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Abstract

The role of brassinosteroids in plant growth and development has been well-characterized in a number of plant species.
However, very little is known about the role of brassinosteroids in maize. Map-based cloning of a severe dwarf mutant in
maize revealed a nonsense mutation in an ortholog of a brassinosteroid C-6 oxidase, termed brd1, the gene encoding the
enzyme that catalyzes the final steps of brassinosteroid synthesis. Homozygous brd1–m1 maize plants have essentially no
internode elongation and exhibit no etiolation response when germinated in the dark. These phenotypes could be rescued
by exogenous application of brassinolide, confirming the molecular defect in the maize brd1-m1 mutant. The brd1-m1
mutant plants also display alterations in leaf and floral morphology. The meristem is not altered in size but there is evidence
for differences in the cellular structure of several tissues. The isolation of a maize mutant defective in brassinosteroid
synthesis will provide opportunities for the analysis of the role of brassinosteroids in this important crop system.
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Introduction

Manipulation of plant height and growth habits to adjust plant

architecture may allow for improved agronomic production in

crop plants, from biofuel applications to more efficient use of

available resources [1]. Gibberellins (GAs), a large group of cyclic

diterpene compounds that promote stem elongation, and brassi-

nosteroids (BRs), commonly occurring steroid hormones that

regulate multiple aspects of plant growth and development, are

two classes of hormones that alter plant architecture when

aberrations occur in their biosynthesis or signaling pathways

[1,2]. Mutations in GA-related genes are responsible for the semi-

dwarf phenotypes associated with the green revolution [3] and

dwarf or semi-dwarf phenotypes have potential as targets for

further agronomic improvement [1]. Consistent with the main

function of BRs in promoting cell elongation, mutants deficient in

brassinosteroid biosynthesis and signaling display various levels of

dwarfism [1]. BR biosynthesis and signaling pathways are well

established and several mutants from these pathways are

characterized in Arabidopsis, pea, tomato, and rice [4,5,6,7].

However, relatively little is known about the specific functional

role of brassinosteroids in maize [1].

More than 10 classical dwarf mutants have been described and

mapped in maize [8] including four mutants involved in GA

biosynthesis and signaling (an1, d8, d9, and Dwarf3) for which the

underlying genes have been identified [9,10,11]. Only one mutant

allele for a gene in the brassinosteroid synthesis pathway was

recently characterized [12]. Classical dwarf mutant plants nana

plant 1 carry a loss-of-function mutation in a DET2 homolog – a

gene in the BR biosynthesis pathway. Recently, two maize genes

involved in brassinosteroid synthesis were identified based on

homology to Arabidopsis genes [13,14]. Zmdwf4, homologous to

Arabidopsis dwf4, was shown to rescue Arabidopsis dwf4 mutants,

in transgenic experiments [13]. RNA interference experiments

with ZmDWF1, a homolog of Arabidopsis DWF1, showed that

maize plants deficient in ZmDWF1 exhibited severe dwarfism due

to aberrations in stem elongation, a phenotype characteristic to

mutants defective in brassinosteroid biosynthesis [14]. However,

no stable maize mutants in genes involved in brassinosteroid

biosynthesis and signaling have been identified and characterized.

One of the genes involved in the last steps of brassinosteroid

biosynthesis encodes brassinosteroid C-6 oxidase (brC-6 oxidase).

This gene has been cloned and corresponding mutants have been

characterized from tomato [15], pea [16], and rice [17,18]. The

Arabidopsis genome contains two different brC-6 oxidases and only

a double mutant displays the characteristic dwarf phenotype [19].

BrC-6 oxidases belong to a large family of cytochrome P450

proteins that include multiple proteins from brassinosteroid and

gibberellins biosynthesis pathways [20]. Mutant plants with inactive

brC-6 oxidases exhibit severe dwarfism due to almost non-existent

internodes, aberrations in both leaf sheaths and blades, and a

complete absence of etiolation response [15,16,17,18,19].

Here, we report the characterization of the maize mutant

defective in brassinosteroid biosynthesis and describe the maize

brd1 gene that encodes brC-6 oxidase, an enzyme involved in

brassinosteroid biosynthesis.
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Results and Discussion

Cloning and characterization of the brd1 gene in maize
EMS pollen treatment was used to create a mutagenized

population in the B73 genetic background [21]. During the

process of creating this population, a number of mutants with

interesting morphological abnormalities were noted. Plants from

several of these families were crossed to Mo17 in order to

generate mapping populations and the gross chromosomal

position was determined through quantitative SNP assays on

bulk-segregant pools [22]. One of the mutants, NM4089,

exhibited a severe dwarf (Figure 1A, Figure S1) phenotype with

gross alterations to leaf structure and to reproductive structures.

NM4089 mutant plants could be distinguished from their wild

type siblings as early as 10 days after planting and often exhibited

virtually no internode elongation throughout growth and

development. This mutation was mapped to maize chromosome

1 bin 10 by high-throughput bulk segregant analysis based on a

Sequenom SNP-typing approach [22]. Since the location of this

mutant did not correspond to the position of any known maize

gene with similar phenotypic effects, we pursued a positional

cloning approach to identify the allele responsible for this severe

dwarf phenotype.

To determine the precise location of the mutation, 509 mutant

plants were screened using insertion deletion polymorphism

markers (IDP) [23] from bin 10 of chromosome 1 and localized

the mutation to the 3 Mb region between markers umc2240 and

IDP7806 (Figure 1B, Table 1). Further screening of recombinant

individuals using CAPS assays or direct sequencing of B73 - Mo17

SNPs allowed mapping the mutation to a 90 kB region between

markers M4 and M5 (Figure 1B, Table 1). This region contains 4

predicted genes from the filtered gene set [24] (Figure 1C) and has

1 remaining recombination. Screening SNPs located closer to the

center of the 90 kB region produced no recombinants relative to

the mutant phenotype. Two of the predicted genes code for short

non-conserved proteins, one gene encodes fruktokinase, and the

fourth gene (GRMZM2G103773) encodes brassinosteroid C-6

oxidase. The exons from all four genes were sequenced in two

homozygous mutant individuals revealing a nonsense mutation in

the GRMZM2G103773 gene and no mutations in any other

exons within this region. This gene encodes a 465 amino acid

protein. The single base pair mutation in event NM4089 resulted

Figure 1. Mapping the maize brd1-m1 mutant. A Comparison of a gross morphology of a severe dwarf mutant brd1-m1 (on the right) and a wild
type maize plant (on the left). B Physical location of the mapped gene relative to the molecular markers used for mapping. M1 through M8 are
markers tightly linked to the gene (Table 1). Approximate genetic map distances between the outside markers and the mutation are shown. The star
designates the location of the mutation in brd1-m1 mapped between markers M4 and M5. Each line in the lower panel designates a particular
recombinant event, where Mo17 alleles are shown in blue and B73 alleles are shown in red. C Predicted genes in the region between markers M4 and
M5. The star indicates the location of the only mutation found in the coding regions of these predicted genes. D The predicted protein sequence
encoded by maize brd1 (GRMZM2G103773) gene. A nonsense mutation found in brd1-m1 leads to the synthesis of a truncated protein of only 165
amino acids long. A cyp450 domain is shown in gray.
doi:10.1371/journal.pone.0030798.g001

Maize Brassinosteroid C-6 Oxidase
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in the creation of a stop codon after amino acid 165 (Figures 1D,

2A). The resulting protein lacks the whole cyp450 domain and is

expected to be non-functional. Due to homology with a previously

characterized brassinosteroid-deficient dwarf gene in rice, the

GRMZM2G103773 gene was termed brd1 (brassinosteroid-deficient

dwarf1) with the mutant allele described as brd1-m1. The predicted

amino acid sequence encoded by maize brd1 is highly similar to the

previously reported proteins encoded by the Dwarf gene in tomato

(64% identity, 80% similarity) and brd1 gene in rice (85% identity,

92% similarity), and brC-6 oxidase I in Arabidopsis (58% identity,

76% similarity) over the majority of the coding sequence

(Figure 2A). These proteins encode brC-6 oxidase, an enzyme

that catalyzes the last steps of brassinosteroid biosynthesis and

belong to the family of cytochromes P450. This protein family

includes numerous proteins that are common among higher plants

and exhibit high structural similarity. Similar to rice [17,18], the

maize genome contains one gene coding for brC-6 oxidase, while

dicots pea [25] and Arabidopsis [19]) appear to have two different

brC-6 oxidase genes. The maize BRD1 protein sequence was

compared to other P450 proteins, to determine whether it can be

classified into the brC-6 ox group (cyp85 group) or other P450s

groups (Figure 2B). The phylogenetic relationships inferred from

protein sequences by neighbor-joining algorithm suggested that

the maize protein encoded by brd1 is more closely related to the

Arabidopsis, rice, and tomato BrC-6 ox proteins than to other

P450 genes, and it was designated CYP85A1 according to the

nomenclature of CYP450 superfamily [20].

The phenotype caused by a mutation in maize brd1 is
partially rescued by BR treatment

To confirm that the maize brd1-m1 mutant is deficient in active

brassinosteroids, brd1-m1 and wild type siblings were grown on MS

media and on MS media supplemented with 1026 M brassinolide.

It was difficult to grow maize plants in the agar media for long

periods of time. Therefore, the effects of brassinolide treatment

were evaluated for phenotypes that are manifested early in

development. When grown in the dark, wild type maize plants

exhibited a strong etiolation response that included epicotyl

elongation, regardless of brassinolide presence in the media. In

contrast, similar to rice and Arabidopsis mutants that have

deficiencies in BR biosynthesis or BR sensitivity [17,18,19], maize

brd1-m1 plants exhibited no etiolation response, when germinated

and grown in the dark, with complete absence of epicotyls or

internode elongation (Figure 3A, B). This phenotype could be

rescued by exogenous application of brassinolide as was shown

with at least fifteen mutant plants (Figure 3A, B). A CAPS

genotyping assay was used to confirm that these individuals were

homozygous brd1-m1 mutants despite the strong elongation

phenotype (Figure 3). Epicotyl length in mutant plants treated

with brassinolide was about 75% of that in wild type seedlings

treated with brassinolide (Figure 3A, B). All four classes were

significantly different from each other (t-test; p-value ,0.01).

Thus, supplementing with brassinolide resulted in a partial rescue

of the mutant de-etiolation phenotype, similar to results observed

for the brd1 mutants in rice [17,18].

Many of the BR biosynthetic genes, such as DWF4 and CPD,

exhibit decreased transcription levels in the presence of BRs and

increased transcription levels in loss-of-function BR signaling

mutants, suggesting that BR biosynthesis is negatively regulated by

the BRs [26,27]. The rice brd1 gene has been shown to be

negatively regulated by active brassinosteroids, such that individ-

uals with reduced levels of brassinosteroids exhibited elevated

transcript levels of brd1 [17]. The transcript level of brd1 was

investigated in several genotypes and treatments (Figure 3C). The

maize brd1-m1 plants exhibited substantially higher levels of brd1

transcripts compared to wild type siblings. This increase in brd1

transcripts in maize brd1-m1 mutant plants could be reduced by

exogenous application of brassinolide (Figure 3C). Therefore, the

maize brd1 gene is negatively regulated by brassinolide such that

high levels of brassinolide decrease its transcription level. These

data further suggest that maize brd1 is indeed involved in

brassinosteroid biosynthesis.

Maize brd1 is expressed in a variety of plant tissues
To further understand the location of BR biosynthesis in maize,

the transcript level for brd1 was assessed in six plant tissues using

qRT-PCR (Figure 4A). The gene was detected in all tissues

assessed but showed significant variation in transcript levels. The

level of expression in the leaf tissue was the highest: almost 3-fold

higher than in the embryo and immature ear and about 2-fold

higher than in endosperm, root and shoot apical meristem-

enriched tissue. The expression levels of maize brd1 in a wider

range of plant tissues were assessed using data from a maize

expression atlas (Figure 4B) [28]. Brd1 transcripts were detected in

all maize tissues and at all developmental stages analyzed, with

highest expression levels observed in anthers and in developing

leaf tissues. Recently, it has been shown that maize primary roots

are involved in production of BRs shortly after germination [29].

However, it is likely that the biosynthesis of active brassinosteroids

Table 1. Molecular markers used to map brd1 gene in maize.

Marker Position Marker Type Method of Detection # recombinants

umc2240 248,125,605 IDP PCR 17

M1 248,552,853 SNP Sequencing 15

M2 248,854,059 SNP HaeIII digest 11

M3 249,179,126 Present in M only PCR 5

M4 249,308,623 SNP HaeIII digest 1

M5 249,400,095 SNP Sequencing 1

M6 249,501,841 SNP Sequencing 1

M7 249,537,499 Present in M only PCR 1

M8 249,895,322 SNP Sequencing 1

IDP7806 251,157,750 IDP PCR 3

doi:10.1371/journal.pone.0030798.t001
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occurs in several plant organs. The preferential expression of

maize brd1 in the leaf tissues and the severe abnormal phenotype

of the leaf suggest that active brassinosteroids are synthesized in

the developing leaf.

Maize brd1-m1 mutants exhibit severe dwarfism and
other morphological abnormalities

The gross morphology of the mutant maize brd1-m1 plants is

shown in Figure 5A and Figure S1. Individuals that are

homozygous for the brd1-m1 mutation exhibited a severe but

somewhat variable dwarf phenotype. Mature brd1-m1 mutant

maize plants reached only about 20 cm in height and oftentimes

were even shorter (compared to .200 cm for wild type maize

plants) (Figure 5A, B). The total hieght of 40 brd1-m1 mutant

plants measured in late July (when wild-type silblings were

shedding pollen) varied between 7 and 39 cm (average 19 cm;

standard deviation 7 cm). brd1-m1 mutant plants failed to form

viable reproductive organs and have not demonstrated fertility in

field grown conditions. Strongly feminized inflorescences of

variable size were observed at the top of the plant (Figure 5A,

D). These feminized tassels ranged from 2 to 10 cm in length. Silks

from the tassel were commonly observed; however, we have never

observed tassels that have mature anthers or pollen. The

feminization of tassels is difficult to quantify as many of these

plants are twisted and rolled up and a substantial proportion of the

brd1-m1 mutant plants do not form observable reproductive

structures. There was essentially no internode elongation in the

maize brd1-m1 mutant plants, resulting in all leaves emerging from

same location on the stem (Figure 5A). The brd1-m1 mutant plants

exhibited the normal distichous alternate phyllotaxis and normal

number of leaves and continued to form new leaves throughout

the whole season, indicating that leaf initiation occurred normally

at the shoot apical meristem. Many aspects of the phenotypic

aberrations exhibited by maize brd1-m1 plants are similar to those

observed in rice brd1 mutants [17,18]. Interestingly, feminized

Figure 2. Maize brd1 gene encodes a cytochrome P450 protein. A Alignment of a portion of maize BRD1 with brC-6 oxidases from other
plants. B Phylogenetic relationships between a maize BRD1protein and other P450 proteins in maize and other plants. An unrooted tree was
constructed using the neighbor-joining method. Accession numbers are as follows: rice brd1 (AB084385), OsDwarf4 (Q5CCK3), At Dwarf (AB035868),
AtBRC-6 ox2 (NP_566852), Tomato Dwarf (U54770), At CPD (X87367), At Rot3 (AB008097), At Dwarf4 (AF044216), ZmDWF1 (AAS90832), ZmDwarf3
(U32579), barley dwarf3 (AF326277), At KAO1 (AF318500), At KAO2 (AF318501), ZmDWF4 (GRMZM2G065635), CPD Vigna (AF279252).
doi:10.1371/journal.pone.0030798.g002
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tassels were also observed in nana plant 1 (na1) maize mutant plants

[12] suggesting that brassinosteroids are involved in regulating

tassel development.

The leaves of maize brd1-m1 plants exhibited unusual

morphology with the leaf blade tissue frequently displaying

‘‘wave’’ patterns (Figure 5B). Leaf sheath and ligule appeared to

be smaller than in wild type plants. However, the sheath tissue is

quite variable in brd1-m1 mutants plants and is difficult to quantify

due to severe twisted phenotype of these plants. The auricle tissue

of the mutant leaves seemed to be enlarged (Figure 5E, F) and

failed to form a distinct border between the auricle and blade of

the leaf. These observations indicate that normal BR biosynthesis

is critical for normal differentiation of leaf tissues. The defect in

BR biosynthesis also affected the formation and development of

other organs. For example, root elongation was severely inhibited

in mutant plants (Figure 5G, H). The length of the main root in 14

day old brd1-m1 mutant seedlings (n = 14) was 10 cm on average,

ranging from 5 to 14 cm (standard deviation 3 cm), while the

length of the main root in 14 day old wild type seedlings (n = 30)

varied between 19 and 33 cm (average 26 cm, standard deviation

5 cm). These differences were statistically significant at p,0.001

(t-test). The number of ‘‘crown’’ roots was also severely reduced in

brd1-m1 mutant plants (3–6 in wild type 14 day old seedlings and

1–2 in brd1-m1 homozygous plants).

The cellular structure and developmental morphology were

examined histologically in both juvenile (two-week old) and adult

tissues in brd1-m1 and wild type maize plants. The shoot apical

meristems (SAM) showed no significant differences between wild-

type and mutant plants (Figure 6A, B). Cells directly under the

SAM lacked distinct nodal regions demarcated by divisional files of

cells between nodes (Figure 6C–F), similar to the observations

reported in rice brd1 mutants [17]. However, the aberrant

vasculature morphology seen in rice was not observed. The

abnormal cell files present in the divisional zones beneath the

SAM were also evident in longitudinal sections of juvenile

(Figure 6I, J) and adult leaf sheath tissues (Figure 6K, L).

In brd1-m1mutant maize plants, leaves were initiated at normal

intervals (Figure 6D) but frequently failed to properly wrap around

the stem as they developed (Figure 6G, H). In addition, although

mutant plants maintained distichous alternate phyllotaxis, trans-

verse sections of juvenile leaves revealed rotation in the plane of

the midrib (Figure 6G, H), giving seedlings a slightly twisted

appearance. Mutant plants also displayed diminished sheath

thickness (Figure 6K, L). Disrupted epidermal cell organization

and reduced elongation were apparent in imprints of adult adaxial

leaf blade surfaces (Figure 6M, N). Although reduced sheath

thickness and epidermal cell layer defects were similar to those of

rice brd1 mutants [17,18], leaf wrapping and plant rotation

abnormalities displayed by brd1-m1 mutants have not been

previously reported.

Developmental abnormalities exhibited by maize brd1-m1 mutants

are generally similar to mutant phenotypes described for brC-6

oxidase homologs in rice. Inhibition of cell elongation observed in

maize brd1-m1 plants is characteristic to Arabidopsis and rice

mutants for dwf4, cpd, and other genes involved in BR biosynthesis

pathways [1]. Moreover, similar phenotypic effects have been

observed in maize plants with reduced expression of ZmDWF1, a

maize homolog of DIM1/DWF1 [14]. The disruption of normal

differentiation of leaf tissues, specifically the disruption of the blade-

auricle border was not previously observed in other species.

Conclusions
This study describes isolation, positional cloning, and character-

ization of a BR-deficient mutant in maize. Maize brd1 is a homolog

encoding brC-6 oxidase, an enzyme that controls the last steps of

brassinosteroid biosynthesis. Several lines of evidence suggest that

the observed dwarf phenotype in event NM4089 is indeed caused by

Figure 3. Supplementing the growth media with 1026 M
brassinolide (BL) partially rescues the brd1 –m1 phenotype in
maize. Plants were germinated and grown in the darkness on MS
medium with or without 1026 M brassinolide. At 12 days after planting
the seedlings were genotyped and wild type (+/+) and mutant (2/2)
plants were identified. A brd1-m1 plants grown on media supplement-
ed with brassinolide show epicotyl elongation, while mutant plants
grown without brassinolide fail to show etiolation response. Arrows
indicate the positions of the internodes. B Epicotyl length was
measured in 12 day old seedlings germinated and grown in the
darkness. The results are presented as mean values +/2 standard
deviation from four to eight plants. All of the groups exhibit statistically
significant differences at p,0.01 or less (t-test). Number of plants in
each category is shown above each of the columns. C qRT-PCR analysis
of the brd1 expression level. The expression level of brd1 was
normalized to the expression of the house-keeping mez2 gene and
shown relative to the expression of the wild type plants grown without
brassinolide. No RT controls were all negative (data not shown). The
difference between the brd1 expression in mutant plants grown
without brassinolide supplement and all other growth conditions is
statistically significant at p,0.001 (t-test). The data are presented as
mean values +/2 standard deviation from three samples for each
growth condition.
doi:10.1371/journal.pone.0030798.g003
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a mutation in GRMZM2G103773 (brd1), a maize homolog for brC-

6 oxidase that is involved in the BR biosynthesis. First, this gene is

one of only four predicted genes located in the 90 kb region, to

which the mutation was localized by positional cloning. Second,

GRMZM2G103773 is the only one of these four genes that contains

a mutation in its coding region. Third, maize BRD1 encoded by

GRMZM2G103773 is homologous to brC-6 oxidases from other

plant species. Moreover, homozygous brd1-m1 maize plants exhibit a

severe dwarf phenotype, characteristic of brC-6 oxidase mutants in

other species. Fourth, the brd1-m1 phenotype is rescued by treatment

with exogenous brassinolide. Finally, brd1 expression in maize is

negatively regulated by BR levels. Therefore, our evidence suggests

that maize brd1 encodes brC-6 oxidase and the nonsense allele brd1-

m1 represents a null allele. Consistent with the function of

brassinosteroids in promoting cell elongation, brd1-m1 maize

mutants exhibit severe dwarfism and leaf structure aberrations at

the whole leaf and cellular levels. The phenotypic abnormalities of

maize brd1-m1 mutants are similar to those described for mutants in

brd1 homologs in Arabidopsis and rice suggesting that monocots and

dicots have similar BR biosynthetic pathways. Isolation of a maize

mutant defective in brassinosteroid synthesis will be important for

investigating the role of brassinosteroids in this important crop

system.

Materials and Methods

Developing mapping population and gene mapping
Plants were grown in the field of University of Minnesota Saint

Paul Agricultural Experimental Station (Saint Paul, MN). Maize

plants exhibiting dwarf phenotypes, including line NM4089 that

expressed severe dwarfism, were selected from mutant lines

created by EMS mutagenesis for a maize TILLING Project

[21]. F2 segregating populations were generated by crossing

NM4089 heterozygous plants (in a B73 genetic background) to a

Mo17 inbred line and then self-pollinating the resulting F1 plants.

Seeds segregating for the NM4089 mutation were grown using

standard greenhouse conditions (1:1 mix of autoclaved field soil

and MetroMix; 16 hours light and 8 hours dark; daytime

temperature of 30uC and night temperature of 22uC) and mutant

plants were identified 10–12 days after planting. This mutation

Figure 4. Expression pattern of maize brd1 gene in various plant tissues. A Relative expression levels of maize brd1 based on qRT-PCR
analysis. cDNA was synthesized from total RNA isolated from 14 days after pollination embryo (Emb) and endosperm (endo), immature ear (Imm ear),
leaf (14 day old seedling), shoot apical meristem-enriched tissue (SAM), and root (14 day old seedling) tissue. The expression level of brd1 was
normalized to the expression of the house-keeping mez2 gene and shown relative to the expression of the wild type plants grown without
brassinolide. Bars represent standard deviation values. B Expression levels of Zmbrd1 in various plant tissues based on Maize Expression Atlas [28].
doi:10.1371/journal.pone.0030798.g004

Maize Brassinosteroid C-6 Oxidase
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was initially mapped to a chromosomal bin in a high-throughput

bulk segregant analysis using a Sequenom platform [22].

Subsequently, a variety of Indel polymorphisms (IDP; [23]) and

SNP markers were used for fine-mapping (Table 1 and Table S1).

Polymerase chain reactions were performed using Qiagen Hot

Start Taq Polymerase according to manufacturer’s instructions

(Qiagen, CA USA). PCR products were either run on a gel to

observe size polymorphism or purified by Qiagen PCR purifica-

tion kit (Qiagen) for sequencing or restriction analysis. Sequencing

was performed by the Biomedical Genomics Center at the

University of Minnesota. Due to the nature of mutation in the

maize brd1 gene, the brd1-m1 allele could be distinguished from

wild type using a CAPS assay with a BfaI restriction enzyme.

RNA isolation, cDNA synthesis, and quantitative RT-PCR
(qRT-PCR)

For maize brd1 gene expression profiling, plant tissues were

ground in liquid nitrogen and RNAs were extracted using Trizol

reagent according to the manufacturer’s instructions (Invitrogen

Corp., Carlsbad CA) and purified using the RNeasy kit, according

to the manufacturer’s instructions (Qiagen Corp., Valencia, CA).

The quality and quantity of all purified RNA samples were

assessed using agarose gel electrophoresis and the Nanodrop

spectrophotometer (Thermo Scientific, Wilmington, DE). The

samples collected included the following tissues: (i) shoot apical

meristem-enriched tissue in 14 day-old seedlings, (ii) leaf of 14 day-

old seedlings, (iii) embryo (14 days after pollination), (iv)

endosperm (14 days after pollination), (v) root of 14 day-old

seedlings, and (vi) immature ear (approximately 7 cm in length)

tissues. One mg of total RNA was treated with DNAse I (Qiagen,

CA) and used for cDNA synthesis using Invitrogen M-MLV

reverse transcriptase (Invitrogen, CA) according to manufacturer’s

instructions and was diluted 1:5 for use in qRT-PCR experiments.

Primers for the maize brd1 gene (Table S1) and two control genes

(GAPC, Gene ID 542367, and mez2, Gene ID 542659) were

designed using Primer 3.0 software [30]. qPCR reactions were

performed using SYBR Green I (Bio-Rad, CA, USA) incorpora-

tion, according to manufacturer’s recommendations. For each

tissue sample and each genotype, three biological replicates were

performed with tissue from three individual plants pooled for each

replicate. Three technical replicate qPCR reactions were per-

formed for each of the samples. Each primer pair was tested for

PCR efficiency using serial dilutions of pooled cDNA samples.

PCR conditions were optimized to at least 90–95% efficiency and

amplification efficiency for each primer pair was calculated. The

relative expression levels in each sample were determined based on

the threshold cycle (Ct) value for each PCR reaction. A Ct mean

value and a standard error were obtained for three technical

replicates, normalized to the expression of control genes, GAPC,

and mez2, and compared between biological replicates. In all cases,

Ct mean values for individual biological replicates were similar

and they were combined to calculate mean Ct values for each

genotype-growing condition combination. A DCt value (difference

in number of cycles to reach a threshold) was calculated for all

samples relative to the wild type plants grown without brassinolide.

Fold differences (FDs) for a given primer combination were

calculated as (primer efficiency) DCt. Additional t-tests were

performed using three values, each representing the average of

the technical replicates for each genotype/growing condition

combination to assess the statistical significance of fold changes

between mutant and wild type seedlings in the presence and

absence of brassinolide.

Microscopy Analyses
For shoot apical meristem (SAM), stem, and developing leaf

images, homozygous brd1-m1 and wild type B73 plants were grown

in a growth chamber under standard conditions as described

above, and shoot apices were dissected from two-week old

seedlings. Shoot tissue was fixed, dehydrated, and embedded

according to [31]. Longitudinal and transverse 8 mm sections were

stained using toluidine blue O, deparaffinized, and imaged under

a light microscope. The same tissue preparation and imaging

procedure was followed for field-grown adult leaf sheath tissue.

Epidermal cell layer images of adult field-grown homozygous brd1-

m1 and B73 plants were obtained by light microscopy of super glue

(Krazy Glue, Columbus, OH) imprints of the adaxial leaf blade

surface.

Brassinosteroid supplementation experiments
Maize seeds segregating for the brd1-m1 mutation were

germinated and grown on 0.6% agarose plus Murashige-Skoog

medium with or without 1026 M brassinolide (BL; Sigma, WI,

Figure 5. Morphological characterization of zmbrd1-m1 mutant
plants. A Gross morphology of brd1-m1 mutant plants. B brd1-m1
mutants exhibit severe leaf structure abnormalities. An adult leaf from
the mutant plant (bottom) is compared to the adult leaf of the wild
type plant (top). C Variability in morphology of brd1-m1 mutant plants.
D brd1-m1 mutants develop feminized tassels. E–F brd1-m1 mutants (F)
exhibit abnormalities in auricle/ligular region of the leaf compared to
the wild type plants (E). Triangle arrows indicate the border between an
auricle and a blade. Adult leaves of the brd1-m1 mutant plants lack a
border between an auricle and a blade (F). G–H Root growth in brd1-
m1 mutants (G) is significantly impaired with almost no lateral root
growth present. Three brd1-m1 mutant plants (G) are compared to two
wild type seedlings (H). Seedlings segregating for brd1-m1 were
germinated and grown in the darkness for 14 days. Scale bars on all of
the pictures are 5 cm.
doi:10.1371/journal.pone.0030798.g005
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USA) at 30 C in the dark. For gene expression analysis, all

above ground tissues of 14-day old seedlings were ground in

liquid nitrogen for RNA extraction and cDNA synthesis. qRT-

PCR analysis was performed as describe above. Three

biological replicates were performed with tissue from three

individual plants pooled for each replicate. Three technical

replicate qPCR reactions were performed for each of the

samples.

Supporting Information

Figure S1 Variation in height of brd1-m1 mutant plants.
Mutant plants grown in the field exhibit variation in the height

from 7–15 cm to 30–40 cm. The pictures were taken in July.

(TIF)

Table S1 Primer sequences used in the study.

(XLSX)
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