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of the Sry transgene and bioassay for testicular
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Abstract

Background: The “four core genotypes” (FCG) mouse model has emerged as a major model testing if sex
differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both.
The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry
transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that
XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome
complement in cells and tissues.

Findings: We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of
the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the
Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12–14 copies of the transgene
were inserted. The anogenital distance (AGD) of FCG pups at 27–29 days after birth was not different in XX vs. XY
males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are
not caused by difference in prenatal androgen levels.

Conclusion: The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which
does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different
androgen levels prenatally.
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The four core genotypes (FCG) mouse model has the ad-
vantage of separating two major factors that cause pheno-
typic sex differences: sex chromosome complement (XX vs.
XY) and gonadal hormones [1-10]. The FCG model was
established by combining two mutations in the same mouse
line: deletion of the Sry gene from the Y chromosome (pro-
ducing the Y− chromosome), and insertion of an Sry trans-
gene onto an autosome [11,12]. Four genotypes are
produced: XX mice with and without the Sry transgene,
(XXSry, XX), and XY− mice with and without the Sry trans-
gene (XY−Sry, XY−). Comparing XX and XY mice of the
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same gonadal type allows the measurement of the effect of
sex chromosome complement (XX vs. XY) on traits in a
similar hormonal environment. The Sry transgene has been
used in over 60 primary literature articles (Table 1), and the
FCG model is available commercially (Jackson Laboratory,
Bar Harbor ME, strain 010905, B6.Cg-Tg(Sry)2Ei Sry <
dl1Rlb>/ArnoJ). Here we report the location and number
of copies of the Sry transgene.
An important issue is whether XX and XY FCG mice

with the same type of gonad experience different levels of
gonadal hormones, which therefore might confound the ef-
fects of sex chromosome complement (XX vs. XY). Previ-
ous studies have not detected differences in the levels of
testosterone in XX vs. XY adult males, or in estradiol in XX
vs. XY females groups [33,38,47,74]; R. Schafer, personal
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Table 1 Publications using the Sry transgene

Authors and years Authors and years

Abel et al., 2011 [13] Markham et al., 2003 [14]

Barker et al., 2010 [15] Mazeyrat et al., 2001 [16]

Bonthius et al., 2012 [17] McPhie-Lalmansingh et al.,
2008 [18]

Burgoyne et al., 2002 [19] Moore et al., 2013 [20]

Caeiro et al., 2011 [21] Ngun et al., 2014 [22]

Carruth et al., 2002 [23] Palaszynski et al., 2005 [24]

Chen et al., 2008, 2009, 2012,
2013a, 2013b [25-29]

Park et al., 2008 [30]

Cocquet et al., 2009 [31] Quinn et al., 2007 [32]

Corre et al., 2014 [33] Reynard et al., 2009 [34]

Cox and Rissman, 2011 [35] Robinson et al., 2011 [36]

Dadam et al., 2014 [37] Sasidhar et al., 2012 [38]

De Vries et al., 2002 [1] Scerbo et al., 2014 [39]

Durcova-Hills et al., 2004 [40] Seney et al., 2013a, 2013b [41,42]

Ehlen et al., 2013 [43] Seu et al., 2014 [44]

Ellis et al., 2005 [45] Smith-Bouvier et al., 2008 [46]

Gatewood et al., 2006 [47] Szot et al., 2003 [48]

Gioiosa et al., 2008a, 2008b [49,50] Toure et al., 2004, 2005 [51,52]

Ishikawa et al., 2003 [53] Van Nas et al., 2009 [54]

Ji et al., 2010 [55] Vernet et al., 2011, 2012 [56,57]

Kopsida et al., 2013 [58] Wagner et al., 2004 [59]

Kuljis et al., 2013 [60] Ward and Burgoyne, 2006 [61]

Kuo et al., 2010 [62] Wijchers et al., 2010 [63]

Li et al., 2014 [64] Xu and Arnold, 2005 [65]

Liu et al., 2010 [66] Xu et al., 2002, 2005a, 2005b,
2006, 2008a, 2008b [67-72]

Mahadevaiah et al., 1998 [12] Yamauchi et al., 2010 [73]

Manwani et al., 2015 [74]
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communication), but possible differences in levels of pre-
natal hormones have not been assessed. Here we measured
anogenital distance postnatally. Because androgens secreted
prenatally by the testes cause the AGD to be larger in mice
with testes than in those with ovaries [75,76], AGD is con-
sidered an excellent bioassay for the prenatal levels of an-
drogens. These effects of androgens cause permanent sex
differences in AGD, and are classified as “organizational” ef-
fects of gonadal hormones.

Methods
To identify the Sry transgene location, we first screened
the DNA sequences flanking the transgene using inverted
PCR [77] and vectorette PCR [78]. Amplified PCR frag-
ments of the boundaries were sequenced, and their speci-
ficities were confirmed by PCR using 6 and 10 pairs of
transgene-specific and flanking region primers on each
end, using DNA from C57BL/6 FCG mice as templates.
PCR was carried out with MyTaq HS Red Mix (Bioline
USA Inc.). The PCR reaction started at 94°C for 4 min be-
fore the cycling reaction of 35 cycles of 94°C for
45 sec/60°C for 30 sec/72°C for 1 min, and then
followed by single reaction at 72°C for 7 min. The
PCR reaction mixture was separated by 1.5% agarose
gel electrophoresis in 1 x TAE at 80 V. The primers
used in Figure 1 were: a) 5′-CCA TCT GGC CTA
TGA TGG AT-3′ (chr 3), b) 5′-CCT GCA GAC ATT
CTC TGT GC-3′ (chr 3), c) 5′-GCA AAG CTG AAC
AAG CAA CA-3′ (Sry transgene). d) 5′-CCA GGA CCA
GGC AAT TAT GT-3′ (Sry transgene), e) 5′-TAA ATG
GAG GGA AGC TGG AA-3′ (chr 3). Boundary DNA se-
quences are deposited in Genbank (accession: KF959637).
To estimate the number of Sry copies integrated in the

insertion site, we used quantitative PCR (standard curve
method) to amplify Sry transgenes from genomic DNA.
The quantitative PCR primers for Sry and control beta-2
microglobulin (B2m) were: Sry (5′-TTC CAG GAG GCA
CAG AGA TT-3′, 5′-GCA GGC TGT AAA ATG CCA
CT-3′), B2m (5′-AGG CCA AAA GCT CAC TCA AA-3′,
5′-GTG AGT TCT GGC TCC ACC AT-3′). We also con-
firmed the FCG vs. WT difference in copy number non-
quantitatively and visually on agarose gels with PCR using
other primers: Sry (5′- AGC CCT ACA GCC ACA TGA
TA-3′, 5′- GTC TTG CCT GTA TGT GAT GG-3′), myo-
genin (5′- TTA CGT CCA TCG TGG ACA GCA T-3′, 5′-
TGG GCT GGG TGT TAG TCT TAT-3′).
To evaluate the influence of the Sry transgene on

genes in the vicinity of the transgene, we analyzed the
FCG and WT liver microarray expression datasets
(GSE13264, GSE13265) [54]. Those comparable datasets
were from C57BL/6J background, using the same micro-
array platform in the same lab. One dataset allows meas-
uring changes in gene expression caused by the Sry
transgene in gonadectomized FCG mice (using a 2-way
ANOVA with factors of sex chromosome complement
(XX vs. XY) and Sry transgene (present vs. absent). The
other dataset compares gonadectomized WT males and
females, allowing measurement of the effects of the en-
dogenous Sry gene on the Y chromosome (one-way
ANOVA). The strain origin of the Y chromosome dif-
fered in the two datasets. We report both the p-values of
the ANOVAs (non-stringent analysis without correction
for multiple testing), as well as more conservative False
Discovery Rate p-values [79] (Table 2).
Metaphase chromosome spreads for FISH analysis were

prepared from primary fibroblast cells cultured from tail
tips. The Sry transgene plasmid construct was labeled with
AF555 dUTP by nick-translation and hybridization was
performed at 37°C in a humid chamber for 18–20 hours
in the presence of 10 ug mouse Cot1 DNA (Invitrogen)
and 9.4 mg salmon sperm DNA in Hybrisol VII (MP Bio-
medicals). Post-hybridization washes were 1× 2 minutes



Figure 1 Location of the Sry transgene in four core genotypes mouse model. Samples were from XX and XY mice with testes (XXSry, XY−Sry)
and XX and XY mice with ovaries (XX, XY−). Confirmation of transgene-genome boundary by PCR using transgene-specific primer d and Chr3 primer e
(A), with transgene-specific primer c and Chr3 primer b (B), and with transgene-specific primer c and Chr3 primer a (C). (D) The concatemer of
Sry transgene is inserted into a repetitive sequence present genome-wide. (E) Sry transgene location on chromosome 3. (F) A visual estimate of the
difference in copy number of Sry between wildtype and XY−Sry genomic DNA in agarose gel.
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2XSSC/0.3% NP40 at 68°C, 1 × 2 minutes 2XSSC/0.1%
NP40 at 25°C. Images were captured using an Olympus
AX-71 equipped with the Genus imaging software (Leica).
For chromosome 3 (Chr3) painting, biotin-labeled
Chromosome 3 Star*FISH© paint (Cambio) was used with
the addition of a pre-annealing step prior to hybridization
at 37°C for 90 minutes, followed by signal detection with
fluoresceinated avidin.
Anogenital distance was measured in 34–44 C57BL/6 J

FCG mouse pups per genotype, at 27–29 days after birth,
using a caliper. A two-way ANOVA (factors of sex
chromosome complement, XX vs. XY, and Sry (present vs.
absent) was used to assess group differences. The investi-
gator was blind to the genotype. Genotypes of FCG mice
was determined by standard PCR genotyping methods
using the primers: Sry (5′-AGC CCT ACA GCC ACA
TGA TA-3′, 5′-GTC TTG CCT GTA TGT GAT GG-3′),
Ymt (Y chromosome-specific sequence, 5′-CTG GAG
CTC TAC AGT GAT GA-3′, 5′-CAG TTA CCA ATC
AAC ACA TCA C-3′), and myogenin (5′-TTA CGT CCA
TCG TGG ACA GCA T-3′, 5′-TGG GCT GGG TGT
TAG TCT TAT-3′).

Findings
The inverted PCR and vectorette PCR methods indicated
that DNA sequences flanking the transgene represent part
of a repetitive motif that is found at 210–388 genomic
locations (http://www.ensembl.org, Release 73). Figure 1A
and B show the transgene-specific PCR amplification be-
tween Sry transgene sequence and the surrounding repeti-
tive sequence. These were not informative for mapping
the transgene in the genome, but some DNA fragments
from vectorette PCR suggested that the transgene was in-
tegrated into the motif within Chr3. This conclusion was
confirmed by amplification with Chr3-specific primer a
and transgene-specific primer c (Figure 1C and D). The
Sry transgene integration site was at Chr3 70673749-
70673824 bp (Figure 1E, based on Ensembl Release 73),
and involved deletion of 74 bp of Chr3 during integration.
The integration did not interrupt any known protein cod-
ing genes or pseudogenes (Table 3). The gene closest to
the integration site is the Gm10780 pseudogene, 15 kb dis-
tant from the transgene.
To assess if the transgene affected gene expression

nearby, we compared expression of 22 probes in liver in
FCG mice with and without the transgene (Table 2). Most
nearby genes showed no effect of the transgene. In a few
cases, expression was affected by Sry, which could have
been a local effect or one mediated by testicular secretions
downstream of Sry. To control for hormonally-induced
changes in gene expression, we compared expression of
the same genes in WT males (with endogenous Sry) vs. fe-
males using published microarray gene profiling. Two
genes, Lxn and Ppid, show evidence of regulation by the

http://www.ensembl.org


Table 2 Expression of Chr3 genes near the Sry transgene

FCG WT Distance

Probe ANOVA FDR MF ANOVA FDR MF (bp)

Lxn 0.001 0.035 -0.08 0.549 0.998 0.02 -3215751

Rarres1 0.868 0.963 -0.01 0.678 0.999 -0.02 -3194863

Mfsd1 0.187 0.530 -0.04 0.339 0.951 -0.05 -3090981

Schip1 0.033 0.225 -0.04 0.806 0.999 -0.01 -2608947

Schip1 0.568 0.837 -0.01 0.615 0.999 -2608947

Il12a 0.310 0.656 -0.01 0.598 0.999 0.01 -1983105

Trim59 0.021 0.179 -0.09 0.160 0.832 0.03 -1638461

Trim59 0.950 0.985 0.00 0.623 0.999 0.02 -1638461

Kpna4 0.868 0.963 0.00 0.760 0.999 -0.01 -1606600

Ppm1l 0.034 0.230 0.08 0.002 0.417 0.06 -1356888

Nmd3 0.085 0.362 0.07 0.083 0.734 0.10 -951764

Sry transgene 0

Slitrk3 0.346 0.684 -0.02 0.728 0.999 0.02 2374377

Bche 0.060 0.306 0.10 0.931 0.999 -0.01 2962059

Serpini2 0.676 0.890 0.01 0.942 0.999 0.00 4568621

Pdcd10 0.231 0.580 0.03 0.308 0.938 0.04 4842741

Pdcd10 0.336 0.677 0.02 0.278 0.926 0.04 4842741

Serpini1 0.130 0.447 0.01 0.509 0.993 -0.02 4883798

Fstl5 0.917 0.978 0.00 0.831 0.999 0.01 5400521

Rapgef2 0.900 0.973 0.00 0.319 0.946 0.03 8388767

Ppid 0.002 0.056 0.14 0.674 0.999 0.02 8917593

Etfdh 0.024 0.191 0.09 0.987 0.999 0.00 8930039

4930579G24Rik 0.658 0.880 0.02 0.118 0.776 -0.07 8955330

The table shows ANOVA and False Discovery Rate (FDR) p-values of Sry effects on
gene expression in liver of FCG mice (effect of Sry transgene) and of WT mice
(effect of endogenous Sry). For several genes, p values for two different probes
for the same gene are shown. MF is fractional mean difference between males
(M, with Sry) and females (F, without Sry). For example, -0.08 means that F had
about 8% higher expression than M. Distance is relative to the Sry transgene in
FCG mice.

Table 3 Chr3 genes near the Sry transgene

Ensembl gene ID Start (bp) End (bp) Gene name

ENSMUSG00000087848 69685467 69685580 Gm25621

ENSMUSG00000068969 69716986 69717393 Rpl32-ps

ENSMUSG00000027787 69721985 69749042 Nmd3

ENSMUSG00000043461 69819538 69859896 Sptssb

ENSMUSG00000077366 69962315 69962445 Gm23484

ENSMUSG00000027788 70007613 70028708 Otol1

ENSMUSG00000089507 70228747 70228874 Gm23477

70673749 70673824 (Sry transgene)

ENSMUSG00000074877 70689092 70689380 Gm10780

ENSMUSG00000097252 70772379 70807291 AC105155.1

Figure 2 FISH mapping of the Sry transgene to Chromosome 3.
The Sry transgene signal (A, red) and chromosome Chromosome 3
paint (B, green) hybridize to the same metaphase chromosome.
(C) Sry transgene hybridization in three additional metaphase cells
demonstrating its location with respect to the p- and q-arm ends.
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Sry transgene but not by WT Sry, based on conservative
analysis. These are about 3 megabases or more from the
transgene. Based on less stringent analysis, several other
genes are candidates for those differentially expressed by
the transgene vs. WT Sry. Further work is needed to de-
termine if the transgene effects are found in different tis-
sues and conditions, and are direct or indirect.
The Sry transgene band in genomic DNA from FCG

was stronger than in WT (Figure 1F), suggesting that
the transgene was concatemerized during integration at
this site. The number of copies of the transgene was es-
timated with quantitative genomic PCR (not shown) to
be 12–14. The Sry transgene probe was co-localized with
the Chr3 paint in metaphase spreads from FCG mice
(Figure 2).
AGD was found to differ in mice with testes vs. ovaries

(Figure 3), but not in XX and XY mice of the same gonadal
sex (Figure 3). A two-way ANOVA showed a significant
main effect of sex (F(1,146) = 223, p < 0.00001), but no
effect of sex chromosome complement (XX vs. XY,
F(1,146) = 0.03, p = 0.87) and no significant interaction
(F(1,146) = 0.67, p = 0.42).

Discussion
The goal of transgenic insertion is to achieve normal levels
of expression of the transgene without influencing other
genes because of interruption of coding or regulatory re-
gions in the genome. Transgenic models are often useful
even when this goal is not achieved in every respect. In
the FCG model, mice with Sry are similar to WT males in



Figure 3 Anogenital distance measurement of FCG mice.
Asterisk shows the significant effect of sex (two way ANOVA, p < 0.00001).
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numerous traits, but differ for a few other traits, including
higher expression of Sry, indicating that the transgene ef-
fect is similar but not identical to endogenous Sry [1,74].
Here we show that insertion of Sry onto Chr3 does not
disrupt any known coding sequence. Moreover, analysis of
gene expression suggests that two genes near Sry may also
be altered by the transgenic insertion, as judged by expres-
sion levels in liver. Further analysis is required to deter-
mine if local genes are affected by the transgene. The FCG
model has the advantage of comparing the effects of sex
chromosome complement (XX vs. XY) in mice with and
without the transgene. The FCG model has been useful
for discovering numerous traits that are influenced by sex
chromosome complement, which are independent of the
presence of the transgene or have been confirmed by ana-
lysis of non-transgenic mouse models that vary sex
chromosome complement [25-28,64,80]. The concate-
meric insertion of 12–14 copies of a transgene at one site
is not unexpected, and in the present case is associated
with higher than normal expression of Sry in FCG than
WT mice [74].
The greater AGD in mice with testes is expected from

previous studies that demonstrate that AGD is influ-
enced by the level of prenatal androgens. The present
data offer no support for the hypothesis that the levels
of androgens secreted prenatally, when AGD is deter-
mined, differ in XX and XY mice with the same type of
gonad. For example, there was no masculinization of
AGD of XY females relative to XX females. That result
argues against the idea that XX vs. XY differences ob-
served in numerous tissues are a result of differences in
levels of prenatal androgens.
The present results contribute to the understanding of

the FCG model which is used increasingly to discrimin-
ate effects of sex chromosome complement and gonadal
effects on sexually dimorphic non-gonadal phenotypes
(Table 1).
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