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In this work, an integrated electrode system consisting of a graphene working electrode, a
carbon counter electrode and an Ag/AgCl reference electrode was fabricated on an FR-4
glass fiber plate by a polyethylene self-adhesive mask stencil method combined with a
manual screen printing technique. The integrated graphene electrode was used as the
base electrode, and AuNPs were deposited on the working electrode surface by cyclic
voltammetry. Then, the carcinoembryonic antigen aptamer was immobilized using the
sulfhydryl self-assembly technique. The sensor uses [Fe(CN)6]

3−/4− as a redox probe for
label free detection of carcinoembryonic antigen based on the impedance change caused
by the difference in electron transfer rate before and after the binding of carcinoembryonic
antigen aptamer and the target carcinoembryonic antigen. The results showed a good
linear relationship when the CEA concentration is in the range of 0.2–15.0 ng/ml. The
detection limit was calculated to be 0.085 ng/ml (S/N � 3).

Keywords: screen-printed carbon electrode, aptamer, carcinoembryonic antigen, EIS aptamer sensor, graphene
nano-sheet

INTRODUCTION

In the early 1990s, scientists used in vitro screening techniques to isolate RNA and DNA molecules
that specifically bind proteins, and these screened single-stranded oligonucleotides were called
aptamers (Macugen Diabetic Retinopathy Study Group, 2005; Ostroff et al., 2010). Oligonucleotides
are short single-stranded nucleic acid molecules that bind selectively and with high affinity to
proteins or other target molecules. Aptamers have many characteristics that antibodies do not have
and are often used as recognition elements for aptamer sensors (Pavlov et al., 2004; Zayats et al.,
2006).

Aptamers are easy to synthesize and easy to modify compared to other specific recognition
elements. In immunoassays, antibodies need to be obtained from animals and live cells. In contrast,
nucleic acid aptamers are usually screened in vitro using the SELEX technique (Sampson, 2003;
Darmostuk et al., 2015). In general, modification of antibodies leads to their inactivation. In contrast,
modification of the aptamer does not affect either the activity or the binding of the aptamer to the
target molecule (Zhang et al., 2018; Farzadfard et al., 2020). Unlike antibodies, which usually bind
only to their corresponding antigens, aptamers can recognize different targets such as proteins Liu
et al. (2020), peptides He et al. (2021), amino acids Idili et al. (2019), antibiotics Lin et al. (2018), small
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molecules Nakatsuka et al. (2018), viruses Chen et al. (2020), and
evenmetal ions (Zhang Y. et al., 2020). The affinity of the aptamer
for the target is far stronger than the binding force between the
antibody and the antigen. In addition, aptamers are more stable
than antibodies, which can be stored for longer periods of time at
room temperature. Aptamers can regain their activity under
appropriate conditions after denaturation (Belleperche and
DeRosa, 2018). This feature of aptamers allows the lifespan of
aptamer sensors to be extended.

Electrochemical aptasensor integrate the disciplines of
biology, chemistry, physics, electronics and medicine (Karimi-
Maleh et al., 2020; Kir, 2020; Ozbek et al., 2021). These disciplines
support and permeate each other, which has led to the gradual
development of electrochemical aptasensor (Zheng et al., 2018;
Fu et al., 2019a; ZhangM. et al., 2020; Kizilgeci et al., 2020; Özkan,
2020; Karimi-Maleh et al., 2021b). Electrochemical aptamer
sensor has the following advantages: fast analysis, simple
operation method, good selectivity and high sensitivity. It is an
analytical detection device constructed by combining an aptamer
as a molecular recognition substance with electrochemical
sensing (Fu et al., 2018, 2019b; Xu et al., 2020; Zheng et al.,
2020). Therefore, electrochemical aptamer sensor has gradually
become a research hotspot.

Currently, cancer remains the most feared disease in the
world. In the early twenty-first century, prostate, lung, breast
and colon cancers topped the list of deaths in the United States
and Canada. In most developing countries, cancer was identified
as the second leading cause of death. This led to the use of tumor
markers Li et al. (2020a), Duan et al. (2021), Li et al. (2021), Wang
et al. (2021), which are chemical-based substances that reflect the
presence of tumors. They are not found in normal adult tissues
but only in embryonic tissues Karimi-Maleh et al. (2021c),
Karaman (2021), Karaman et al. (2021), or are present in
tumor tissues at levels that greatly exceed those found in
normal tissues (Li et al., 2020b; Vajhadin et al., 2020). Their
presence or quantitative changes can reveal the nature of tumors,
lend to the understanding of tumor histogenesis, cell
differentiation and cell function, which can provide assistance
in tumor diagnosis, classification and treatment guidance. Early
diagnosis of cancer is crucial to successfully save patients’ lives.
Therefore, sensitive and specific methods are needed to detect
them. Disease detection is achieved by measuring the levels of
biomarkers in blood, urine, and other body fluids.
Carcinoembryonic antigen (CEA), an acidic glycoprotein with
a relative molecular mass of 180 kDa, is of great importance for
the development and monitoring of lung cancer (Yang et al.,
2018; Song et al., 2020). Usually, the CEA content in biological
samples is very low, and the threshold value of CEA in human
serum is 5.0 ng/ml. When the CEA content in serum is greater
than 5.0 ng/ml, it may be a precursor of lung cancer (Gu et al.,
2018; Jozghorbani et al., 2021). Therefore, the detection of CEA is
particularly important. So far, fluorescence analysis Qiu et al.
(2017), radioimmunoassay Abu-Bakr El-Bayoumy et al. (2018),
enzyme-linked immunoassay Wu et al. (2021),
electrochemiluminescence Yang et al. (2020) and other
methods have been used for CEA detection. Among these

methods, electrochemical methods have attracted the interest
of scientists due to the advantages of low cost and easy portability.

Graphene, a two-dimensional carbon material with high
electron density, dielectric properties and catalytic effects,
which make it widely used in biosensors (Mohanraj et al.,
2020; Özcan et al., 2020). Most electrochemical aptamer
sensors require labeling of the aptamer, which is a
complicated process for labeling during experiments and may
affect the specific binding of the aptamer to the target (Yang et al.,
2017; Alavi-Tabari et al., 2018; Butmee et al., 2020; Naderi Asrami
et al., 2020; Karimi-Maleh et al., 2021a). In recent years, label free
aptamer sensors have attracted the interest of scientists because of
their label-free, simple operation, fast detection speed and low
cost (Rizwan et al., 2018). The main detection techniques used for
label free aptamer sensors are electrochemical impedance
spectroscopy (EIS) and square wave voltammetry coulometry.
EIS has been widely developed and applied in the field of
analytical chemistry for its high sensitivity (Singh et al., 2021).

In this work, an integrated thick film graphene electrode
system consisting of a graphene working electrode, a large
area carbon counter electrode and an Ag/AgCl reference
electrode was fabricated by a polyethylene self-adhesive mask
template method combined with screen printing technique. The
integrated graphene electrode was used as the base electrode, and
Au nanoparticle was deposited on the surface of the graphene
working electrode by cyclic voltammetry. The CEA aptamer was
immobilized by the sulfhydryl self-assembly technique, and
[Fe(CN)6]

3−/4− was used as the probe. The EIS electrochemical
aptamer sensor for label free detection of CEA was constructed
based on the change of mass transfer resistance at the electrode
before and after the binding of [Fe(CN)6]

3−/4− to the CEA.

MATERIALS AND METHODS

Materials
All reagents were analytical grade and used without further
purification. Carcinoembryonic antigen aptamer (CEA-
aptamer) was purchased from Bioengineering Co.,Ltd. The
sequence of the thiol-labeled CEA aptamer is: 5′-SH-
ATACCAGCTTATTCAATT-3’. The carcinoembryonic antigen
(CEA) was purchased from Shanghai Leadwave Biotechnology
Co. 6-Methoxyl-1-hexanol (MCH) purchased from Sigma.
Chloroauric acid (HAuCl4H2O), potassium ferricyanide (K4

[Fe(CN)6]·3H2O, potassium ferricyanide (K3 [Fe(CN)6]),
dipotassium hydrogen phosphate (K2HPO4), potassium
dihydrogen phosphate (KH2PO4) were purchased from
Sinopharm Group Chemical Reagent Beijing Co.,Ltd.
Graphene ink (Sheet diameter: 1–5 μm, Content: 5.0wt%,
Solvent: NMP) was purchased from Nanjing XFNANO
Materials Tech Co.,Ltd. Conductive silver adhesive purchased
from Shanghai Baoyin Electronic Materials Co.,Ltd. FR-4 glass
fiber board was purchased from Xi’an Xidian Electric Material
Co.,Ltd. 5 mM K3 [Fe(CN)6]−5 mM K4 [Fe(CN)6]−0.1 M PBS
(pH 7.0)−1.0 M KC1 was used as the impedance detection
solution.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7210082

Wang et al. Electrochemical Impedance Spectroscopy Aptasensor

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Integrated Graphene Electrode Fabrication
Take the appropriate amount of conductive graphene ink and add
it to the Petri dish, scrape it well with a scraper to get a uniform
sticky conductive paste. The polyethylene self-adhesive presenter
board is pasted onto a cleanly treated FR-4 glass fiberboard
substrate (the fiberboard was washed with ethanol and
distilled water and dried at room temperature). An integrated
three-electrode system containing a graphene working electrode,
a carbon counter electrode and a carbon reference electrode was
obtained by screen printing technique. Then 1 layer of silver paste
was evenly coated at the reference electrode and the prepared
integrated electrode was dried in an oven at 70°C. An appropriate
amount of 0.1 M FeCl3 solution was dropped on the silver surface,
and the silver was oxidized to FeCl3. After 1 h, the FeCl3 solution
was removed by rinsing with distilled water and air-dried to
obtain the Ag/AgCl reference electrode. Finally, all areas except
the working electrode, counter electrode, reference electrode and
wire connection points were insulated with insulating tape.

Preparation of Aptamer Sensors
The preparation process of the aptamer sensor and the principle
of detecting CEA was shown in Figure 1. Firstly, the graphene
SPE need to be activated. The SPE electrode was placed in 0.1 M
PBS for CV scan. The scanning potential interval is between −0.5
and 1.5 V until a stable electrochemical signal was obtained. The
treated SPE was placed in l mM HAuCl4 solution and
electrodeposited by CV. CV scan was performed at a potential
of −1.5–1 V to obtain Au nanoparticle modified SPE (Au/SPCE).
The Au/SPE was washed with water and dried at room
temperature, then 5 μL of l μM CEA-aptamer solution was
pipetted onto the Au/SPE surface and incubated for 15 h. The
working electrode was then washed with PBS buffer solution to
remove the unbound aptamer to obtain CEA-A/Au/SPE. To
prevent non-specific adsorption on the electrode surface, 5 μL
of 20.0 nM MCH solution was coated to the electrode surface for
10 min to close the blank sites on the electrode surface. Then, the
electrode surface was thoroughly washed with PBS buffer solution
to remove the excess MCH solution. The aptamer sensorM/CEA-
A/Au/SPE was obtained.

Electrochemical Detection
C/M/CEA-A/Au/SPE was obtained by applying 10 μL of CEA
solution coated on the surface of the assembled aptamer sensor
and incubating it at 37°C for 1 h. The aptamer sensor was then
washed with 0.01 M [Fe(CN)6] pH 7.4 PBS solution to remove
the CEA adsorbed on the electrode surface. The aptamer
sensor was placed in 15 ml of 5 mM [Fe(CN)6]

3−/4–0.1 M PBS

(pH 7.0)–0.1 M KC1 detection solution. The EIS was used for the
detection. The frequency range and amplitude was
100 KHz∼0.1 Hz and 5.0 mV, respectively. The impedance
theoretical value was fitted with the Randles equivalent circuit
to analyze the detection signal for quantitative detection of CEA.

RESULTS AND DISCUSSION

The surface morphology of SPE and Au/SPE was characterized
using scanning electron microscopy, and the results are shown in
Figure 2. Figure 2A shows the SPE surface is relatively flat with a
flaky distribution, which is consistent with the surface
morphology of graphene (Kong et al., 2014). When AuNPs
were electrodeposited on the graphene electrode surface, a
large number of uniform particles appeared on the electrode
surface (Figure 2B), indicating that AuNPs were successfully
deposited on the SPE surface.

Figure 3 shows the EIS of the SPE and Au/SPE with different
CV cycles. It can be seen that the electron transfer resistance of
[Fe(CN)6]

3−/4− on the SPE surface is relatively large. After the
electrodeposition of AuNPs on the SPE surface, the electron
transfer resistance of Au/SPE surface gradually decreases when
the number of deposited cycle increases from 2 to 5, which
indicates that the diffusion of [Fe(CN)6]

3−/4− in Au/SPE was
accelerated. This is because AuNPs has high electron density and
excellent dielectric properties, which promote electron transfer
and increase the reversibility of redox substances on the electrode
surface (Chan et al., 2016). When the number of deposition
circles continues to increase, the electron transfer impedance of
[Fe(CN)6]

3−/4− on the Au/SPE surface almost no longer changes,
indicating that the amount of AuNPs deposited on the SPE
surface almost reaches saturation.

We then characterized the assembly process of the aptamer
sensor using EIS, as shown in Figure 4 [Fe(CN)6]

3−/4− has a high
electron transfer resistance at the SPE surface. When AuNPs were
electrodeposited on the SPE surface, the electron transfer
resistance decreased. This is because the AuNPs has excellent
electrochemical properties, which accelerates the electron transfer
rate of [Fe(CN)6]

3−/4− on the electrode surface. When CEA-A was
immobilized on the electrode surface by the sulfhydryl self-
assembly technique, the electron transfer of [Fe(CN)6]

3−/4− at
the electrode surface was hindered. This is due to the fact that the
aptamer is a negatively charged phosphate backbone, and
[Fe(CN)6]

3−/4− mutually repel each other and hinder electron
transfer (Yan et al., 2014). The impedance value further increases
after using the sealer MCH to close the blank sites on the

FIGURE 1 | Preparation process of the aptamer sensor and the principle of detecting CEA.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7210083

Wang et al. Electrochemical Impedance Spectroscopy Aptasensor

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


electrode surface that are not occupied by the aptamer. When
l ng/mL CEA was incubated on the electrode, the impedance
value continued to increase because the binding of the target CEA
to the aptamer increased the spatial site resistance on the
electrode surface and slowed down the electron transfer rate
(Huang et al., 2012).

Also, we have characterized the whole assembly process using
CV (Figure 5). It can be seen from Figure 5 that [Fe(CN)6]

3−/4−

has good reversibility on the SPE. When AuNPs were
electrodeposited on the SPE surface, the reversibility of
[Fe(CN)6]

3−/4− on Au/SPE was further enhanced and the peak
potential difference was significantly reduced. When the CEA-A
with sulfhydryl groups self-assembled on the Au/SPE surface
through Au-S bonds, the aptamer carrying a negatively charged
phosphate backbone would repel the negatively charged
[Fe(CN)6]

3−/4− and affect the electron transfer on the electrode
surface, making the peak current smaller. Closure of the blank
sites on the electrode surface not occupied by the aptamer with
MCH formed a dense film on the electrode surface, which made
the peak current further smaller. When 1 ng/ml of CEA was

FIGURE 2 | SEM images of SPE and Au/SPE.

FIGURE 3 | EIS of SPE and Au/SPE with different CV cycles recorded in
5 mM [Fe(CN)6]

3−/4−. FIGURE 4 | EIS plots of aptamer senor during the fabrication recorded in
5 mM [Fe(CN)6]

3−/4−.

FIGURE 5 |CV profiles of aptamer senor during the fabrication recorded
in 5 mM [Fe(CN)6]

3−/4−.
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added, the electron transfer of [Fe(CN)6]
3−/4− was hindered, and

the peak potential difference increased and the peak current
decreased. After the addition of 10 ng/ml of CEA, the peak
current continued to decrease.

The concentration of CEA-A immobilized on the surface of
the electrode is an important factor affecting the performance of
the sensor, so the CEA-A concentration was optimized. The
relationship between the aptamer concentration of
carcinoembryonic antigen and the electron transfer resistance
(Ret) is shown in Figure 6A. When the aptamer concentration
increased from 0.1 to 1 μM, the Ret of [Fe(CN)6]

3−/4− on the
sensor surface also increased gradually. When the aptamer
concentration continued to increase to 30 μM, the impedance
value reached a plateau and almost stopped changing. This
indicates that the amount of CEA-A immobilized on the
sensor surface has reached saturation. Therefore, the
concentration of carcinoembryonic antigen aptamer was
chosen to be 1 μM in subsequent experiments.

The immobilization time of the aptamer is an important factor
that affects the performance of the aptamer sensor, therefore, the
immobilization time of the aptamer was optimized. Figure 6B
shows the relationship between the change of [Fe(CN)6]

3−/4− in

the sensor surface heart after different times of immobilization of
the CEA aptamer on the electrode surface for 1 μM. As can be
seen from the figure, the Ret of the sensor gradually increases
when the immobilization time of the CEA aptamer increases from
3 to 15 h. When the immobilization time increases from 15 to
21 h, the impedance value reaches a plateau and basically stops
changing, indicating that the amount of aptamer immobilization
has basically reached the saturation state. Therefore, the selected
aptamer immobilization time was 15 h.

The binding time between the aptamer sensor and the target
CEA is also an important factor affecting the performance of the
sensor, so the binding time between the sensor and CEA was
investigated in this experiment. The aptamer sensor was
incubated with 10 μL of 0.5 ng/ml CEA at 37°C for different
times, and the experimental results were shown in Figure 6C. It
can be seen that when the incubation time was varied between
10–60 min, a significant increase in the electron transfer
resistance occurred with the increase of time. When the
incubation time was between 60–70 min, there was a small
decrease in Rct. When incubation time excess 70 min, Rct

tended to be stable. This indicates that 70 min is a more
reasonable time for specific binding of the aptamer to the target.

FIGURE 6 | The effect of (A) CEA-A concentration (B) immobilization time and (C) incubation time on the aptasensor performance (n � 3).

FIGURE 7 | (A) EIS in 5 mM [Fe(CN)6]
3−/4–0.1 M PBS (pH 7.0)−1 M KCl of the proposed aptasensor towards 0, 0.1, 0.2, 0.5, 1.0, 5.0, 7.0, 10.0, and 15.0 ng/ml of

CEA (B)Plots of Rct vs. CEA concentration.
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Under the optimized experimental conditions, different
concentrations of CEA were measured in 5.0 mM [Fe(CN)6]
3−/4–0.1 M PBS (pH 7.0)−1 M KCl using the proposed aptamer
sensor. The experimental results were shown in Figure 7.
Figure 7A shows the EIS plots of the aptamer sensor
combined with different concentrations of CEA. It can be seen
from Figure 7A that the impedance value of the aptamer sensor
in the blank solution is the smallest, and the impedance value
increases gradually when different concentrations of the target
CEA were added. This is because CEA binds to the aptamer
immobilized on the aptamer sensor, resulting in an increasing
electron transfer resistance of [Fe(CN)6]

3−/4−.Figure 7B shows
the variation of electron transfer resistance with CEA
concentration. It can be seen from the figure that there is a
good linear relationship between the electrochemical aptamer
sensor and CEA when the CEA concentration is in the range of
0.2–15.0 ng/ml. The detection limit is 0.085 ng/ml (S/N � 3). The
selectivity study was carried out to compare the sensor’s
selectivity performance of 10 ng/ml of CEA against DHEA,
AFP, Leptin, AA, BSA and UA. The results demonstrated high
selectivity with standard deviation less than 10%.

CONCLUSION

Graphene ink was used to prepare SPE. a simple and fast
unlabeled impedance-based electrochemical aptamer sensor for
CEA detection was constructed by electrochemical deposition of

AuNPs on the surface of SPE working electrode using cyclic
voltammetry. CEA-A was immobilized on the electrode surface
by the sulfhydryl self-assembly technique. After optimizations,
the sensor can linear detection of CEA in the range of
0.2–15.0 ng/ml. The detection limit is 0.085 ng/ml (S/N � 3).
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