytosis and phagocytosis, such as Vps26 (retromer), Atg8, and PtdIns3P [28,29,149,150]
(Figure 1d). It is worth noting that the prephagosomal vacuole (PPV) may be more closely
associated with phagocytosis than trogocytosis. PPV was first identified as a large vacuolar
compartment that emerged upon ingestion of human erythrocytes [26]. PPV contains
various hydrolases and fuses with the primary phagosome to deliver digestive proteins [26].
PPVs were more frequently observed when E. histolytica trophozoites were incubated with
dead mammalian cells to allow phagocytosis than when incubated with live cells (Nakada-
Tsukui, unpublished observation). However, the precise role of PPV in phagocytosis
remains undetermined. Cross-dressing between immune cells, described above, is observed
only when a live target cell is ingested by the recipient cell via trogocytosis [17,56–58].
During trogocytosis and cross presentation, membrane proteins that have been derived
from the host cell plasma membrane via trogocytosis, need to retain integrity and topology
to be properly cross presented on the recipient’s plasma membrane. In contrast, the content
of phagosomes cannot be selectively degraded. Thus, it is conceivable that the maturation
process differ between trogosomes and phagosomes.

It has been well established that a panel of hydrolases including proteases, peptidases,
and glycosidases are recruited to phagosomes [151–154]. However, it remains to be de-
termined if these hydrolases are specifically recruited to trogosomes vs. phagosomes. In
accordance with the premise mentioned above, it is probably so. It has been recently shown
that trogocytosis, but not phagocytosis, was inhibited by a cysteine protease inhibitor [34].
A similar observation was demonstrated in neutrophils, in which an elastase inhibitor se-
lectively inhibits trogocytosis [35]. It is not well understood how proteases are involved in
trogocytosis, other than degradation of ingested substances, and why inhibition of protease
activity selectively represses trogocytosis. Proteases may be involved in the deformation of
the prey, which is needed for trogocytosis.

5.6. Physiological Role of Trogocytosis in E. histolytica

E. histolytica exploits trogocytosis for multiple purposes. First, E. histolytica uses trogo-
cytosis for nutrients, presumably membrane lipids, from the host cells and other eukaryotic
prey. The advantages of trogocytosis for nutrient acquisition are described above (see
Section 3.1). Second, E. histolytica acquires complement resistance via trogocytosis, which
was demonstrated in an experiment using Jurkat T cells. Complement resistance was
not gained by phagocytosis of dead cells [59]. Although the molecule responsible for the
transfer of complement resistance remains unknown, dressing of MHC I, CD59 or another
complement inhibitory molecule is likely responsible for this phenomenon. In this context,
trogocytosis is integrated in parasitism, immune evasion, and pathogenesis. Finally, al-
though it remains unclear if trogocytosis is a measure of self-nonself discrimination, the
topic seems worth pursuing.

6. Conclusions and Future Perspective

As summarized in this review, trogocytosis is a widely conserved mechanism in
eukaryotes including free-living and parasitic protists. It is likely that trogocytosis will be
demonstrated in a broader range of eukaryotes and the functional diversity of trogocytosis
other than nutrient acquisition, pathogenicity, immunity, self-nonself discrimination, and
immune evasion, shall be demonstrated in life. The link between trogocytosis and self-
nonself discrimination discovered in free-living and parasitic eukaryotes has led us to
a key question: “what is the self?”. If trogocytosis and cross-dressing modifies the self
without a trace of change in the genome, the diversity of life on Earth, in the context we
currently understand through genetic information, is largely underestimated. Furthermore,
as trogocytosis and cross-dressing widens the spectrum and increases the flexibility of the
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self, organism-organism relationship, which also includes host-pathogen interactions, are
also largely affected by the trogocytosis-associated phenomena.

Although comparative genomics and proteomics are powerful tools to elucidate molec-
ular mechanisms of the ubiquitous core units of biological processes, central components of
phagocytosis ubiquitous in eukaryotes have not been identified with an exception of actin,
by phagosome proteomics of 5 eukaryotic organisms [155]. This important observation in-
dicates that the molecular evolution of trogocytosis cannot be elucidated only by multitaxa
comparison of orthologous genes known to be involved in trogocytosis. Such presumption
prompts us to investigate lineage-specific molecular mechanisms of trogocytosis in each
system based on the shared morphological and molecular annotation/definition of trogo-
cytosis. Once trogocytosis is demonstrated and mechanistically characterized in a broader
range of unicellular organisms including free-living protists, trogocytosis may gain full
attention as a ubiquitous mechanism to acquire molecules and associated information from
other organisms in the environment. Such paradigm shift has tremendous impact on our
understanding of eukaryote evolution.
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