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The dynamics of a spreadable disease are largely
governed by four factors: proactive vaccination,
retroactive treatment, individual decisions, and
the prescribing behaviour of physicians. Under
the imposed vaccination policy and antiviral
treatment in society, complex factors (costs and
expected effects of the vaccines and treatments,
and fear of being infected) trigger an emulous
situation in which individuals avoid infection by
the pre-emptive or ex post provision. Aside from
the established voluntary vaccination game, we
propose a treatment game model associated with the
resistance evolution of antiviral/antibiotic overuse.
Moreover, the imperfectness of vaccinations has
inevitably led to anti-vaccine behaviour, necessitating
a proactive treatment policy. However, under the
excessively heavy implementation of treatments
such as antiviral medicine, resistant strains emerge.
The model explicitly exhibits a dual social dilemma
situation, in which the treatment behaviour changes
on a local time scale, and the vaccination uptake
later evolves on a global time scale. The impact
of resistance evolution and the coexistence of dual
dilemmas are investigated by the control reproduction
number and the social efficiency deficit, respectively.
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Our investigation might elucidate the substantial impacts of both vaccination and treatment
in the framework of epidemic dynamics, and hence suggest the appropriate use of antiviral
treatment.

1. Introduction
The appearance of epidemiological dynamics in the mechanism of pre-emptive voluntary
vaccination has been studied in various contexts [1], such as perfect and imperfect vaccination
[2,3], dynamical behaviour of vaccination [4], vaccination with information spreading [5],
metapopulation migration modelling [6] and heterogeneous networks [7]. Furthermore, Chen &
Fu [8] studied an effective antiviral treatment with prescribing behaviour and resistance
evolution. Remarkably, influenza-like illnesses, Oseltamivir (Tamiflu) [9] is a widely used ex post
treatment originally administered against influenza A and B viruses. However, over the years,
the societal benefits of antiviral treatment have lessened with overuse, leading to treatment
resistance. These trends are evidenced by the interplay between prescription behaviour and
resistance evolution. Here, the theoretical studies of vaccination and treatment strategies have
considered different effectiveness, associated costs, payoff structures and time scales.

Previously, compartment models with the mean-field approximation, such as the SI [10],
SIS [11], SIR [12], SEIR [13] and SEIQR [14] models, are exhibited by dividing the population
into several distinct groups. In these designations, S, I, R, E and Q represent the proportions
of susceptible, infected, recovered, exposed and quarantined individuals, respectively. Recently,
Kabir et al. extended the simple SIR model by introducing an awareness effect on epidemic
spreading and implemented a two-layer SIR-UA model on well-mixed [15] and heterogeneous
networks [16]. Additionally, treatment is an important compartmented state that reduces the
disease after infection. Treatments such as antibiotics, quarantine and isolation have been
theoretically investigated by many researchers [17–26]. The consequences of vaccination and
treatment on an epidemic model were investigated in an influenza model with age structure by
Qiu & Feng [27,28] and Feng et al. [29], an SIVS model with vaccination age by Li et al. [30], an
SIR epidemic model with optimal control theory by Zaman et al. [31] and a pandemic influenza
model by Towers et al. [32]. All these works presumed that vaccination, quarantine or treatment
would reduce epidemic infection in a simple dynamical situation on local time scales and with
no game aspect. By contrast, the present study aims to establish a theoretical epidemic model
encompassing both vaccination and treatment as an evolutionary game approach.

The human decision-making process is affected by the cost and risk of the vaccine, self-
opinion, networks and neighbours’ decisions; therefore, how vaccine acquiescence is influenced
by various factors must be investigated [33–48]. According to prior studies, a game approach
to epidemiological vaccination can fairly predict the infection risk in both vaccinated and non-
vaccinated individuals [49–52]. Such voluntary vaccination game approaches have been studied
theoretically and in multi-agent simulations (MAS). To elucidate the mechanism of infectious-
disease control, these approaches incorporate a two-layer time scale: a local time scale (epidemic
season) of epidemic diffusion and a global time scale on which the strategy updates at the end of
the season (at local equilibrium), followed by repeated seasons. Kuga & Tanimoto [53] developed
a theoretical model of imperfect vaccination on local and global time scales and validated it by
MAS. However, Kabir & Tanimoto [54] claimed that an individual’s decision to take a vaccination
after social learning (dynamical behaviour) also occurs on local time scales, so this strategy should
be updated instantly. Accordingly, it seems that the voluntary vaccination game approach can be
implemented into the local time scale while maintaining the framework on the global time scale
(strategy update at the end of each season). In the same context, antiviral treatment depends on
the local time scale, antiviral resistance and prescribing behaviour.

To shed light on this complex phenomenon, we newly propose the dual-dilemma game
structure that considers the roles of both the proactive vaccination and retroactive treatment
games. This approach admits different strategy update rules and different time scales of the two
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provisions. In most of the previous studies [5,6,39–41,49–53], the proactive vaccination permits
an individual to accept or decline a vaccination at the end of every epidemic season. This
repeated choice is made on global time scales. On the other hand, the retroactive treatment
prescribes the behaviour and the antiviral resistance of a certain individual only when s/he is
actually infected at a certain time in an epidemic season, which occurs on local time scales. An
excessive antiviral treatment may also trigger another viral resistant strain; this behaviour is an
expected social problem concerning seasonal influenza in Japan [55]. In this case, the so-called
vaccination dilemma modelled by the vaccination game is joined by another dilemma, whereby
an individual seeking to use public goods (i.e. accepting the antiviral) induces another viral
strain with devastating consequences for others. Using our novel idea backed by the theoretical
game approach, we quantify the impact of the pre-emptive vaccination game (before the disease
spreading) and the treatment game (after the infection), which includes the prescribing behaviour
as an ex post provision. Both games are influenced by vaccine effectiveness, treatment efficacy,
treatment cost and vaccination cost. Such a double social dilemma situation, perhaps quite
ubiquitous in the real world, has not been considered in related previous studies. The vaccination
game in the double-dilemma scenario occurs on a larger time scale (over repeated seasons) than
the treatment game, which occurs on a day-by-day basis. Therefore, a coevolutionary process
can be plausibly modelled in the present study. We employ a pre-emptive control measure that
prevents the breakout of infection at an early stage based on an individual’s decision. Meanwhile,
the ex post treatment can be regarded as a fail-safe provision implemented after infection.
Owing to the imperfections of vaccines and the unwillingness to take vaccines as a pre-emptive
provision, people probably consider a retroactive treatment as the ‘ultimate weapon’ against
disease dispersion. However, overuse of antiviral treatment and prescribing behaviour can trigger
the emergence of resistant strains, encouraging more ex post provision activity by individuals. To
handle these two provisions working on different time scales, our model implants the second
social dilemma incurred by the antiviral treatment rather than the so-called vaccination dilemma
acquired by the proactive provision. To our knowledge, no previous theoretical analysis has
considered two provisions in the same context of the evolutionary game process. We also develop
another new concept called the social efficiency deficit (SED). Such a framework can explicitly
elucidate the social dual-dilemma on both global (vaccination) and local (treatment) time scales.

In our model, the retroactive antiviral treatment targets the individuals harbouring a sensitive
or resistant strain that is controlled by the treatment (antiviral/antibiotic) potency (efficacy).
The resistant strain incurs a high medical cost, mortality and the risk of antiviral/antibiotic use,
which increases when the demand for antiviral use is driven by the individual’s self-interest and
overprescribing. Here, we emphasize the social learning behaviour for prescription of antiviral
treatment under the evolutionary dynamics of resistance that can uphold the optimal use of the
treatment. To explore this evolutionary process of vaccination and treatment, we impose three
strategy update rules: individual-based risk assessment (IB-RA), society-based risk assessment
(SB-RA) and direct commitment (DC). These rules govern the individual’s connection with
society. Moreover, we derive the control reproduction numbers of the sensitive and resistant
strains, and hence analyse the disease-free equilibria situations in an epidemic.

The remainder of this paper is organized as follows. The ‘Methods and model’ section
introduces the new model of epidemic vaccination with the antiviral treatment model and
demonstrates it schematically. The ‘Results and discussion’ section validates the proposed model
in numerical simulations. Finally, the ‘Conclusion’ section summarizes and further discusses our
findings.

2. Methods and model

(a) Basic epidemic dynamics
To model the social dual-dilemma as a two-stage game, the pre-emptive vaccination and ex post
treatment are developed in the framework of SIR epidemic dynamics in a well-mixed population
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Figure 1. Schematic diagram of (a) the SITR/V epidemic model, susceptible and vaccinated individuals get infected at rate
β s for sensitive and β r for resistant, respectively. The fraction of vaccinated individuals failed to keep immunity by vaccine
effectiveness e. Sensitive and resistant strains correspondingly performedmutation at rateμs andμr . The infected individuals
may receive treatmentwith probability p and recovered at rateγ T . However, untreated individuals can be recovered at ratesγ u

r
and γ u

s . (b) Evolutionary mechanism for both local and global time scale, the evolutionary decision-changing approach takes
place on a global time scale (end of each epidemic season) at which individuals can decide whether to vaccinate or not. (Online
version in colour.)

(figure 1). In stage 1, the individuals make their vaccination decisions (yes or no) that will
control their infection risk during the pandemic season. In stage 2, the infected people with
either the sensitive strain or resistant strain decide their treatment provision (treated or untreated)
on the local time scale. The antiviral (antibiotic) treatment case incorporates a feedback loop
between the prescription behaviour and resistance evolution. To model the disease diffusion in
a single season, the initially susceptible people are compartmentalized into vaccinated and non-
vaccinated groups. The individuals in the susceptible state can be infected with either sensitive or
resistant strains, then seek treatment at an overall treatment rate (treatment probability) denoted
as ωP , where P is the prescribing rate and ω determines the probability at which infected people
accept treatment from the prescribing individuals. Consequently, the individuals can recover in
two ways: natural recovery with no antibiotic/antiviral treatment or recovery after treatment.
The epidemiological dynamics are described by the following system of ordinary differential
equations

Ṡ=−βsS(Iu
sen + (1− ε)T)− βrS(Iu

res + εT), (2.1)

V̇=−βs(V(t)− eV(0))(Iu
sen + (1− ε)T)− βr(V(t)− eV(0))(Iu

res + εT), (2.2)

İu
sen = βsS(Iu

sen + (1− ε)T)+ βs(V(t)− eV(0))(Iu
sen + (1− ε)T)− ωPIu

sen

− βsμsS(Iu
sen + (1− ε)T)+ βrμrS(Iu

res + εT)− γsIu
sen, (2.3)

İu
res = βrS(Iu

res + εT)+ βr(V(t)− eV(0))(Iu
res + εT)− ωPIu

res

+ βsμsS(Iu
sen + (1− ε)T)− βrμrS(Iu

res + εT)− γrIu
res, (2.4)

Ṫ=ωPIu
sen + ωPIu

res − γTT (2.5)

and Ṙ= γTT + γsIu
sen + γrIu

res. (2.6)
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Here, the fractions of vaccinated plus non-vaccinated individuals infected with the sensitive
and resistant strains are denoted by Iu

sen and Iu
res, respectively. T denotes the fraction of infected

individuals receiving treatment and R represents the fraction of individuals who have recovered
from infection by a sensitive or resistant strain. In addition, βs and βr (γ s and γ r) are the disease
transmission rates (infection recovery rates) for the sensitive and resistant strains, respectively
and γ T is the recovery rate of infected individuals receiving treatment. Finally, μs and μr

are the mutation rates of the sensitive and resistant strains, respectively. Without mutation,
the coexistence of sensitive and resistant strains is forbidden by the competitive exclusion
principle. The portion of vaccinated individuals is separated into perfectly immune and non-
immune individuals, distinguished by the vaccine’s effectiveness e(0≤ e≤ 1). The treatment efficacy
ε controls the treatment efficiency of the sensitive and resistant strains. When ε= 0, the treatment
is far less beneficial against the resistant strain than against the sensitive strain. On the other hand,
when ε= 1, the higher number of people in the resistant state is now taking the highest benefit of
treatment and is ineffective against the sensitive strain.

(b) Control reproduction numbers
The basic reproduction number (ratio) R0 is the estimated number of infected individuals
instigated by a susceptible individual (R0 = β/γ ). In particular, if R0 < 1, the disease will
eventually die out, whereas if R0 > 1, the disease will spread through the population. In this case,
we presume separate control reproduction numbers Rs and Rr for the sensitive and resistant
strains, respectively. To evaluate the control reproduction numbers, we initially set V(0)∼= x,
S(0)∼= 1− x and μs, μr→ 0. From equations (2.3) to (2.5), we obtain

İu
sen = βs(1− x)(Iu

sen + (1− ε)T)+ βs(1− e)x(Iu
sen + (1− ε)T)− ωPIu

sen − 0+ 0− γsIu
sen,

İu
res = βr(1− x)(Iu

res + εT)+ βr(1− e)x(Iu
res + εT)− ωPIu

res − 0+ 0− γrIu
res

and Ṫ= PIu
sen + PIu

res − γTT.

Let us express the model dynamics as[
İu
sen
Ṫ

]
=
([

βs(1− x)+ βs(1− e)x βs(1− x)(1− ε)+ βs(1− e)x(1− ε)
0 0

]
−
[
ωP+ γs 0
−ωP γT

])

×
(

Iu
sen
T

)
.

Defining

F=
[
βs(1− x)+ βs(1− e)x βs(1− x)(1− ε)+ βs(1− e)x(1− ε)

0 0

]
, V=

[
ωP+ γs 0
−ωP γT

]
,

we can write

FV−1 =Rs = βsδ + βsωP(1− ε)
γT(ωP+ γs)

((1− x)+ (1− e)x). (2.7)

Similarly, we have

Rr = βrδ + βrωPε

γT(ωP+ γr)
((1− x)+ (1− e)x). (2.8)

As mentioned above, the control reproduction number must reflect the stability of the disease-
free equilibrium state. According to equations (2.7) and (2.8), the control reproduction numbers
of both sensitive (Rs) and resistant (Rr) strains act like a decreasing function of P and x; both
ranging from 0 to 1 displayed in figure 2. The left panels of figure 2 (panel a-*) plot the line graphs
of infected individuals versus the treatment probability P for the sensitive (IS) and resistant (IR)
strains for different values of ω= 0.05, 0.1 and 0.6.
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Figure 2. Infection fractions and control reproduction numbers versus (a-*) treatment probability P and (b-*) fraction of
vaccinators x. In panels (a-i)–(a-iii),ω= 0.05,ω= 0.1 andω= 0.6, respectively. In panels (b-i)–(b-iii), the parameter set
(e, ε)= (0.1, 0.1), (0.9, 0.1) and (0.9, 1.0), respectively. The other parameter values areβ s= 0.25,β r = 0.2, γ s= γ r = 0.1,
μs=μr = 10−4, γ T = 0.3, (in a-*) e= 0.5, X= 0.5 and P= 0.5,ω= 0.15 (in b-*). (Online version in colour.)

We now examine the simulation results of equations (2.1)–(2.8), and hence find the critical P
of the maximal potential antiviral treatment beyond which Rr is not going beyond Rs. Here,
the proportion of vaccinated individuals is assumed constant (x= 0.5) [5,6,53]. The experimental
results in the left panels of figure 2 are summarized below:

(a) Panel (a-i): When the probability of treatment acceptance ω was low (0.05), the antiviral
treatment did not effectively eradicate the disease and the sensitive strain always
dominated the resistant strain.

(b) Panel (a-ii): When ω increased to 0.1, we observed a critical intersection point (Pc)
at which the control reproduction number of the sensitive strain equalled that of the
resistant strain.

(c) Panel (a-iii): When the probability of treatment acceptance exceeded the probability of
treatment refusal (ω= 0.6), the control reproduction number of both strains could be less
than 1, indicating that treatment could fully eradicate the disease. At relatively high ω,
the individuals will likely be treated when infected.



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190484

..........................................................

In panels (a-ii) and (a-iii), we can find the critical treatment probability Pc at which the treatment
probabilities of the sensitive and resistant strains are equal. When 0 < P <Pc, the sensitive strain
is more prevalent than the resistant strain (i.e. Rs >Rr). However, when P >Pc , the resistant
strain will outperform against the sensitive strain. At the social optimum, the critical treatment
probability Pc specifies the maximum treatment control under which resistant strains will not
emerge. Assuming Rs =Rr in equations (2.7) and (2.8), Pc is calculated as

Pc = βsδ − βrδ

βrωε − βsω(1− ε)
. (2.9)

Right panels (b-i), (b-ii) and (b-iii) of figure 2 plot the vaccine effectiveness and treatment efficacy
versus fraction of vaccinators x for different combinations of the control reproduction numbers
(Rs and Rr) and infected individuals (IS and IR): (e= 0.1, ε= 0.1), (e= 0.9, ε= 0.1) and (e= 0.9,
ε= 1.0), respectively. Comparing panels (b-i) and (b-ii), increasing e enhances the inclination of
Rs and Rr, indicating a highly reliable vaccine that rapidly eradicates the disease. Also, low
treatment efficacy (ε= 0.1) encourages the sensitive strain, whereas the resistant strain presents
in the almost disease-free situation. On the other hand, at the highest treatment efficacy (ε= 1.0;
panel (b-iii)), the sensitive strain dominates the resistant strain. Both strains become disease-free
as the vaccine effectiveness (i.e. x) increases.

(c) Coevolutionary dynamics
We incorporate two-game aspects (treatment and vaccination) in a single epidemiological game
model. This model reproduces the coevolutions of accepting a vaccination at the beginning
of every season and receiving treatment after becoming infected in a season. In the treatment
game, the individual decision to receive or decline treatment against the infectious sensitive
and resistant strains occurs on the local time scale. In the vaccination game, the individuals can
consent to alter their strategy (accept or decline vaccination) based on the progress of the last
pandemic season, which occurs on the global time scale.

(i) Treatment game

Based on a feedback loop between the resistance evolution and prescription norm, the game
approach establishes a social learning dynamical process that somehow controls the optimum
use of the antiviral treatment. To quantify the evolutionary decision dynamics of treatment versus
non-treatment (prescribing versus non-prescribing), we specify the relative treatment cost CT vis-
à-vis the infection cost Ci= 1. We also introduce the benefit BT of treating the sensitive strain (the
resistant strain is excluded, because it is much more difficult to treat than the sensitive strain, so
BT is always positive). This idea is formulated as a two-strategy game in table 1.

The fractions of individuals infected with the sensitive and resistant strains are, respectively,
given by

fs = βsS(Iu
sen + (1− ε)T)+ βs(V(t)− eV(0))(Iu

sen + (1− ε)T (2.10.1)

and
fr = βrS(Iu

res + εT)+ βr(V(t)− eV(0))(Iu
res + εT). (2.10.2)

The expected payoffs of the treated and untreated individuals are, respectively, given by

〈πT〉 = fs(BT − CT − 1)+ fr(−CT − 1)
fs + fr

(2.11.1)

and

〈πU〉 = fs(BT − 1)+ fr(−1)
fs + fr

. (2.11.2)

To model the two-strategy game, we presume the DC strategy update rule presented in
Iwamura & Tanimoto [51]. This rule is designed by comparing the expected payoffs of the treated
〈πT〉 and untreated 〈πU〉 individuals. In the present study, the strategy updates (in both the
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Table 1. Payoff structure of the treatment game with four costs.

strategy sensitive resistant

treated (prescribing) BT − CT − 1 −CT − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

untreated (non-prescribing) BT − 1 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Individual payoff structures and fractions of individuals at equilibrium.

healthy and infected and healthy and infected and
strategy vaccinated vaccinated non-vaccinated non-vaccinated

payoff −Cr −Cr − 1 0 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fraction of individuals HV IV SFR FFR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V= HV+ IV NV= SFR+ FFR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

treatment and vaccination games (see later)) apply the mean-field approximation. The modified
Fermi function of DC is given by

Prob(si← sj)=
1

1+ exp
[−(〈πj〉 − 〈πi〉)/κ

] , (2.12)

where 〈πi〉 and 〈πj〉 are the mean payoffs of the focal portion of individuals and the opponent
strategy (fraction), respectively. Here, we consider pairwise comparison between two groups;
which depends on the payoff difference 〈πj〉 − 〈πi〉. Because, the pairwise fermi has been well-
accepted strategy-updating procedure that stochastically comparable to the real-world human
decision-making process. The probabilities of the population transiting from untreated to treated
and from treated to untreated are, respectively, calculated as

Prob(T←U)= 1
1+ exp [−(〈πU〉 − 〈πT〉)/κ]

(2.13.1)

and

Prob(U← T)= 1
1+ exp [− (〈πT〉 − 〈πU〉) /κ]

. (2.13.2)

Consequently, the treatment game is expressed by the following DC dynamics:

Ṗ=−P(t) · Prob(T←U)+ (1− P(t)) · Prob(U← T). (2.14)

(ii) Vaccination game

This subsection models the evolutionary strategy update rule, considering the individual
decision-making on vaccination versus non-vaccination in the global time scale. The vaccination
cost Cr is defined relative to the disease cost Ci= 1. As shown in table 2, we presume four
portions of individuals in the equilibrium state (end of each season): (i) healthy and vaccinated
(HV); individuals paying −Cr, (ii) infected and vaccinated (IV); individuals paying −Cr− 1, (iii)
healthy and non-vaccinated (successful free rider (SFR)); individuals paying nothing, and (iv)
infected and non-vaccinated (successful free rider (FFR)); individuals paying− 1. The fractions of
all (whether healthy or unhealthy) vaccinated and non-vaccinated individuals are denoted as V
and NV, respectively.
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Considering the defined payoff structure and the portion of individuals presented in table 2,
the social average payoff 〈π〉, expected value of vaccinators 〈πC〉 and expected value of non-
vaccinators 〈πD〉 are, respectively, given by

〈π〉 =−Cr ·HV(τ )− (Cr + 1) · IV(τ )− INV(τ ), (2.15)

〈πC〉 = {−Cr ·HV(τ )− (Cr + 1) · IV(τ )}
{HV(τ )+ IV(τ )} (2.16)

and 〈πD 〉 = {−INV(τ )}
{HNV(τ )+ INV(τ )} . (2.17)

To formulate the evolutionary process, we consider two types of strategy adaptation
procedures [53]; IB-RA and SB-RA. In the case of IB-RA, an individual can update strategy
by observing a neighbour’s strategy. The update is governed by the transition probability
Prob(si← sj) taken from the pairwise Fermi function [1]. Alternatively, in an SB-RA, an individual
relies on the mean payoff of all opposite neighbours [2]. We apply the mean-field approximation
to formulate the adaptation dynamics in both the IB-RA and SB-RA rules. Here, we replace the
first row by the actual transition probabilities in the second row of table 3.

(iii) Evolutionary dynamical system for the vaccination game

To establish the dynamical system at the end of each epidemic season, we formulate IB-RA
and SB-RA as mathematical models that modify the fraction of vaccinators x. The evolutionary
dynamics of the IB-RA and SB-RA are, respectively, given by

Individual-based risk assessment (IB-RA)

ẋ=HV(x,∞) · SFR(x,∞) · (Prob(SFR←HV)− Prob(HV← SFR))

+HV(x,∞) · FFR(x,∞) · (Prob(FFR←HV)− Prob(HV← FFR))

+ IV(x,∞) ·HNV(x,∞) · (Prob(SFR← IV)− Prob(IV← SFR))

+ IV(x,∞) · FFR(x,∞) · (Prob(FFR← IV)− Prob(IV← FFR))}. (2.18)

Society-based risk assessment (SB-RA)

ẋ=−(1− x) ·HV(x,∞) · Prob(HV←NV)− (1− x) · IV(x,∞) · Prob(IV←NV)

+ x · SFR(x,∞) · Prob(SFR←V)− x · FFR(x,∞) · Prob(FFR←V). (2.19)

We have now established all mathematical frameworks in both the vaccination and treatment
cases. The above set of equations is numerically solved by the explicit finite difference method.
The calculation results affected by the two-stage process (the SITR/V dynamical model and
treatment update) are together obtained in a single season (local update) at equilibrium, and the
vaccination strategy is adopted at the end of every season (global update). The initial values were
set as V(x, 0)= x, S(x, 0)≈ 1− x, Iu

sen(x, 0)≈ 0, Iu
res(x, 0)≈ 0, T(x, 0)= 0 and R(x, 0)= 0.

3. Results and discussion
The results are presented in two-dimensional (2D) phase diagrams. The strategy update rules of
the vaccination game (IB-RA or SB-RA) and the DC were applied on the global and local time
scales, respectively (where the DC depicts the prescribing behaviour of the treatment policy). The
coalescing impact of proactive vaccination and the retroactive treatment policy based on human
behaviour was formulated by the conventional mean-field approximation. The simultaneous
changes of two coevolutionary decision-making processes were globally demonstrated in two
cases. We first explored the phase diagram of the final epidemic size (FES), vaccination coverage
(VC), fraction of treated people (FTR) and the average social payoff (ASP) while varying two
parameters: the vaccination effectiveness e and the treatment efficacy ε, maintaining sensible fixed
values of the other parameters. In the second case, we introduce SED that explicitly reveals the
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Figure 3. Phase diagrams of FES. Panels A and B plot the results of IB-RA and SB-RA, respectively. In both panels, the first,
second and third rows display the results of varying the vaccination costs: (a-*) Cr = 0.1, (b-*) Cr = 0.3 and (c-*) Cr = 0.9.
Meanwhile, the first, second and third columns show the results of varying the treatment costs (*-i) CT = 0.1, (*-ii) CT = 0.3 and
(*-iii) CT = 0.9. The other parameters areβ s= 0.25,β r = 0.2,γ s= γ r = 0.1,μs=μr = 10−4,γ T = 0.3 andω= 0.15.
(Online version in colour.)

underlying social dilemmas in the vaccination and treatment games. In the numerical simulation,
we set the social-benefit cost BT = 0.3, the infection rates as βs= 0.25and βr= 0.20, the recovery
rates as γ s= 0.1, γ r= 0.1 and γ T = 0.3, and the mutation rates as μs= 0.00001 and μr= 0.00001.

To elucidate the mechanism of the epidemic spreading process and the interplay between
vaccination and treatment, we plotted the FES, VC, FTR and ASP in the e versus ε. The results
are plotted in figures 3–6, respectively. In each figure, panel sets A and B display the IB-RA and
SB-RA case, respectively. Moreover, panels (*-i), (*-ii) and (*-iii) show the results under treatment
costs CT = 0.1, 0.3 and 0.9, respectively, whereas panels (a-*), (b-*) and (c-*) present the results
under vaccination costs Cr= 0.1, 0.3 and 0.9, respectively.

As shown in figure 3, the FES increased (higher infection region) with increasing vaccination
cost Cr and treatment cost CT. Reducing the cost of both vaccination (Cr= 0.1) and treatment
(CT = 0.1) improved the FES (lowered the infection region) (figure 3(a-i), both panels).
Furthermore, reducing the costs (Cr, CT < 0.5) more effectively benefitted the FES (in terms of the
critical borderline between infection breakout and diminution) in IB-RA than in SB-RA (cf. panel
sets A and B); the reverse tendency was found at higher costs (Cr, CT) as analogously reported by
Fukuda et al. [2]. When the costs are relatively low, vaccination is more encouraged in SB-RA than
in IB-RA, which hampers the reduction in the infected number of individuals in the early stage
of each season. Thus, based on the human decision-making of whether to accept or decline both
vaccination and treatment, the changing propensity of the FES can be significantly enhanced by
the vaccination effectiveness, treatment efficacy and their corresponding costs.

As indicated in figure 4, lowering the vaccination cost and increasing the reliability
(effectiveness) of the vaccine enticed the individuals to accept more vaccines. This tendency was
more marked in the SB-RA than in the IB-RA, and enhanced the vaccination acceptance when the
post-infection treatment cost was high (CT = 0.9) on the local time scale. However, the portion of
individuals making treatment provision (FTR) diminished at higher treatment costs (CT = 0.9)
in both schemes (panels (*-iii) in figure 5). A small treatment cost attracts individuals to the
treatment provision, whereas a higher cost hampers the treatment-seeking behaviour (lowers the
FTR). Therefore, either lowering the vaccination cost or improving the vaccination effectiveness
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Figure 4. Phase diagrams of VC. Panels A and B plot the results of IB-RA and SB-RA, respectively. In both panels, the first,
second and third rows display the results of varying the vaccination costs: (a-*) Cr = 0.1, (b-*) Cr = 0.3 and (c-*) Cr = 0.9.
Meanwhile, thefirst, secondand third columns showthe results of varying the treatment costs: (*-i)CT = 0.1, (*-ii)CT = 0.3 and
(*-iii) CT = 0.9. The other parameters areβ s= 0.25,β r = 0.2,γ s= γ r = 0.1,μs=μr = 10−4,γ T = 0.3 andω= 0.15.
(Online version in colour.)
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Figure 5. Phase diagrams of FTR. Panels A and B plot the results of IB-RA and SB-RA, respectively. In both panels, the first,
second and third rows display the results of varying the vaccination costs: (a-*) Cr = 0.1, (b-*) Cr = 0.3 and (c-*) Cr = 0.9.
Meanwhile, thefirst, secondand third columns showthe results of varying the treatment costs: (*-i)CT = 0.1, (*-ii)CT = 0.3 and
(*-iii) CT = 0.9. The other parameters areβ s= 0.25,β r = 0.2,γ s= γ r = 0.1,μs=μr = 10−4,γ T = 0.3 andω= 0.15.
(Online version in colour.)

will improve the FTR. Meanwhile, reducing the treatment cost increased the FTR even when the
vaccination cost was high (Panels (*-i) of figure 5). Briefly, both the vaccination and treatment costs
significantly influence the individual choice. The vaccine effectiveness and treatment efficacy also
play substantial roles. The above results are consolidated by the ASP results plotted in figure 6.
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Figure 6. Phase diagram of ASP. Panels A and B plot the results of IB-RA and SB-RA, respectively. In both panels, the first,
second and third rows display the results of varying the vaccination costs: (a-*) Cr = 0.1, (b-*) Cr = 0.3 and (c-*) Cr = 0.9.
Meanwhile, thefirst, secondand third columns showthe results of varying the treatment costs: (*-i)CT = 0.1, (*-ii)CT = 0.3 and
(*-iii) CT = 0.9. The other parameters areβ s= 0.25,β r = 0.2,γ s= γ r = 0.1,μs=μr = 10−4,γ T = 0.3 andω= 0.15.
(Online version in colour.)

(a) Dual-dilemma structure
To explore the dual-dilemma structure on an epidemiological model, we considered the
joint impact of vaccination and treatment games in the same context. A typical scenario is
demonstrated in figure 7. Our idea was motivated by the endorsement of social dilemma
situations in the strategies of evolutionary game theory, in which the players are all individuals in
a well-mixed population. In a coevolutionary adaptation process, it is important to know whether
the social dual-dilemma exists under certain combinations of the model parameters, such as the
vaccination effectiveness, treatment efficiency and their associated costs. Unlike simple 2 by 2
games in which the so-called dilemma strength (DS) can be explicitly defined [1], a real social
dilemma typically observed in the vaccination game [2,5–7,36–44], traffic flow [46–52] and others
may have a time-variable game structure. In the vaccination and traffic games, this structure is
mainly influenced by the disease-spreading and traffic flow dynamics, respectively. The time-
variable game structure is too complex to represent by the payoff matrix in a 2× 2 game or
the time-constant payoff structure function in the 2-strategy and n-player game. Thus, the DS
is difficult to determine in advance even when the mathematical model is well defined. Our new
SED concept (defined above and mathematically formulated blow) was inspired by the seminal
idea of traffic flow analysis (e.g. [56–62]). The DS indicates the existence or absence of a social
dilemma (behaving as a prognostic index), whereas the SED provides an ‘ex post’ or diagnostic
index. Here, let us define SED as the gap between the result of the evolutionary trail (which
can be evaluated by the Nash equilibrium (NE)) and the optimum solution (ideal result from
a social-welfare standpoint [63]). The payoff at the NE can always be observed by taking an
evolutionary game approach, whereas the optimal social payoff is observable in a model of any
complexity. Therefore, one can evaluate the SED in any context, and hence predict the occurrence
of a social dilemma (if the SED is positive, the gap exists; if it is zero, the evolutionary trail matches
the optimum). Thus, the SED indicates that the payoff can be improved from that at the NE.
Mathematically, the SED is given by

SED= (social optimal payoff)− (payoff at Nash equilibrium) (3.1)
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Figure 7. Flow diagram of the SED. (i) In the ASP phase diagram in the vaccination and treatment games, the NE point is
evaluated at every set of points (e,ε). (ii) The optimum x and P-values are calculated in the default ASP scenario (no game). (iii)
SED in the vaccination game, denoted by SEDv , and (iv) SED in the treatment game, denoted by SEDT . (Online version in colour.)

Again, let us reiterate that SED= 0 implies no social dilemma, while any social dilemma causes
a positive SED. According to the abovementioned conceptual definition, SED in the current model
(which deals with both vaccination and treatment games) is given by

SED= ASPOpt
social −ASPNE

Ci
=ASPOpt

social −ASPNE. (3.2.1)

Meanwhile, the ASP is the quantity of payoff. The superscript ‘Opt’ and subscript ‘social’
together indicate the social optimal. The Ci was taken as the standardizing denominator as
previously defined as 1. The SEDs in the vaccination and treatment game of the present model
are, respectively, defined as follows:

SEDV =ASP
xopt.

social
ei,εj|pk

−ASPNE
ei,εj|xl,pk

(3.2.2)

and

SEDT =ASP
Popt.

social
ei,εj|xl

−ASPNE
ei,εj|xl,pk

(3.2.3)

where ASPNE
ei,εj|xl,pk

indicates the average social payoff at the NE, estimated when both games
(vaccination and treatment) have occurred together on the local and global time scales. Now,



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190484

..........................................................

(a-ii)

(a-iii)

(a-iv)

(a-i) (a-i)(b-i) (b-i)

(a-ii)

(a-iii)

(a-iv)

(b-ii)

(b-iii)

(b-iv)

(b-ii)

(b-iii)

(b-iv)

panel A
0.50

panel B

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2

0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2

0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2

0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2 0.10 1.00.90.80.70.60.50.40.30.2

treatment efficacy e

SEDv SEDT SEDv SEDT

va
cc

in
e 

ef
fe

ct
iv

en
es

s 
e

C
r 
=

0.
9,

 C
T

 =
0.

9
C

r 
=

0.
9,

 C
T

 =
0.

1
C

r
=

0.
1,

 C
T

=
0.

9
C

r 
=

0.
1,

 C
T

 =
0.

1

Figure 8. Phase diagram of SED, panels A and B present the results of IB-RA and SB-RA, respectively. In both panels, rows
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to understand the ASP
xopt.

social
ei,εj|pk

and ASP
Popt.

social
ei,εj|xl

the terms xopt.
social and Popt.

social reflect the fact that the
maximum ASP is obtained for varying x ranging from 0 to 1 (for fixed pk) and varying P from
0 to 1(for fixed xl), respectively. Figure 7 presents the stepwise procedure of finding SED and
quantifying the dual dilemma in the proposed method.

Step 1. Construct the ASP phase diagram based on the evolutionary game approach (figure 7(i)).
To this end, implement both the vaccination and treatment games and obtain the
appropriate ASP at the NE, along with a certain vaccine effectiveness (e) and treatment
efficacy (ε). The ASP associated with the fraction of vaccinators and probability of
treatment (xl, pk) at the NE can also be observed for a precise (ei, εj).

Step 2. For this fixed (ei, εj), evaluate ASP
xopt.

social
ei,εj|pk

while constraining P at pk and the maximal ASP

is evaluated by varying x under the default setting. Likewise evaluate ASP
Popt

social
ei,εj|xl

while
constraining x at xl (figure 7(ii)).

Step 3. Using the values obtained in Steps 1 and 2, calculate the values of SEDV and
SEDT formulated in equations (3.2.2) and (3.2.3) (figure 7(iii),(iv), respectively). The
existence of a social dilemma in the model can be visually depicted in a heat-map of
the SEDs.
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To address whether a dual dilemma exists in the vaccination and treatment games, we plot the
SED diagrams in the vaccination effectiveness (e) versus treatment efficacy (ε) planes at different
costs. Panels A and B of figure 8 are plotted under the strategy update rules IB-RA and SB-RA,
respectively, and plots (a-*) and (b-*) present the SEDs in the vaccination game SEDv and the
treatment game SEDT, respectively. Moreover, the combined vaccination and treatment costs (Cr,
CT) were varied as (0.1, 0.1), (0.1, 0.9), (0.9, 0.1) (0.1, 0.1), and (0.9, 0.9) in plots (*-i), (*-ii), (*-iii)
and (*-iv), respectively. As demonstrated in the above SED formulation, the dilemma situation
(non-white areas in the plots) appeared in all cases, but interestingly depended on e and ε. No-
dilemma regions, in which either the vaccination or treatment game became trivial, were also
observed. Now, comparing panels (a-i) and (a-ii) for Cr= 0.1 with panels (a-iii) and (a-iv) for
Cr= 0.9, one finds that the non-dilemma region (whiteout region) expanded with increasing
vaccination cost. At the smaller vaccination cost (Cr= 0.1), the region of larger SED appeared
at a relatively low vaccination effectiveness (around e= 0.4; dotted red box in panel (a-i)). The
huge gap between NE and the social optimal results from the lower NE due to a lower efficiency
which makes fewer people commit vaccination when compared with a situation allowing a
relatively higher efficiency which makes much more people commit. By contrast, a relatively high
vaccination efficiency entices people to vaccinate, thus increasing the NE. Meanwhile, increasing
the vaccination cost (Cr= 0.9) shifted the region of reasonably high SED to the maximally high
vaccination effectiveness (dotted blue box in panel (a-iv)). This occurred because despite the high
vaccination effectiveness, low vaccination efficiency hampers the commitment to vaccination.
Reliable vaccination provides a high commitment incentive, but high cost encourages free-riding
on the herd immunity of the devoted others. In summary, we have numerically demonstrated
that the SED precisely and easily detects the social dilemma in our dual-dilemma coevolutionary
model.

4. Conclusion
This paper developed an SITR/V epidemic model that combines the effects of proactive
vaccination and retroactive treatment on the control and prevention of infectious viral diseases.
The model building and its investigation were presented in this work. The most important
contribution is that our new model gives a brand-new framework in which both pre-emptive
vaccination and treatment as an ex post provision having different evolutionary time scales, which
dovetails the ideological dynamics with the dynamics of the human decision-making process.
This concept has been never studied. Also, our model gives a clear procedure to quantify the
social dilemmas, respectively, entailed by ‘vaccination game’ and ‘treatment game’.

The most novel aspect of our model is the simultaneous implementation of two social
dilemma games: the antiviral treatment game and the vaccination game, which none of the
previous work has tried to implement. The vaccination game implements on the global time scale
under two strategy adaptation rules: IB-RA and SB-RA, assuming an infinite and well-mixed
population. Meanwhile, the treatment game describes the behaviour of antiviral administration
with resistant-strain emergence. The treatment game is updated on the local time scale by
presuming the DC rule, and precisely integrating a feedback loop between the sensitive and
resistant strains. The outcome of antiviral and vaccination use depends on the effectiveness of
the vaccine, the efficiency of treatment and their corresponding costs. Increasing the effectiveness
of the vaccine and lowering its administration cost reduced the final epidemic size (increased
vaccination coverage). Lowering the treatment cost and enhancing the treatment efficacy exerted
a similar effect. Thus, by applying retroactive antiviral use with pre-emptive vaccination, we can
deeply understand and investigate individual decisions regarding vaccination and implement
proper strategies that lessen the diffusion of infection or recommend appropriate and careful
administration of both antivirals and vaccination. We also introduced the social optimum point
Pc that distinguishes the conditions under which treatment resistance emerges under antibiotic
overuse and its associated factors.
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Besides evolving the voluntary vaccination game, our model introduces a new game aspect
with two provisions: vaccination as a proactive measure and treatment as a retroactive measure.
Presuming seasonal influenza-like diseases, the (pre-emptive) vaccination works over repeated
seasons on global time scales, whereas the ex post treatment works seasonally on local time scales
and depends on the antiviral cost, prescription behaviour and resistant-strain emergence. In
the present model, we successfully established a ‘double-layer’ game structure of pre-emptive
vaccination and ex post treatment. Unlike the vaccination game model, which only considers
whether the vaccine is accepted or declined, and whether an ex post provision is taken in a single
season, the treatment game includes an aspect that depends on the antiviral resistance evolution
and prescribing behaviour. To explicitly prove the dual-dilemma situation in the ‘double-layer’
game, we proposed the SED indicator, which quantifies whether the dynamics develop a social
dilemma structure. This indicator is measured by the gap between the NE and the social optimal
state. The dilemma strength [64–66], which explains the dilemma structure in simple two-player
and two-strategy (2× 2) games, is too simplistic for realistic dilemma games with substantially
complex and time-dependent structures, such as vaccination games and traffic flow analysis.
However, SED can quantify whether a game intrinsically has a social dilemma or not. We applied
the SED to the present social dual-dilemma game, in which both vaccination and treatment
dilemmas are inevitable.
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