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ABSTRACT
Gut microbiota and its association with cancer development/treatment has been intensively 
studied during the past several years. Currently, there is a growing interest toward next- 
generation probiotics (NGPs) as therapeutic agents that alter gut microbiota and impact on cancer 
development. In the present review we focus on three emerging NGPs, namely Faecalibacterium 
prausnitzii, Akkermansia muciniphila, and Bacteroides fragilis as their presence in the digestive tract 
can have an impact on cancer incidence. These NGPs enhance gastrointestinal immunity, maintain 
intestinal barrier integrity, produce beneficial metabolites, act against pathogens, improve immu-
notherapy efficacy, and reduce complications associated with chemotherapy and radiotherapy. 
Notably, the use of NGPs in cancer patients does not have a long history and, although their safety 
remains relatively undefined, recently published data has shown that they are non-toxigenic. 
Notwithstanding, A. muciniphila may promote colitis whereas enterotoxigenic B. fragilis stimulates 
chronic inflammation and participates in colorectal carcinogenesis. Nevertheless, the majority of 
B. fragilis strains provide a beneficial effect to the host, are non-toxigenic and considered as the best 
current NGP candidate. Overall, emerging studies indicate a beneficial role of these NGPs in the 
prevention of carcinogenesis and open new promising therapeutic options for cancer patients.
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Introduction

Gut microbiota-related aspects in cancer patients 
have been intensively analyzed in multiple studies. 
The link between gut microbiota imbalance (referred 
to as so called dysbiosis) and development of cancers 
has been documented. However, the bacterial gut 
microbiota itself is not only altered, but also its 
fungal part (known as mycobiota).1 Gut microbiota 
signatures may be different depending on the types 
of cancer. For instance, in the case of pancreatic 
cancer, oral microbiota dysbiosis (differential abun-
dance of Porphyromonas gingivalis, Fusobacterium, 
Neisseira elongata, Streptococcus mitis, Bacteroides, 
Lepotrichia, Grabulitacetlla adiacens, Aggregatibacter 
actinomycetemocomitans) and intrapancreatic 
microbiota changes (altered counts of 
Gammaproteobacteria, Fusobacterium, Escherichia 
coli, Bifidobacterium pseudolongum) hve been 

observed.2 Notably, certain bacteria and fungi may 
trigger the development of cancer via multiple 
mechanisms. For instance, Escherichia coli causes 
the over-proliferation of normal epithelial cells,3 

Enterococcus faecalis destroys DNA via free 
radicals4 and Helicobacter hepaticus, similarly as 
Trichosporon fungal genus, increases the production 
of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, 
TNF-α, and IFN-γ).5–7

Gut microbiota has been shown to impact 
anti-cancer treatment efficacy and patients’ qual-
ity of life. The microbiotome may also be used 
as noninvasive predictive biomarkers for early 
detection of cancers, for instance pancreatic can-
cer and hepatocellular carcinoma.8,9 There is 
a strong need to alter the composition of the 
gut microbiota and consequently to restore its 
balance to achieve better effects of multi-modal 
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anti-cancer treatments. Prebiotics, probiotics, 
synbiotics, postbiotics, and fecal microbiota 
transplantation are being used to modulate gut 
microbiota and provide beneficial effects.3,10 

Recently, Kaźmierczak-Siedlecka et al. described 
a randomized, double-blind and placebo- 
controlled study, where it was shown that 
a 4 week administration of a probiotic strain – 
Lactobacillus plantarum 299 v (in dose 2 × 
10^10 CFU daily) in cancer patients receiving 
home enteral nutrition, may improve the level of 
albumin and importantly reduce gastrointestinal 
symptoms which are complications caused by 
enteral nutrition.10

The usage of probiotics in many conditions 
has been intensively analyzed and it is quite 
well established. Notwithstanding, there is still 
a need to search for other therapeutic strategies 
for cancer patients.11 Therefore, the identifica-
tion of next-generation probiotics (NGPs) using 
next generation sequencing techniques and 
bioinformatics tools opens new options in the 
aforementioned context.11–13 Currently, data 
regarding NGPs and cancer patients remains 
undefined and limited.3 The definition of 
NGPs states that these are “live microorganisms 
identified on the basis of comparative micro-
biota analyses that, when administered in ade-
quate amounts, confer a health benefit on the 
host”.14 Notably, “traditional probiotic strains” 
were isolated from gut and traditional fermen-
ted foods. By contrast, NGPs have been recently 
isolated using new tools allowing isolation, 
identification, and modification of commensal 
bacterial species.3,14 According to recently pub-
lished data, NGPs groups include mainly 
Faecalibacterium prausnitzii, Bacteroides fragi-
lis, Akkermansia muciniphila, Prevotella copri, 
Bacteroides thetaiotaomicron, Christensenella 
minuta, and Parabacteroides goldsteinii.11,12,15 

However, most of them are not related to can-
cer/or their properties were not confirmed/ 
investigated yet in relation to the cancer phe-
notype. Therefore, in our present review, we 
focus only on three NGPs candidate; 
Faecalibacterium prausnitzii, Akkermansia 
municiphila, and Bacteroides fragilis due to 
their identified linkage to oncology. We 

describe the characteristics of these NGPs and 
discuss their possible administration, efficiency, 
and safety in cancers.

Faecalibacterium prausnitzii

F. prausnitzii is an anaerobic Gram-positive bac-
teria which belongs to the Firmicutes phylum and 
the family Ruminococcaceae.11,16 It represents 
more than 5% of the total bacterial population in 
healthy adults.17 F. prausnitzii ferments glucose 
and produces short-chain fatty acids (SCFAs), for-
mic acid as well as d-lactate11,18 and it is the most 
important butyrate-producing bacteria. Butyrate – 
a type of SCFAs – plays a significant role19,20 in 
part as a source of energy for colonocytes. 
Additionally, butyrate enhances epithelial barrier 
integrity and mucosal immunity.19,21 Butyrate 
might also regulate the gut-brain axis.22 

Moreover, butyrate regulates the expression of 
various genes through its function to inhibit indir-
ectly the deacetylation of histones; and for 
instance genes encoding lipids as well as those 
which are associated with inflammation, differen-
tiation, and apoptosis.23 Recently, it was assumed 
that also Oscillospira can produce all SCFAs 
(mainly) and it may be consider as a NGP 
candidate.24

F. prausnitzii has anti-inflammatory properties, 
which has been confirmed in colitis animal model 
studies.25,26 In Zhou et al., experimental colitis 
models were used to show that butyrate produced 
by F. prausnitzii maintains Th17/Treg balance pro-
viding anti-inflammatory effects.27 Moreover, 
F. prausnitzii ameliorates colorectal colitis through 
inhibiting histone deacetylase 1.27 Interestingly, not 
only does F. prausnitzii synthesized butyrate have 
anti-inflammatory properties, but a 15 kDa protein 
also mediates this effect.28

The abundance of F. prausnitzii depends on 
nutritional factors. In Verhoog et al., a systematic 
review including 29 trials and 1444 participants (5 
trials regarding A. muciniphila and 19 – 
F. prausnitzii), it was shown that some dietary 
factors may modulate the abundance of these bac-
terial species.29 Mainly, a caloric restriction diet 
and supplementation with pomegranate extract, 
resveratrol, sodium butyrate, polydextrose, yeast 
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fermentate, and inulin increased the abundance of 
A. muciniphila; in case of F. prausnitzii the abun-
dance was modulated predominantly via 
prebiotics.29 Inulin can increase the level of 
F. prausnitzii.16,30 The administration of Xylo- 
oligosaccharide also positively affects the abun-
dance of Faecalibacterium sp. and Akkermansia 
sp.16

Lopez-Siles et al. have shown that the abundance 
of F. prausnitzii is lower in patients with colorectal 
cancer, Crohn’s disease, and ulcerative colitis in 
comparison to healthy controls (P < .001).31 

Similarly, the reduced counts of F. prausnitzii in 
colorectal cancer patients was also confirmed in 
Palmisano et al. study.32

Recently, the association between non-small-cell 
lung cancer (NSCLC) and butyrate-producing bac-
teria was also found.33 This study included 30 
NSCLC patients and 30 healthy participants. In 
NSCLC group the reduced amount of butyrate- 
producing bacteria, such as F. prausnitzii, 
Clostridium leptum, Clostridial cluster I, 
Ruminococcus spp., Clostridial Cluster XIVa, and 
Roseburia spp. was noted.33 However, the mechan-
isms by which they may affect the development of 
NSCLC has not been investigated yet.

Gastrointestinal mucositis affects around 50% of 
cancer patients and is a complication of chemother-
apy and radiotherapy.34 In a systematic review by 
Touchefeu et al. it was revealed that alterations of 
gut microbiota during anti-cancer treatment can 
occur. The decrease of Bifidobacterium, 
Clostridium cluster XIVa, F. prausnitzii and eleva-
tion of Enterobacteriaceae and Bacteroides were 
noted.34 These alterations contributed to occur-
rence of gastrointestinal mucositis and diarrhea. 
The administration of probiotics and thus restora-
tion of gut microbial homeostasis may reduce the 
risk of these complications. Interestingly, Lapiere 
et al. assessed whether F. prausnitzii prevents the 
acute breakdown of the colonic epithelial barrier in 
a preclinical model of pelvic radiation disease.35 

After radiotherapy (even more than 10 years) 
patients may develop diarrhea, constipation, 
abdominal pain, and bloating. These symptoms 
were recognized in 2010 and called pelvic radiation 
disease. In Lapiere et al. study, rats [male SD 
(Sprague Dawley), Janvier SA, Le Genest St Isle, 
France weight: 250–300 g] were locally irradiated 

at 29 Gray (dose of irradiation) in the colon. They 
received F. prausnitzii strain A2-165 (DSMZ collec-
tion, Braunschweig, Germany, DSM No 17677) 
3 days before the irradiation and up to 3 day after 
that. It was noted that the administration of this 
NGP limited radiation-induced para-cellular 
hyperpermeability and the infiltration of neutro-
phils (MPO+ cells) in the colonic mucosa. The 
increase in IL-18 production by colonic crypt 
epithelial cells was also observed. Summarizing, 
these striking results suggest that F. prausnitzii 
may protect the epithelial colonic barrier from 
irradiation.35

Recently, Ma et al. also showed that F. prausnitzii 
suppressed breast cancer (BC) cell growth via inhi-
biting the IL-6/STAT3 pathway.36 The abundance 
of Faecalibacterium was reduced in breast cancer 
patients and it was negatively correlated with var-
ious phosphorylcholines. In this context, the gut 
microbiome may be considered as a new biomarker 
to detect breast cancer.36 Several studies in BC 
patients have shown that overweight and obesity 
women have a decrease in the total number of 
F. prausnitzii comparing patients of normal 
weight.37–39 On the other hand, obesity is an 
important risk factor for BC especially in postme-
nopausal women.40,41 Moreover, Goedert et al. 
showed that postmenopausal women with BC had 
altered fecal microbiota and lower alpha diversity.42 

Further, it has been demonstrated that a subset of 
microbes within the gastrointestinal tract (collec-
tively referred as estrobolome) influences estrogen 
metabolism and the balance of circulating and 
excreted hormone levels.43,44 Therefore, the intest-
inal microflora may affect the onset of breast cancer 
through estrogen-dependent signaling pathways.36 

Ma et al.36 showed that F. prausnitzii was decreased 
significantly in breast cancer women and it may be 
related to its development. It seems that 
Faecalibacterium and flora metabolites such as 
phosphorolcholine could be useful in breast cancer 
detection. In preclinical model, F. prausnitzii found 
to suppress the growth of breast cancer through the 
inhibition of IL-6/STAT3 pathway.36

Gut microbiota may be also used as a prognostic 
biomarker to assess overall survival (OS), as 
demonstrated by Wei et al.45 High abundance of 
F. prausnitzii was related to better OS in colorectal 
cancer patients after a surgical procedure; by 
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contrast, high counts of Bacteroides fragilis and 
Fusobacterium nucleatum were associated with 
worsened OS. Notwithstanding, not only the abun-
dance of a particular bacteria/fungi have been sig-
nificant in this context, but also the gut microbiota 
diversity. In Taur et al., a group of 80 patients 
undergoing allogenic hematopoietic stem cell 
transplantation (allo-HSCT) was divided into 3 
groups, i.e. presenting low, intermediate, and high 
level of gut microbiota diversity.46 It was shown 
that mortality outcomes were significantly worse 
in participants with lower intestinal diversity. 
Notably, OS at 3 years after an allo-HSCT proce-
dure was 36% for group with low microbial diver-
sity, 60% (intermediate), and 67% for high 
(P = .019, log-rank test).46 Therefore, these results 
suggest that maintaining an appropriate microbial 
diversity may prolong OS in patients receiving allo- 
HSCT.

Akkermansia muciniphila

A. muciniphila belongs to the Verrucomicrobia 
phylum. It is Gram-negative and oval-shaped bac-
teria which was discovered as the first member in 
the genus Akkermansia.47–49 Despite the fact that 
this bacteria belongs to the Verrucomicrobia phy-
lum, the similarity between both genomes is very 
small. A. miciniphila was discovered in 2004 at 
Wageningen University of the Netherlands 
(Muriel Derrien’s Ph.D. thesis),50,51 whilst search-
ing for a new mucin-degrading microbe in human 
feces.50,52 Originally, A. muciniphila was isolated 
from a fecal sample from a healthy female in 
a specific medium containing purified mucins and 
a sole carbon source.47 A. muciniphila can be 
detected using 16S rRNA gene sequencing.53 

Importantly, pasteurized A. muciniphila is the first 
NGP providing beneficial effects that was approved 
by EFSA.54 The consumption of 3.4 × 1010 cells/day 
is safe for the target population whereas amount of 
viable cells in novel food is less than 10 CFU/g.54

A. muciniphila has been assessed as an aeroto-
lerant anaerobic bacterium which colonizes the 
mucus layer of the human gastrointestinal 
tract.47,52 The largest amounts of this bacteria is 
located in the colon, however, it can be also found 
in other parts of gastrointestinal tract.55 

A. muciniphila is able to grow in a wide range of 

temperatures, i.e. 20–40°C (the optimum growth at 
37°C) and in pH values ranging from 5.5 to 8.0 
(optimum – 6.5).50,55 Moreover, it can tolerate 
low levels of oxygen (nM concentrations) and is 
able to grow in the presence of 0.1% purified bile 
salts.55 A. muciniphila encodes 567 secreted pro-
teins, for instance sugar hydrolase, sialidase, and 
sulfatase. Fecal microbiota contains 1–4% of 
A. muciniphila.47,56 A. muciniphila colonizes the 
human gut within 1 year after birth and its level 
remains stable in healthy adults. However, the 
abundance of this bacteria has been found to gra-
dually decrease with older age.52 A. muciniphila 
counts depend on dietary factors and its abundance 
increases in the intestinal tract supplied with poly-
phenols, which can be found in cereals, vegetables, 
coffee, tea, grapes, cranberry, and wine.16

A. muciniphila provides several beneficial effects 
to humans. It regulates metabolic pathways 
through affecting glucose tolerance and lipid 
metabolism.51,57 The latest evidence states that 
daily oral administration of pasteurized 
A. muciniphila alleviates diet-induced obesity and 
decrease food energy efficiency58 and the mechan-
ism behind this might include reduction of carbo-
hydrate absorption and enhanced intestinal 
epithelial turnover. According to some data, 
reduced levels of A. muciniphila was found in 
patients with diabetes, obesity, hypertension, liver 
diseases, intestinal inflammation, and IBDs (ulcera-
tive colitis, Crohn’s disease).53,55–64 A. muciniphila 
may be effective in supporting the treatment of 
obesity-related disorders including cardiometabolic 
diseases.65

A. muciniphila maintains intestinal immunity 
and regulates gut barrier functions. It improves 
mucus thickness through regulating zonula occlu-
dens-1, occludin, and claudin 3.65 Additionally, 
A. muciniphila restores the amount of Goblet cells 
and increases mucin-2 expression.16 A. muciniphila 
is able to prevent the development of metabolic 
endotoxemia.66 Ottman et al. identified a highly 
abundant outer membrane pili-like protein of 
A. muciniphila MucT, which modulates the host 
immune response as well as gut barrier integrity.67 

It was noted that A. muciniphila enhances the 
immune system through regulation of specific cyto-
kines and acts via Toll-like receptors (TLRs), such 
as TLR2 and TLR4.67 A. muciniphila acts against 
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pathogens. It reduces inflammation induced by 
Porphyromonas gingivalis,68 which is an opportu-
nistic oral pathogen causing periodontitis and par-
ticipating in carcinogenesis of pancreatic and 
esophageal cancers.69,70 Moreover, Huck et al. 
observed that A. muciniphila increased the expres-
sion of integrin-β1, E-cadherin and ZO-1 in TIGK 
cells, and also confirmed its role in maintaining 
junctional integrity.68

The abundance of A. muciniphila is regulated by 
dietary factors. The up-regulation of this bacteria 
may also be obtained via the Huoxue Yiqi Recipe-2 
(HYR-2), which came from the Ze Qi Decoction in 
one of the four great classics of Traditional Chinese 
Medicine (TCM) called “Synopsis of Prescriptions 
of the Golden Chamber”.71 HYR-2 down-regulates 
the expression of PD-L1, which might be related to 
the blocking effect of HYR-2 on the PI3K/Akt sig-
naling pathway. Overall, HYR-2 plays an anti-lung 
cancer role by regulating PD-L1 and the level of 
A. muciniphila.71 According to recently published 
data, there is a link between gut microbiota, pro-
biotics, NGPs and immune system as well as immu-
notherapy efficacy.72–74 A. muciniphila has an 
impact on the effect of immunotherapy based on 
anti-PD-1 agents. In Xu et al. mice model study it 
was noted that A. muciniphila affects the metabo-
lism of glycerophospholipid and consequently 
maintains the anti-PD-1 antibody.75 Moreover, in 
another study, Routy et al. have shown that cancer 
patients treated with anti-PD-1/PDL-1 antibodies 
lived significantly shorter if they also had received 
oral treatment with antibiotics.76 Interestingly, the 
response to this therapy was related to the abun-
dance of A. muciniphila. Additionally, both trans-
plantation of the microbiota from patients 
responding to immune checkpoint inhibitors 
(ICIs) and supplementation with this NGP alone 
restored the sensitivity to immunotherapy.76 

Similarly, the results of another study demonstrated 
that abundance of A. muciniphila is associated with 
clinical response to anti-PD-1-based immunother-
apy in metastatic melanoma patients.77 The combi-
nation of IL-2 and A. muciniphila may restore IL- 
2-based immunotherapy efficacy.78 This combina-
tion enhances anti-tumor immune responses 
through recruiting tumor-specific cytotoxic 
T lymphocytes and decreasing immunosuppressive 
Tregs within the tumor microbiota.78

The gut microbiome and metabolome may be 
altered in lung cancer patients. Recently, it was 
shown that the abundance of commensal bacteria, 
such as A. muciniphila, Rikenellaceae, Bacteroides, 
Peptostreptococcaceae, Mogibacteriaceae, and 
Clostridiaceae were diminished in patients with 
NSCLC compared to controls.79 Chen et al. indi-
cated that A. muciniphila enhances the antitumor 
effect of cisplatin (CDDP) in Lewis lung cancer 
mice.80 In this study, 50 mice were divided into 5 
groups (i.e. normal, model, CDDP, CDDP + 
A. muciniphila, and CDDP + antibiotics) and 
they were treated for 5 weeks. Among others, in 
CDDP + A. muciniphila groups, downregulation 
of the ki-67, p53, and factor-associated suicide 
(Fas) ligand proteins levels were noted. The 
expression of CD4+ CD25+ Foxp3+ Treg’s was 
also suppressed in the peripheral blood and 
spleen of mice. Additionally, the levels of 
IFI27l2 and IGFBP7 were increased. CDDP sup-
plemented with A. muciniphila may be a first line 
treatment in lung cancer. It opens a novel pro-
mising therapeutic strategy for lung cancer 
patients.80

There are also identifications of additional fac-
tors expressed from A. muciniphila. Amuc_1434* 
is a protein derived from A. muciniphila which 
suppresses LS174T cell viability, the mitochon-
drial pathway of apoptosis by up-regulating 
tumor-necrosis-factor-related apoptosis-inducing 
ligand, and as a consequence it inhibits develop-
ment of colorectal cancer.81 Interestingly, the pas-
terization process does not affect the biological 
activity of the pilli protein.58 The toxicological 
safety evaluation of this probiotic was done 
recently in 2021. In Druart et al. study, Han 
Wistar rats received orally A. muciniphila in 
doses of 75, 375, or 1500 mg/kg body weight/day 
for 90 days.82 No adverse events after administra-
tion of A. muciniphila were noted and the authors 
concluded that this probiotic is safe as a food 
ingredient.82 However, it may promote colitis, 
which was shown by Seregin et al. in mice model 
studies.83

Fruge et al.84 have shown differences in gut 
microbiota related to elevated body fat, highlight-
ing the prevalence of A. muciniphila in stage 0–II 
breast tumors. Additionally, in BC women with 
high relative abundance of A. muciniphila, higher 
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abundance of Prevotella and Lactobacillus and 
lower of Clostridium, Campylobacter and 
Helicobacter were detected when compared to 
patients with low relative abundance of the 
bacteria.84

Bacteroides fragilis

B. fragilis is defined as a commensal, Gram- 
negative obligate anaerobe, which resides in the 
lower part of the human gastrointestinal tract. It 
constitutes around 1% of gut microbiota.85–87 

However, there is body of evidence proving its 
abundance in mouth, upper respiratory tract and 
female genital tract. This genus is widely known an 
opportunistic pathogen, implicating the elevation 
in gut barrier permeability thus associated with 
colitis and to at least some extent systemic 
inflammation.88–90 These are associated with bft 
genes encoding B. fragilis toxin in pathogenicity 
Islands (BfPAI).91 Enterotoxigenic B. fragilis toxins 
(EBFTs) also contribute to tumor formation 
through activation of STAT3 and Wnt pathway as 
well as stimulation of IL-17 production.3

The latest evidence, however, indicates that 
nontoxigenic B. fragilis strains might exert pro-
biotic properties. Apart from typical mechanisms 
of action maintaining gut homeostasis, 
Polysaccharide A (PsA) and other outer mem-
brane vesicles delivering certain beneficial mole-
cules of this NGP have been reported to affect 
positively gut health.92 It is of the major impor-
tance that its counts elevates along with the 
development of the immune system of a child, 
between 1 and 2 years of age.93

Traditionally, B. fragilis interferes with other 
microbes via inhibiting their growth or transloca-
tion. In a Deng et al. animal model study, 
B. fragilis was assessed in the prevention of 
Clostrioides difficile infection (CDI).94 The CDI 
mouse (C. difficile strain VPI 10463 spores) were 
prophylactically supplemented with B. fragilis and 
it was shown that treatment with this probiotic 
strain improved bacterial diversity and was asso-
ciated positively with abundance of 
A. muciniphila. B. fragilis inhibited C. difficile 
adherence via prevention of apoptosis as well as 
zonula occludens-1 (ZO-1) and (mucin-2) MUC- 
2 loss. Consequently, B. fragilis maintained 

intestinal barrier integrity.94 In another study, it 
was noted that B. fragilis culture inhibits the 
translocation of Salmonella Heidelberg.87 This 
competitive properties are due to secretion of 
antimicrobial protein-1 (BSAP-1) containing 
membrane attack/perforin (MACPF) domains lys-
ing bacterial cells or infecting host cells.95 

Another protein involved in such competition 
might be eukaryotic-like ubiquitin protein 
(BfUbb).95 Of note, contact-dependent Type VI 
secretion system (T6SSs) has been also found to 
play a role in this antagonism.96 At last, studies 
have shown that B. fragilis produced short chain 
fatty acids and inhibited the growth of pathogens 
and are able to elevate Tregs counts.

Apart from competitive properties, majority of 
beneficial actions of nontoxigenic B. fragilis NCTC 
9343 is due to PSA. It was proved that PSA of 
B. fragilis NCTC 9343 – delivered via outer mem-
brane vesicles – diminished the imbalance in Th1/ 
Th2 cell counts in germ free mice and elevated Treg 
activity.97 Also, zwitterionic polysaccharides of 
B. fragilis were found to be internalized by antigen- 
presenting cells (APCs), and then presented on 
major histocompatibility complex (MHC) class II 
molecules affecting CD4 + T cell response.98 

Additionally, TLR2 expression on CD4 + T cells 
and TLR2 signaling are important to induce IL-10 
synthesis and consequently inhibition of inflamma-
tory state.99

Lipopolysaccharides (LPS) are released by anti-
biotic administration and they increase the expres-
sion of pro-inflammatory cytokines, negatively 
affecting tight junctions as well as inducing devel-
opment of “leaky gut”.100 Notably, “leaky gut” 
causes abdominal symptoms, such as bloating, 
cramps, and fatigue.101 B. fragilis also contributes 
to development of food allergies and sensitivities as 
well as multiple diseases/conditions.101 B. fragilis 
HCK-B3 has been isolated from healthy Chinese 
donors.102 B. fragilis HCK-B3 and B. ovatus ELH- 
B2 maintains gut microbiota diversity and reduces 
inflammation induced by LPS through both 
decreasing pro-inflammatory mediator, i.e. TNF-α 
and increasing IL-10 (anti-inflammatory cytokine) 
and recovering the Treg/Th-17 balance.100 At last, 
PSA B. fragilis NCTC 9343 immunization might 
reverse non-responsiveness to CTLA-4 blockage 
therapy in cancer patients.102
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Overall, B. fragilis functions by multiple 
mechanisms which includes its interaction with 
other microbes, restoring gut microbiota balance 
as well as maintaining mucosal immunity and 
gut barrier integrity state this bacteria genus as 
probiotic. The safety evaluation of B. fragilis 
HCK-B3 was conducted by Tan et al.103 No 
intracorporal pathogenic properties were 
observed regarding body weight, hematological 
parameters (neutrophils, lymphocytes, hemoglo-
bin, platelets), liver parameters (triglyceryde, 
cholesterol, aminotransferase), cytokines produc-
tion, and tissue integrity. The adverse events 
after administration of B. fragilis HCK-B3 were 
rarely noted in healthy and immune-deficient 
mice. These results have indicated that the 
potential NGP strain, B. fragilis HCK-B3, is non- 
toxigenic and safe.103 More studies evaluating 
safety of different B. fragilis strains are yet to 
come.

A summary of F. prausnitzii, A. muciniphila, and 
B. fragilis properties in the context of oncology is 
presented in Figure 1.

Conclusions

F. prausnitzii, A. muciniphila, and B. fragilis belong 
to the NGPs group and can be useful in cancer 
patients through several mechanisms. Notably, 
each of them exhibits different properties, however, 
they share similar functions and mechanisms of 
action. They were demonstrated to enhance the 
immune system, reduce LPS-related signaling, 
improve the activity of gut microbiota, and prevent 
the development of leaky gut via maintaining 
intestinal barrier integrity. Additionally, 
F. prausntizii can be effective in reduction of gas-
trointestinal complications caused by chemother-
apy/radiotherapy whereas A. muciniphila may 
improve the efficiency of immunotherapy.

Figure 1. The potential mechanisms of NGPs by which they may be effective in prevention of cancer development/treatment. LPS – 
lipopolysaccharides, SCFAs – short-chain fatty acids, ZO-1 – zonula occludens-1. Own elaboration based on 
literature.19,20,27,35,68,78,87,100
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The safety of these NGPs in human cancer patients 
remains unclear and needs to be established more 
precisely. Accordingly, to some data, they are non- 
toxigenic and safe. Notwithstanding, A. muciniphila 
may promote colitis, which was indicated in an animal 
model study. Additionally, enterotoxigenic B. fragilis 
stimulates chronic inflammation and may contribute 
to development of colitis and colorectal cancer.

Currently, studies regarding NGPs are ongoing 
worldwide. In ClinicalTrials.gov system there are 
registered trials regarding A. muciniphila 
(ClinicalTrials.gov identifier: NCT04797442, 
NCT02637115) and F. prausnitzii (e.g., 
NCT04938843, NCT02538354); however, they are 
not related to cancers aspects (till July 2021). Most 
of them are associated with metabolic disorders and 
Crohn’s disease. Despite the fact that data regard-
ing NGPs and cancers is still strongly undiscovered 
and limited, some studies indicate their beneficial 
role in supporting anti-cancer management, thus 
also open a new promising options in oncology.
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