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Herpes-Simplex Virus type 2 (HSV-2) is a lifelong infection, which has infected over 400 million individuals 
aged 15-49 years, worldwide. While the disease can be treated with episodic and suppressive antiviral drugs 
to reduce the rate of recurrence (i.e., symptomatic disease) and viral shedding, none of the currently available 
therapies can clear the virus from the body of an infected person. A number of therapeutic vaccine platforms 
are currently in development in order to achieve similar effects to treatment. Due to the inadequate data from 
clinical trials of therapeutic vaccines, modeling efforts to quantify the impact of vaccination have been limited. 
In this study, we propose a compartmental deterministic model for the dynamics of HSV-2 to evaluate the effect 
of a potential vaccine candidate with the inclusion of a booster dose. Despite its simplicity that may not address 
the complexity of HSV-2 disease, the model shows that targeting symptomatic infection for vaccination is the 
most effective strategy in the long-term. This conclusion is based on the assumption of an optimal vaccine 
efficacy, conferring immunity levels that prevent viral shedding and recurrence transiently. Our model provides 
a framework for developing a computational system to include more heterogeneous characteristics of the disease 
and individuals, and investigate effectiveness and cost-effectiveness of vaccination scenarios when clinical data 
become available.
1. Introduction

Herpes-Simplex Virus type 2 (HSV-2) is a lifelong infection com-

monly associated with genital herpes [1, 2]. The virus does not trigger 
an effective immune response due to the lack of viral protein expression, 
and therefore clearance through adaptive immunity is not achievable. 
Rates of HSV-2 infections remain high, especially in individuals be-

tween 15-49 years of age [1]. There is a wide diversity of the clinical 
spectrum of HSV-2 disease [3], including asymptomatic and symp-

tomatic manifestations, with painful genital lesions [4, 5]. While the 
infection following exposure can be asymptomatic, it can be infectious 
(i.e., can shed virus) and develop to symptomatic disease [6]. The first 
symptomatic episode is the most severe episode, and can be returned to 
asymptomatic stage using antiviral treatment [4, 7].

Most individuals with initial episode of symptomatic HSV-2 experi-

ence recurrences, and the frequency can reach 6 or more episodes every

year [8]. Recurrence rates are especially high in individuals with an 
extended first episode of symptomatic disease. Men with genital HSV-

2 infection experience about 20% more recurrences than do women, 
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which can contribute to the higher rate of transmission from men to 
women than from women to men [8].

Symptomatic HSV-2 can be treated with episodic and suppressive 
antiviral treatments [9, 10, 11]. Although none of the currently avail-

able therapies can clear the virus from the body of an infected person, 
they generally suppress the symptoms. Treatment can reduce the sever-

ity and duration of symptoms, decrease viral shedding and neonatal 
herpes, facilitate healing of lesions, and lower the risk of complications 
and long-term sequelae [12]. Suppressive treatment is generally offered 
to patients with frequent recurrences and can be taken over several 
years to reduce the frequency of symptomatic recurrence [9, 10, 11].

Because treatment does not prevent shedding (although it may re-

duce its rate on average), there has been a surge of interest in devel-

oping therapeutic vaccines [13, 14, 15, 16, 17]. These vaccines may 
be targeted towards HSV-2 patients to act as suppressive treatment in 
order to extend the length of inter-episodic period (i.e., reducing the 
frequency of recurrences) while preventing virus shedding [18]. How-

ever, due to the limited data from clinical trials of HSV-2 therapeutic 
vaccines, modeling efforts have been limited in evaluating the impact 
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of vaccination. Previous mathematical models have mainly investigated 
the potential impact of a prophylactic HSV-2 vaccine [19, 20, 21, 22, 
23], while accounting for the population-level effectiveness of vaccina-

tion and the relative reduction in HSV-2 prevalence over time. Previous 
work suggests that the HSV-2 epidemic is most sensitive to changes in 
behavioral responses and to the probability of transmission during the 
asymptomatic stage, even in the presence of vaccine [19]. It has also 
been shown that therapeutic vaccines are likely to outperform prophy-

lactic vaccines over time [21, 22]. We found only one modeling study 
on the effect of a therapeutic vaccine [21], concluding that vaccina-

tion can substantially reduce the prevalence of disease if a significant 
portion of asymptomatic HSV-2 patients are vaccinated each year.

In this study, we propose a compartmental deterministic model for 
the dynamics of HSV-2 for the effect of therapeutic vaccination, with 
the inclusion of a booster dose. The proposed model is relatively simple 
with few parameters, and does not address the complexity of the disease 
and variability in individual and infection characteristics. However, it 
can be used illustrate the potential effect of vaccination and build the 
foundation for future studies that involve more heterogeneous char-

acteristics of the disease and individuals. We analyze the model and 
simulate it stochastically to show the effect of vaccination on the preva-

lence of HSV-2 over time in various scenarios including primary and 
booster vaccination. The novelty of this model relates to its structural 
components that allow for vaccination of primary symptomatic that is 
shown to be the most severe episode [24, 25], and booster vaccination 
with transient vaccine protection effects on recurrence [18]. These im-

portant components were absent in the previous work [21]. Using our 
model, we show that in contrast with previous work [21], therapeu-

tic vaccination of HSV-2 infection may be most effective when targeted 
towards symptomatic infection with highest possible rates rather than 
asymptomatic.

2. The basic model

To develop a vaccination mode for HSV-2 infection dynamics, we 
first consider a simple model where vaccination is targeted towards 
only infected individuals who develop symptomatic infection. In this 
model, the total population (𝑁) is divided into four classes of suscep-

tible (𝑆), symptomatically infectious (𝐼), asymptomatically infectious 
(𝐴), and vaccinated individuals (𝐷). We do not consider any recovered 
class as HSV-2 is a life-long infection. For this study, we assume a highly 
effective vaccine that can reduce the frequency of recurrence (i.e., de-

veloping symptomatic disease), and prevent virus shedding during the 
vaccine-induced protection. We assumed newly infected individuals de-

velop primary symptomatic infection following exposure. Symptomatic 
cases either receive suppressive treatment or vaccination. Those who 
are treated with suppressive drugs move to the asymptomatic class 𝐴
and may still contribute to disease spread with a lower rate compared 
to symptomatic cases. Those who are vaccinated during symptomatic 
stage move to the class 𝐷 and do not contribute to the spread of dis-

ease for the duration of vaccine-induced protection. Summarizing the 
above dynamics, the model can be expressed by the following system of 
differential equations:

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝛽𝑆(𝐼 + 𝛿𝐴) − 𝜇𝑆

𝑑𝐼

𝑑𝑡
= 𝛽𝑆(𝐼 + 𝛿𝐴) − (𝛾 + 𝜉)𝐼 + 𝜂𝐴− 𝜇𝐼

𝑑𝐴

𝑑𝑡
= 𝛾𝐼 − (𝜂 + 𝜇)𝐴+ 𝜃𝐷

𝑑𝐷

𝑑𝑡
= −(𝜇 + 𝜃)𝐷 + 𝜉𝐼

(1)

where 𝜇 is the rate of natural death assumed to be the same as the 
birth rate for simplicity of the analysis (i.e., keeping the total popula-

tion 𝑁 = 𝑆 + 𝐼 +𝐴 +𝐷 constant), 𝛽 is the baseline transmission rate of 
symptomatically infectious individuals, 𝛿 is the relative transmissibility 
of asymptomatic infection compared to symptomatic infection, 𝛾 and 𝜉
2

are the rates of suppressive treatment and vaccination for symptomatic 
infection, respectively, 𝜂 is the rate of recurrence, and 𝜃 is the rate of 
loss of vaccine-induced immunity.

This system admits two steady states, namely the disease-free equi-

librium (DFE) 𝐸0 = (𝑁, 0, 0, 0) and the endemic equilibrium (EE) 𝐸∗ =
(𝑆∗, 𝐼∗, 𝐴∗, 𝐷∗). The latter can be analytically obtained as follows. Solv-

ing the fourth and the third equations of (1) at the steady state, we 
find:

𝐼∗ =
𝜇 + 𝜃

𝜉
𝐷∗, 𝐴∗ =

𝐷∗
𝜇 + 𝜂

[
𝛾
𝜇 + 𝜃

𝜉
+ 𝜃

]
.

Upon substitution of the above quantities respectively into the sec-

ond and first equations of (1), we get:

𝑆∗ =
(𝛾 + 𝜉 + 𝜇)(𝜇 + 𝜃)(𝜇 + 𝜂) − 𝜂𝛾(𝜇 + 𝜃) − 𝜃𝜉𝜂

𝛽[(𝜇 + 𝜃)(𝜇 + 𝜂) + 𝛿𝛾(𝜇 + 𝜃) + 𝛿𝜉𝜃]
,

𝐷∗ =
𝜇(𝑁 −𝑆∗)𝜉(𝜇 + 𝜂)

𝛽𝑆∗[(𝜇 + 𝜃)(𝜇 + 𝜂) + 𝛿𝛾(𝜇 + 𝜃) + 𝛿𝜉𝜃]
.

Nonnegativity of the populations is ensured, except for 𝐷∗ which re-

quires 𝑆∗ ≤𝑁 . This condition explicitly becomes:

𝑅𝑐 =
𝛽𝑁[(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝛿𝛾) + 𝛿𝜉𝜃]

𝜇[(𝛾 + 𝜂 + 𝜇)(𝜇 + 𝜃) + 𝜉(𝜇 + 𝜃 + 𝜂)]
≥ 1. (2)

2.1. Stability of the DFE

For the stability of the DFE, we investigate the Jacobian of the sys-

tem given by:

𝐽 =

⎛⎜⎜⎜⎜⎝

−𝛽(𝐼 + 𝛿𝐴) − 𝜇 −𝛽𝑆 −𝛽𝛿𝑆 0
𝛽(𝐼 + 𝛿𝐴) 𝛽𝑆 − (𝛾 + 𝜉 + 𝜇) 𝛽𝛿𝑆 + 𝜂 0

0 𝛾 −(𝜂 + 𝜇) 𝜃

0 𝜉 0 −(𝜃 + 𝜇)

⎞⎟⎟⎟⎟⎠
(3)

At the DFE, we find that one eigenvalue of the Jacobian evaluated 
at 𝐸0 is explicitly known as −𝜇. For establishing stability, we use the 
Routh-Hurwitz criterion on remaining submatrix of order three, 𝐽𝐸0

.

Denoting the principal minors of 𝐽𝐸0
by Δ̃0, with further indices 

corresponding to the elements of the diagonal that pertain to them, the 
first condition on the trace can be written as

tr(𝐽𝐸0
) =

3∑
𝑘=1

Δ0,𝑘 < 0,

Δ̃0,1 = 𝛽𝑁 − (𝛾 + 𝜉 + 𝜇),

Δ̃0,2 = −(𝜂 + 𝜇),

Δ̃0,3 = −(𝜃 + 𝜇).

The sum of the minors of order two becomes

𝑀2 = Δ̃0,12 + Δ̃0,13 + Δ̃0,23,

Δ̃0,13 = (𝜇 + 𝜃)(𝛾 + 𝜉 + 𝜇 − 𝛽𝑁) > 0,

Δ̃0,12 = (𝜇 + 𝜂)(𝛾 + 𝜉 + 𝜇 − 𝛽𝑁) − 𝛾(𝛽𝛿𝑁 + 𝜂) > 0,

Δ̃0,23 = (𝜇 + 𝜃)(𝜇 + 𝜂).

For the determinant we must have:

−det(𝐽𝐸0
) = (𝜇 + 𝜃)Δ̃0,12 − (𝛽𝛿𝑁 + 𝜂)𝜃𝜉 > 0.

In addition, the condition

−tr(𝐽𝐸0
)𝑀2 > −det(𝐽𝐸0

) (4)

must be satisfied.

Now, from the trace, explicitly we have

𝑁 <
𝛾 + 𝜉 + 𝜂 + 𝜃 + 3𝜇

, (5)

𝛽
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while the condition on the determinant can explicitly be rewritten as

𝑅𝑐 =
𝛽𝑁[(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝛿𝛾) + 𝛿𝜉𝜃]

𝜇[(𝛾 + 𝜂 + 𝜇)(𝜇 + 𝜃) + 𝜉(𝜇 + 𝜃 + 𝜂)]
< 1. (6)

However, condition (5) can be neglected as it is already implied by (6), 
in view of the fact that the upper bound for 𝑁 obtained from (6) is 
smaller than the one implied by (5), because the following inequality is 
satisfied:

𝜇[(𝛾 + 𝜂 + 𝜇)(𝜇 + 𝜃) + 𝜉(𝜇 + 𝜃 + 𝜂)]

< (𝛾 + 𝜉 + 𝜂 + 𝜃 + 3𝜇)[(𝜇 + 𝜃)(𝜇 + 𝜂 + 𝛿𝛾) + 𝛿𝜉𝜃].

Thus, the sole conditions for stability of the DFE turn out to be (6) and 
(4). On comparing it with (2), a transcritical bifurcation between 𝐸0
and 𝐸∗ is seen to exist, [26], for which the two equilibria are mutually 
exclusive.

2.2. Stability of the EE

Stability of 𝐸∗ can be assessed in the same way. The diagonal entries 
of the Jacobian can be simplified using the equilibrium equations, in 
particular we find

𝐽∗,11 = −𝜇
𝑆∗
𝑁

, 𝐽∗,22 = −
𝐴∗
𝐼∗

(𝛽𝛿𝑆∗ + 𝜂),

𝐽∗,33 = − 1
𝐴∗

(𝛾𝐼∗ + 𝜃𝐷∗), 𝐽∗,44 = −𝜉
𝐼∗
𝐷∗

.

The condition on the trace is easily seen to be satisfied:

−tr(𝐽𝐸∗
) =

4∑
𝑘=1

𝐽∗,𝑘𝑘 > 0.

Moreover for the minors of order 2, we find

Δ̃∗,12 = 𝐽∗,11𝐽∗,22 + 𝛽2(𝐼∗ + 𝛿𝐴∗)𝑆∗ > 0,

Δ̃∗,23 = 𝐽∗,22𝐽∗,32 − 𝛾(𝛽𝛿𝑆∗ + 𝜂),

Δ̃∗,13 = 𝐽∗,11𝐽∗,33 > 0,

Δ̃∗,14 = 𝐽∗,11𝐽∗,44 > 0,

Δ̃∗,24 = 𝐽∗,22𝐽∗,44 > 0,

Δ̃∗,34 = 𝐽∗,33𝐽∗,44 > 0,

so that their sum is

𝑀∗,2 =
4∑

𝑘,𝑖=1
𝑘<𝑖

Δ̃∗,𝑘𝑖.

Those of order 3 are

Δ̃∗,123 = 𝐽∗,11[𝐽∗,22𝐽∗,33 − 𝛾(𝜂 + 𝛽𝛿𝑆∗)] + 𝛽2𝛿𝑆∗(𝛿𝐴∗ + 𝐼∗)(𝛾 + 𝐽∗,33),

Δ̃∗,124 = Δ̃∗,12𝐽∗,44,

Δ̃∗,234 = Δ̃∗,23𝐽∗,44 + 𝜉𝜃(𝜂 + 𝛽𝛿𝑆∗),

Δ̃∗,134 = 𝐽∗,11𝐽∗,33𝐽∗,44.

Finally,

det(𝐽𝐸∗
) = 𝐽∗,44Δ̃∗,123 + 𝜃𝜉[𝐽∗,11(𝜂 + 𝛽𝛿𝑆∗) + 𝛽2𝛿𝑆∗(𝛿𝐴∗ + 𝐼∗)].

Thus, letting also

𝑀∗,3 =
4∑

𝑘<𝑖<𝓁
𝑘,𝑖,𝓁=1

Δ̃∗,𝑘𝑖𝓁 ,

for the fourth order characteristic equation stemming from the Jacobian 
evaluated at 𝐸∗, the remaining Routh-Hurwitz conditions become:
3

−𝑀∗,3 > 0, tr(𝐽𝐸∗
)𝑀∗,2𝑀∗,3 >𝑀2

∗,3 + det(𝐽𝐸∗
)(tr(𝐽𝐸∗

))2, det(𝐽𝐸∗
) > 0.

(7)

Conditions (7) are necessary and sufficient for the stability of the EE of 
the basic model (1).

3. The full model

To expand the basic model, we divided the population into seven 
classes to include vaccination of asymptomatic infection and booster 
vaccination of those who have received primary vaccination during 
their symptomatic infection. These classes are denoted by 𝑆 (suscep-

tible), 𝐼 (symptomatic infection), 𝐴 (asymptomatic infection), 𝐷𝐼 (vac-

cination of symptomatic infection), 𝐷𝐴 (vaccination of asymptomatic 
infection), 𝐴𝑉 (asymptomatic infection of previously vaccinated indi-

viduals), and 𝐷𝐼𝐵 (booster vaccination). We express the model with the 
following system of differential equations:

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝛽𝑆[𝐼 + 𝛿(𝐴+𝐴𝑉 )] − 𝜇𝑆

𝑑𝐼

𝑑𝑡
= 𝛽𝑆[𝐼 + 𝛿(𝐴+𝐴𝑉 )] + 𝜂(𝐴+𝐴𝑉 ) − (𝛾 + 𝜉 + 𝜇)𝐼

𝑑𝐴

𝑑𝑡
= 𝛾𝐼 + (1 − 𝑝)𝜃𝐷𝐼 − (𝜂 + 𝜉𝐴 + 𝜇)𝐴

𝑑𝐷𝐼

𝑑𝑡
= 𝜉𝐼 − (𝜃 + 𝜇)𝐷𝐼

𝑑𝐷𝐴

𝑑𝑡
= 𝜉𝐴𝐴− (𝜈 + 𝜇)𝐷𝐴

𝑑𝐴𝑉

𝑑𝑡
= 𝜃𝐷𝐼𝐵 + 𝜈𝐷𝐴 − (𝜂 + 𝜇)𝐴𝑉

𝑑𝐷𝐼𝐵

𝑑𝑡
= 𝑝𝜃𝐷𝐼 − (𝜇 + 𝜃)𝐷𝐼𝐵

(8)

where 𝜉𝐴 is the rate of vaccination for asymptomatic infection, 𝑝 is 
the fraction of primary vaccinated individuals who receive a booster 
dose, 𝜈 is the rate of loss of vaccine-induced immunity for asymptomatic 
infection, and other parameters are the same as those defined in the 
basic model. In this model, the total population is 𝑁 = 𝑆 + 𝐼 +𝐴 +𝐷𝐼 +
𝐷𝐴 +𝐴𝑉 +𝐷𝐼𝐵 .

From equations (8), we can deduce some implications to show that 
only two equilibria are possible. The first equation yields that 𝑆 = 0
is impossible, as 𝑁 ≠ 0. Then 𝐼 = 0 implies that 𝐴 = 𝐷𝐼 = 𝐴𝑉 = 0, and 
therefore 𝐷𝐴 = 𝐷𝐼𝐵 = 0. It can therefore be seen that the model (8)

admits only a disease-free (DFE) equilibrium and an endemic one, given 
by:

𝐸0 = (𝑁,0,0,0,0,0,0), 𝐸∗ = (𝑆∗, 𝐼∗,𝐴∗,𝐷∗
𝐼
,𝐷∗

𝐴
,𝐴∗

𝑉
,𝐷∗

𝐼𝐵
).

To establish the stability of these equilibria, we calculate the Jaco-

bian of (8):

𝐽 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐽11 −𝛽𝑆 −𝛽𝛿𝑆 0 0 −𝛽𝛿𝑆 0
𝐽21 𝐽22 𝛽𝛿𝑆 + 𝜂 0 0 𝛽𝛿𝑆 + 𝜂 0
0 𝛾 𝐽33 (1 − 𝑝)𝜃 0 0 0
0 𝜉 0 −(𝜃 + 𝜇) 0 0 0
0 0 𝜉𝐴 0 −(𝜇 + 𝜈) 0 0
0 0 0 0 𝜈 −(𝜇 + 𝜂) 𝜃

0 0 0 𝑝𝜃 0 0 −(𝜇 + 𝜃)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with:

𝐽11 = −𝛽[𝐼 + 𝛿(𝐴+𝐴𝑉 )] − 𝜇,

𝐽21 = 𝛽[𝐼 + 𝛿(𝐴+𝐴𝑉 )],

𝐽22 = 𝛽𝑆 − (𝛾 + 𝜉 + 𝜇),

𝐽33 = −(𝜂 + 𝜇 + 𝜉𝐴).

At 𝐸0, one eigenvalue of 𝐽 is explicit, −𝜇. For the remaining minor, 
𝐽𝐸0 , we need to assess the Routh-Hurwitz conditions. The condition on 
the trace −tr(𝐽𝐸0 ) > 0 is easily stated explicitly:
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𝛽𝑁 < 𝛾 + 𝜉 + 𝜉𝐴 + 𝜈 + 2(𝜃 + 𝜂) + 6𝜇. (9)

The next step consists in calculating at first the minors of all orders. For 
those of order two, we find

Δ̂0
12 = −[𝛽𝑁 − (𝛾 + 𝜉 + 𝜇)](𝜇 + 𝜂 + 𝜉𝐴) − 𝛾(𝛽𝑁 + 𝜂),

Δ̂0
13 = Δ̂0

16 = −[𝛽𝑁 − (𝛾 + 𝜉 + 𝜇)](𝜇 + 𝜃),

Δ̂0
14 = −[𝛽𝑁 − (𝛾 + 𝜉 + 𝜇)](𝜇 + 𝜈),

Δ̂0
23 = Δ̂0

26 = (𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜃),

Δ̂0
24 = (𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜈),

Δ̂0
36 = (𝜇 + 𝜃)2,

Δ̂0
25 = (𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜂),

Δ̂0
34 = Δ̂0

46 = (𝜇 + 𝜃)(𝜇 + 𝜈),

Δ̂0
45 = (𝜇 + 𝜈)(𝜇 + 𝜂),

Δ̂0
35 = Δ̂0

56 = (𝜇 + 𝜃)(𝜇 + 𝜂),

Δ̂0
15 = −[𝛽𝑁 − (𝛾 + 𝜉 + 𝜇)](𝜇 + 𝜂).

Recalling that (𝐽𝐸0
)11 = 𝛽𝑁 − (𝛾 + 𝜉 + 𝜇), those of order three are

Δ̂0
123 = −Δ̂0

12(𝜇 + 𝜃)

+ 𝜉(𝛽𝛿𝑁 + 𝜂)(1 − 𝑝)𝜃,

Δ̂0
134 = Δ̂0

146 = (𝐽𝐸0
)11(𝜇 + 𝜃)(𝜇 + 𝜈),

Δ̂0
145 = (𝐽𝐸0

)11(𝜇 + 𝜂)(𝜇 + 𝜈),

Δ̂0
234 = (𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜃)(𝜇 + 𝜈),

Δ̂0
235 = Δ̂0

256

= −(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜃)(𝜇 + 𝜂),

Δ̂0
236 = −(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜃)2,

Δ̂0
246 = −(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜈)(𝜇 + 𝜃),

Δ̂0
345 = Δ̂0

456 = −(𝜇 + 𝜂)(𝜇 + 𝜈)(𝜇 + 𝜃),

Δ̂0
346 = −(𝜇 + 𝜈)(𝜇 + 𝜃)2,

Δ̂0
124 = −Δ̂0

12(𝜇 + 𝜈),

Δ̂0
125 = −Δ̂0

12(𝜇 + 𝜂),

Δ̂0
126 = −Δ̂0

12(𝜇 + 𝜃),

Δ̂0
135 = (𝐽𝐸0

)11(𝜇 + 𝜂)(𝜇 + 𝜃),

Δ̂0
136 = (𝐽𝐸0

)11(𝜇 + 𝜃)2,

Δ̂0
156 = (𝐽𝐸0

)11(𝜇 + 𝜃)(𝜇 + 𝜂),

Δ̂0
245 = −(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜈)(𝜇 + 𝜂),

Δ̂0
356 = −(𝜇 + 𝜂)(𝜇 + 𝜃)2.

For the order four we have

Δ̂0
1234 = −(𝜇 + 𝜈)Δ̂0

123,

Δ̂0
1235 = −(𝜇 + 𝜂)Δ̂0

123,

Δ̂0
1236 = −(𝜇 + 𝜃)Δ̂0

123,

Δ̂0
1345 = −(𝜇 + 𝜈)Δ̂0

135,

Δ̂0
2346 = −(𝜇 + 𝜃)Δ̂0

234,

Δ̂0
1456 = −(𝜇 + 𝜃)Δ̂0

145,

Δ̂0
2345 = −(𝜇 + 𝜃)Δ̂0

245,

Δ̂0
2356 = −(𝜇 + 𝜃)Δ̂0

256,

Δ̂0
2456 = −(𝜇 + 𝜃)Δ̂0

245,

Δ̂0
3456 = −(𝜇 + 𝜃)Δ̂0

456,

Δ̂0
1245 = (𝜇 + 𝜂)(𝜇 + 𝜈)Δ̂0

12 − 𝛾𝜈𝜉𝐴(𝛽𝛿𝑁 + 𝜂),

Δ̂0
1246 = (𝜇 + 𝜃)(𝜇 + 𝜈)Δ̂0

12,

Δ̂0
1256 = (𝜇 + 𝜃)(𝜇 + 𝜂)Δ̂0

12,

Δ̂0
1346 = −(𝜇 + 𝜃)2(𝜇 + 𝜈)(𝐽𝐸0

)11,

Δ̂0
1356 = −(𝜇 + 𝜃)Δ̂0

135 − 𝑝𝜃2𝜉(𝛽𝛿𝑁 + 𝜂).

Next, the minors of order five follow:

Δ̂0
12345 = −(𝜇 + 𝜂)Δ̂0

1234 + 𝜈𝜉𝐴(𝛽𝛿𝑁 + 𝜂)[(1 − 𝑝)𝜃𝜉 + 𝛾(𝜇 + 𝜃)],

Δ̂0
12356 = −(𝜇 + 𝜃)Δ̂0

1235 − 𝑝𝜃2𝜉(𝛽𝛿𝑁 + 𝜂)(𝜇 + 𝜂 + 𝜉𝐴),

Δ̂0
12346 = −(𝜇 + 𝜃)Δ̂0

1234,

Δ̂0
12456 = −(𝜇 + 𝜃)Δ̂0

1245,

Δ̂0
13456 = −(𝜇 + 𝜈)Δ̂0

1356,

Δ̂0
23456 = (𝜇 + 𝜃)(𝜇 + 𝜈)Δ̂0

256.

To complete the task, we will calculate the sum of each class of the 
above minors to define the following quantities:
4

𝑀0
2 =

6∑
𝑖,𝑘=0
𝑖<𝑘

Δ̂0
𝑖𝑘
,

𝑀0
3 =

6∑
𝑖,𝑘,𝓁=0;
𝑖<𝑘<𝓁

Δ̂0
𝑖𝑘𝓁 ,

𝑀0
4 =

6∑
𝑖,𝑘,𝓁,𝑚=0
𝑖<𝑘<𝓁<𝑚

Δ̂0
𝑖𝑘𝓁𝑚,

𝑀0
5 =

6∑
𝑖,𝑘,𝓁,𝑚,𝑛=0
𝑖<𝑘<𝓁<𝑚<𝑛

Δ̂0
𝑖𝑘𝓁𝑚𝑛.

Finally we calculate the determinant:

det(𝐽𝐸0 ) = −(𝜇 + 𝜃)Δ̂0
12345 + 𝑝𝜃2(𝛽𝛿𝑁 + 𝜂)Δ234.

Now we can express the Routh-Hurwitz conditions for stability, in ad-

dition to (9):

𝐶0
2 =𝑀0

3 − tr(𝐽𝐸0 )𝑀0
2 > 0,

𝐶0
3 = tr(𝐽𝐸0 )

[
𝑀0

5 − tr(𝐽𝐸0 )𝑀0
4

]
−𝐶0

2𝑀
0
3 > 0,

𝐶0
4 =𝑀0

4𝐶
0
3 −𝑀0

2

[
𝑀0

2𝑀
0
5 tr(𝐽𝐸0 ) − (tr(𝐽𝐸0 ))2 det(𝐽𝐸0 ) −𝑀0

3𝑀
0
5

]
+ tr(𝐽𝐸0 )[𝑀0

4𝑀
0
5 −𝑀0

3 det(𝐽𝐸0 )] − (𝑀0
5 )

2 > 0,

𝐶0
5 = det(𝐽𝐸0 )

[
𝑀0

3𝐶
0
3 − (tr(𝐽𝐸0 ))2𝑀0

2𝑀
0
5 + (tr(𝐽𝐸0 ))3 det(𝐽𝐸0 )

+ tr(𝐽𝐸0 )𝑀0
3𝑀

0
5

]
−𝑀0

5𝐶
0
4 > 0.

(10)

The last condition on the positivity of the determinant can be explicitly 
written down:

det(𝐽𝐸0 ) = −𝛽𝑁
[
(𝜇 + 𝜃)2(𝜇 + 𝜂)(𝜇 + 𝜈)(𝜂 + 𝜇 + 𝜉𝐴)

+ 𝛾𝛿(𝜇 + 𝜃)2(𝜇 + 𝜂)(𝜇 + 𝜈) + 𝛿𝜉(𝜇 + 𝜃)(𝜇 + 𝜂)(𝜇 + 𝜈)(1 − 𝑝)𝜃
]

− (𝜇 + 𝜃)(𝜇 + 𝜂)(𝜇 + 𝜈)𝜉𝜂(1 − 𝑝)𝜃

+ (𝜇 + 𝜃)2(𝜇 + 𝜂)(𝜇 + 𝜈)
[
(𝛾 + 𝜉 + 𝜇)(𝜇 + 𝜂 + 𝜉𝐴) − 𝛾𝜂

]
− 𝛽𝑁

[
𝛿𝜈𝜉𝐴(𝜇 + 𝜃)[𝛾(𝜃 + 𝜇) + (1 − 𝑝)𝜃𝜉]

+ 𝑝𝛿𝜃2𝜉(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜈)
]
− 𝜂𝜈𝜉𝐴(𝜇 + 𝜃)[𝛾(𝜃 + 𝜇) + (1 − 𝑝)𝜃𝜉]

− 𝑝𝜂𝜃2𝜉(𝜇 + 𝜂 + 𝜉𝐴)(𝜇 + 𝜈) > 0.

Now, the above condition can be synthetically restated as

𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6 > 𝛽𝑁(𝑊1 +𝑊2 +𝑊3 +𝑊4 +𝑊5 +𝑊6),

where:

𝑇1 = 𝜉(1 − 𝑝)𝜃𝜂Δ̂0
456 < 0, (11)

𝑇2 = (𝛾 + 𝜉 + 𝜇)(𝜂 + 𝜇 + 𝜉𝐴)Δ̂0
3456 > 0,

𝑇3 = −𝛾𝜂Δ̂0
3456 < 0,

𝑇4 = −𝛾𝜉𝐴𝜈𝜂(𝜃 + 𝜇)2,

𝑇5 = −𝜉𝜂(1 − 𝑝)𝜃𝜈𝜉𝐴(𝜃 + 𝜇),

𝑇6 = −𝜉𝜂(𝜂 + 𝜇 + 𝜉𝐴)(𝜇 + 𝜈)𝑝𝜃2,

and

𝑊1 = (𝜂 + 𝜇 + 𝜉𝐴)Δ̂0
3456 > 0, (12)

𝑊2 = 𝛾𝛿Δ̂0
3456 > 0,

𝑊3 = −𝜉(1 − 𝑝)𝜃𝛿Δ̂0
456 > 0,

𝑊4 = 𝛾𝜉𝐴𝜈𝛿(𝜃 + 𝜇)2,

𝑊5 = 𝛿𝜉(1 − 𝑝)𝜃𝜈𝜉𝐴(𝜃 + 𝜇),

𝑊6 = 𝛿𝜉(𝜂 + 𝜇 + 𝜉𝐴)(𝜇 + 𝜈)𝑝𝜃2.

Thus, in addition to (9) and (10), the following condition must be satis-

fied for stability:
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𝑅𝑐 = 𝛽𝑁
𝑊1 +𝑊2 +𝑊3 +𝑊4 +𝑊5 +𝑊6

𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6
< 1. (13)

Note in particular that if det(𝐽𝐸0
) is positive, then 𝑇1 +𝑇2 +𝑇3 +𝑇4 +𝑇5 +

𝑇6 > 0.

We now consider the endemic equilibrium. Solving the last, fourth 
and fifth equations in (8), we find:

𝐷∗
𝐼𝐵

= 𝑝𝜃

𝜇 + 𝜃
𝐷∗

𝐼
, 𝐼∗ = 𝜇 + 𝜃

𝜉
𝐷∗

𝐼
, 𝐷∗

𝐴
=

𝜉𝐴
𝜇 + 𝜈

𝐴∗.

Substituting the second above equation into the third equation of (8), 
we find:

𝐷∗
𝐼
=

𝜂 + 𝜇 + 𝜉𝐴
𝛾(𝜃 + 𝜇) + (1 − 𝑝)𝜉𝜃

𝜉𝐴∗.

Substituting 𝐷∗
𝐼

into the previous formula for 𝐼∗, it follows that we can 
express 𝐼∗ in terms of 𝐴∗:

𝐼∗ = Γ𝐴∗, Γ = (𝜇 + 𝜃)
𝜂 + 𝜇 + 𝜉𝐴

𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉
. (14)

Using these results and the sixth equation in (8), we obtain:

𝐴∗
𝑉
=Ψ𝐴∗, Ψ= 1

𝜇 + 𝜂

[
𝜉𝐴𝜈

𝜇 + 𝜈
+ 𝜉

𝑝𝜃2

𝜇 + 𝜃
⋅

𝜂 + 𝜇 + 𝜉𝐴
𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉

]
. (15)

Combining the first two equations in (8), we can write 𝑆∗ = Φ𝐴∗ +𝑁

where:

Φ= 1
𝜇
[𝜂(1 +Ψ) − (𝛾 + 𝜇 + 𝜉)Γ].

On the other hand, at equilibrium, the first equation of (8) can be 
rewritten as:

𝛽(Φ𝐴∗ +𝑁)[𝐼 + 𝛿(𝐴∗ +𝐴∗
𝑉
)] = −𝜇Φ𝐴∗. (16)

Using (14) and (15), (16) can be rewritten as follows

𝛽(Φ𝐴∗ +𝑁)[Γ + 𝛿(1 +Ψ)] = −𝜇Φ

and explicitly as:

𝛽

𝜇
[𝜂(1 + Ψ) − (𝛾 + 𝜇 + 𝜉)Γ] [Γ + 𝛿(1 +Ψ)]𝐴∗

= −𝛽𝑁[Γ + 𝛿(1 +Ψ)] − [𝜂(1 +Ψ) − (𝛾 + 𝜇 + 𝜉)Γ] .

We then need to ensure the nonnegativity of 𝐴∗, as all other populations 
would then be so. From the previous result we have:

𝐴∗ = 𝜇
𝜂(1 +Ψ) − Γ(𝛾 + 𝜇 + 𝜉) + 𝛽𝑁[Γ + 𝛿(1 + Ψ)]
𝛽[Γ + 𝛿(1 +Ψ)][(𝛾 + 𝜇 + 𝜉)Γ − 𝜂(1 +Ψ)]

= �̂�

𝛽[Γ + 𝛿(1 + Ψ)]�̂�
,

�̂� = 𝛽𝑁[Γ + 𝛿(1 + Ψ)] − �̂�, �̂� = (𝛾 + 𝜇 + 𝜉)Γ − 𝜂(1 +Ψ).

Now, �̂� being negative implies that the numerator is positive, so 
that 𝐴∗ < 0, which is not feasible. We need then to have �̂� > 0. To 
have 𝐴∗ ≥ 0, then �̂� ≥ 0 must hold, which is equivalent to the following 
requirement

𝛽𝑁[Γ + 𝛿(1 +Ψ)] > �̂�. (17)

Writing explicitly this condition, we find:

𝛽𝑁

{
𝛿

[
1 + 1

𝜇 + 𝜂

(
𝜉𝐴𝜈

𝜇 + 𝜈
+ 𝜉

𝑝𝜃2

𝜇 + 𝜃
⋅

𝜂 + 𝜇 + 𝜉𝐴
𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉

)]

+
(𝜇 + 𝜃)(𝜂 + 𝜇 + 𝜉𝐴)
𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉

}
≥ (𝛾 + 𝜇 + 𝜉)

(𝜇 + 𝜃)(𝜂 + 𝜇 + 𝜉𝐴)
𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉

− 𝜂

[
1 + 1

𝜇 + 𝜂

(
𝜉𝐴𝜈

𝜇 + 𝜈
+ 𝜉

𝑝𝜃2

𝜇 + 𝜃
⋅

𝜂 + 𝜇 + 𝜉𝐴
𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉

)]
5

Factorizing out the same common denominator (𝜇+𝜂)(𝜇+𝜈)(𝜇+𝜃)[𝛾(𝜇+
𝜃) +(1 − 𝑝)𝜃𝜉] = −Δ̂0

456[𝛾(𝜇+ 𝜃) +(1 − 𝑝)𝜃𝜉] > 0 on both sides of the above 
inequality, we obtain:

𝛽𝑁
[
(𝜂 + 𝜇 + 𝜉𝐴)Δ̂0

3456 + 𝛿
{
Δ̂0
456[𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉]

+𝜈𝜉𝐴(𝜇 + 𝜃)[(𝜇 + 𝜃)𝛾 + (1 − 𝑝)𝜃𝜉] + 𝑝𝜃2𝜉(𝜂 + 𝜇 + 𝜉𝐴)(𝜇 + 𝜈)
}]

≥ −𝜂Δ̂0
456(1 − 𝑝)𝜃𝜉 + (𝛾 + 𝜉 + 𝜇)(𝜂 + 𝜇 + 𝜉𝐴)Δ̂0

3456 − 𝜂Δ̂0
456𝛾(𝜇 + 𝜃)

+ 𝜂
{
𝜉𝐴𝜈(𝜇 + 𝜃)[𝛾(𝜇 + 𝜃) + (1 − 𝑝)𝜃𝜉] + 𝑝𝜃2𝜉(𝜇 + 𝜈)(𝜂 + 𝜇 + 𝜉𝐴)

}
.

Recalling (11) and (12), the latter can then be rewritten more compactly 
as:

𝛽𝑁(𝑊1 +𝑊2 +𝑊3 +𝑊4 +𝑊5 +𝑊6) ≥ 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5 + 𝑇6.

Existence of the positive endemic equilibrium 𝐸∗ is thus ensured 
whenever:

𝑅𝑐 ≥ 1. (18)

Again, comparing (13) and (18), a transcritical bifurcation is seen to 
arise [26], under which 𝐸∗ becomes locally asymptotically stable when 
𝑅0 crosses from below the critical threshold 1.

4. Stochastic structure of the full model

Applying the same compartmentalization, we developed the stochas-

tic structure of (8). We assumed that events in this model are defined 
by the rates of movement between different compartments in the de-

terministic structure. In this framework, new infections are binomially 
distributed with the number of trials equal to the number of suscepti-

bles at time 𝑡 and the probability of success (i.e., infection occurs). The 
state of the system is defined by the integer number of individuals in 
each compartment, and changes discretely whenever an event occurs. 
These changes are summarized in Table 1.

Transition rates in Table 1 can be converted to probabilities of the 
corresponding event happening by considering:

𝑃 (Event 𝑖) =
𝑎𝑖∑
𝑖

𝑎𝑖

,

where 𝑎𝑖 is the transition rate of the event 𝑖. In this formulation, the time 
to the next event (𝜏) is exponentially distributed with the parameter 
equal to the sum of the rates for all possible events. The probability 
density function is given by:

𝑓 (𝜏) =
(∑

𝑖

𝑎𝑖

)
exp

(
− 𝜏

∑
𝑖

𝑎𝑖

)
.

Using inverse transform sampling [27], we can estimate the time to the 
next event: for a given random variate 𝑘 drawn from the uniform dis-

tribution on the unit interval (0, 1), 𝜏 can be estimated as − ln(𝑘)∕ ∑𝑖 𝑎𝑖. 
The state of the system is then updated according to the transitions 
given in Table 1 for the event occurring during the transition time 𝜏 .

5. Simulations and results

In order to investigate effect of HSV-2 therapeutic vaccination, we 
simulated the stochastic structure of the model (Tables 1, 2). Recent 
estimates indicate that the prevalence of HSV-2 is around 12% for the 
US population and has been relatively stable over 10 years with a slight 
declining trend [28]. We therefore assumed that initially 12% of the 
population is infected with HSV-2. To maintain this prevalence level, 
we chose the transmission rate 𝛽 = 3.7 × 10−8, which also shows a very 
slight declining trend over the simulation time-horizon of 40 years in 
the absence of vaccination (Fig. 1).

Fixing other parameter values (see Fig. 2), we change the rate of vac-

cination at year 10 to show the effect of vaccination on the prevalence 
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Table 1. Movements of individuals between compartments according to the transi-

tion rates. The parameter 𝑟 is a random variate drawn from the uniform distribution 
on the unit interval (0, 1). Other parameters are the same as those defined for the 
deterministic structure.

Event Transition Transition rate

birth 𝑆 → 𝑆 + 1 𝜇𝑁

infection 𝑆 → 𝑆 − 1 𝛽𝑆[𝐼 + 𝛿(𝐴+𝐴𝑉 )]
𝐼 → 𝐼 + 1

treatment 𝐼 → 𝐼 − 1 𝛾𝐼

𝐴→𝐴+ 1
recurrence 𝐴→𝐴− 1 𝜂𝐴

𝐼 → 𝐼 + 1
vaccination of symptomatic 𝐼 → 𝐼 − 1 𝜉𝐼

𝐷𝐼 →𝐷𝐼 + 1
loss of vaccine-induced immunity 𝐷𝐼 →𝐷𝐼 − 1 𝜃𝐷𝐼

booster vaccine: 𝐷𝐼𝐵 →𝐷𝐼𝐵 + 1 if 𝑟 < 𝑝

no booster: 𝐴→𝐴+ 1 else 𝑟 ≥ 𝑝

vaccination of asymptomatic 𝐴→𝐴− 1 𝜉𝐴𝐴

𝐷𝐴 →𝐷𝐴 + 1
loss of vaccine-induced immunity 𝐷𝐴 →𝐷𝐴 − 1 𝜈𝐷𝐴

𝐴𝑉 →𝐴𝑉 + 1
recurrence 𝐴𝑉 →𝐴𝑉 − 1 𝜂𝐴𝑉

𝐼 → 𝐼 + 1
loss of booster immunity 𝐷𝐼𝐵 →𝐷𝐼𝐵 − 1 𝜃𝐷𝐼𝐵

𝐴𝑉 →𝐴𝑉 + 1
death 𝑆 → 𝑆 − 1 𝜇𝑆

𝐼 → 𝐼 − 1 𝜇𝐼

𝐴→𝐴− 1 𝜇𝐴

𝐷𝐼 →𝐷𝐼 − 1 𝜇𝐷𝐼

𝐷𝐴 →𝐷𝐴 − 1 𝜇𝐷𝐴

𝐴𝑉 →𝐴𝑉 − 1 𝜇𝐴𝑉

𝐷𝐼𝐵 →𝐷𝐼𝐵 − 1 𝜇𝐷𝐼𝐵

Table 2. Model parameters and their values.

Parameter Description Value

𝛽 baseline transmission rate 3.7 × 10−8

𝜇 birth rate 1∕(50 × 365)
𝛿 relative transmissibility of asymptomatic infection 0.01
𝛾 rate of suppressive treatment 1∕17
𝜂 rate of recurrence 1∕90
𝜈 rate of loss of primary vaccine-induced immunity 1∕730
𝜃 rate of loss of booster vaccine-induced immunity 1∕730
𝜉 vaccination rate of symptomatic infection varies

𝜉𝐴 vaccination rate of asymptomatic infection varies

𝑝 fraction of primary vaccinated individuals who receive booster dose varies
Fig. 1. Prevalence of HSV-2 in the absence of vaccination. Parameter values 
are: 𝜇 = 1∕(50 × 365), 𝛽 = 3.7 × 10−8 ; 𝛿 = 0.01; 𝛾 = 1∕17, 𝜉 = 0, 𝜂 = 1∕90, 𝜉𝐴 = 0, 
𝑝 = 0. Units of parameters are per day. Initial conditions are 𝑆0 = 8800, 𝐼0 = 1, 
𝐴0 = 1199, 𝐷𝐼0 = 0, 𝐷𝐴0 = 0, 𝐴𝑉 0 = 0, 𝐷𝐼𝐵0 = 0. Gray curves represent 100 inde-

pendent replicates in the stochastic simulations, and the black curve represents 
the average of these realizations.

of HSV-2. In the absence of booster vaccination, we observed a sharp 
decline in the prevalence of HSV-2 after the start of vaccination, fol-

lowed by a steady decline whose level depends on the vaccination rate. 
Thus, the long-term disease prevalence depends on how fast individuals 
are vaccinated after developing symptomatic infection.

When the primary vaccination is combined with a booster dose, we 
observed no significant difference between the prevalence of HSV-2 in 
the low booster coverage (𝑝 = 0.1) and that in the high booster cover-

age (𝑝 = 1), especially when the rate of primary vaccination was high 
(Fig. 3). These simulations suggest that for a relatively high rate of 
vaccination of HSV-2 infected cases during symptomatic infection, a 
booster vaccination may not affect long-term disease prevalence. We 
therefore explored the effect of vaccination when asymptomatic indi-

viduals are identified and offered vaccine without considering a booster 
dose.

We assumed that vaccination rate of asymptomatic cases will not 
exceed that of symptomatic cases, i.e., 𝜉𝐴 ≤ 𝜉. Fig. 4 shows the total 
prevalence of HSV-2 following the start of vaccination. For a relatively 
low vaccination rate of symptomatic infection, vaccination of asymp-

tomatic cases can lead to a lower prevalence of disease in a long-term. 
However, we observed an initial increase in the prevalence of HSV-2 af-

ter the introduction of vaccination when 𝜉𝐴 > 0 (Fig. 4(a), blue curve) 
compared to when 𝜉𝐴 = 0 (Fig. 4(a), black curve) followed by a faster 
rate of decline. The initial increase can be explained by the fact that 
6
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Fig. 2. Prevalence of (a): the total HSV-2 infected individuals (i.e., 𝐼 +𝐴 +𝐷𝐼 +𝐷𝐴 +𝐴𝑉 +𝐷𝐼𝐵), and (b): the total HSV-2 individuals who can shed the virus (i.e., 
𝐼 + 𝐴 + 𝐴𝑉 ) in the presence of vaccination (started on year 10 of the simulations) without a booster dose. Parameter values are: 𝜇 = 1∕(50 × 365), 𝛽 = 3.7 × 10−8 ; 
𝛿 = 0.01; 𝛾 = 1∕17, 𝜂 = 1∕90, 𝜉𝐴 = 0, 𝜃 = 1∕730, 𝜈 = 1∕730, 𝑝 = 0. Vaccination rate is 𝜉 = 0.001 (black), 𝜉 = 0.01 (blue), and 𝜉 = 0.1 (red). Units of parameters are per 
day. Initial conditions are 𝑆0 = 8800, 𝐼0 = 1, 𝐴0 = 1199, 𝐷𝐼0 = 0, 𝐷𝐴0 = 0, 𝐴𝑉 0 = 0, 𝐷𝐼𝐵0 = 0. Curves represent the average of 100 independent realizations.

Fig. 3. Prevalence of (a, c, e): the total HSV-2 infected individuals (i.e., 𝐼 +𝐴 +𝐷𝐼 +𝐷𝐴 +𝐴𝑉 +𝐷𝐼𝐵), and (b, d, f): the total HSV-2 individuals who can shed the virus 
(i.e., 𝐼 +𝐴 +𝐴𝑉 ) in the presence of vaccination (started on year 10 of the simulations) with a booster dose. Parameter values are: 𝜇 = 1∕(50 × 365), 𝛽 = 3.7 × 10−8 ; 
𝛿 = 0.01; 𝛾 = 1∕17, 𝜂 = 1∕90, 𝜉𝐴 = 0, 𝜃 = 1∕730, 𝜈 = 1∕730. Vaccination rate is (a, b): 𝜉 = 0.001, (c, d): 𝜉 = 0.01, and (e, f): 𝜉 = 0.1. Units of parameters are per day. 
Fraction of individuals receiving a booster dose is 𝑝 = 0.2 (black), 𝑝 = 0.5 (blue), and 𝑝 = 1.0 (red). Initial conditions are 𝑆0 = 8800, 𝐼0 = 1, 𝐴0 = 1199, 𝐷𝐼0 = 0, 𝐷𝐴0 = 0, 
𝐴𝑉 0 = 0, 𝐷𝐼𝐵0 = 0. Curves represent the average of 100 independent realizations for 𝑝 = 0.1 (black), 𝑝 = 0.5 (blue), and 𝑝 = 1 (red).
following the loss of vaccine-induced immunity in the 𝐴𝑉 class, there 
is no booster vaccination, and therefore virus shedding can occur be-

fore recurrence. We observed similar patterns when the vaccination 
rate of symptomatic infection increased (Fig. 4(b, c)); however vac-

cinating asymptomatic infection contributed minimal or even less to 
reducing the total prevalence of HSV-2 (compared to the scenario in 
which asymptomatic infection was not vaccinated). Overall, these sim-

ulation results suggest that therapeutic vaccination of HSV-2 infection 
7

may be most effective when targeted towards symptomatic infection 
with highest possible rates.

6. Discussion

In this study, we developed a simple compartmental model for the 
dynamics of HSV-2 infection to investigate the temporal effects of a 
therapeutic vaccine. The goals of a therapeutic vaccine, which may be 
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Fig. 4. Prevalence of the total HSV-2 infected individuals (i.e., 𝐼 +𝐴 +𝐷𝐼 +𝐷𝐴 +𝐴𝑉 +𝐷𝐼𝐵), with different rates of vaccination (started on year 10 of the simulations) 
without booster dose: (a) (𝜉, 𝜉𝐴) = (0.001, 0) (black), and (𝜉, 𝜉𝐴) = (0.001, 0.001) (blue); (b) (𝜉, 𝜉𝐴) = (0.01, 0.001) (black) and (𝜉, 𝜉𝐴) = (0.01, 0.01) (blue); and (c) (𝜉, 𝜉𝐴) =
(0.1, 0.001) (black), (𝜉, 𝜉𝐴) = (0.1, 0.01) (blue), and (𝜉, 𝜉𝐴) = (0.1, 0.1) (red). Parameter values are: 𝜇 = 1∕(50 × 365), 𝛽 = 3.7 × 10−8 ; 𝛿 = 0.01; 𝛾 = 1∕17, 𝜂 = 1∕90, 𝜃 = 1∕730, 
𝜈 = 1∕730, and 𝑝 = 0. Units of parameters are per day. Initial conditions are 𝑆0 = 8800, 𝐼0 = 1, 𝐴0 = 1199, 𝐷𝐼0 = 0, 𝐷𝐴0 = 0, 𝐴𝑉 0 = 0, 𝐷𝐼𝐵0 = 0. Curves represent the 
average of 100 independent realizations.
administered to individuals already infected with HSV-2 virus, are to re-

duce the number of recurrent symptomatic episodes and/or the rate of 
viral shedding. Previous studies have suggested that an HSV-2 vaccina-

tion could reduce these factors in the range of 5% to 80% after 10 years 
[19, 21, 29], under various assumptions and vaccine efficacy. In partic-

ular, a previous modeling study of a therapeutic vaccine [21] suggests 
a decline in the HSV-2 prevalence if a sizable portion of asymptomatic 
cases are vaccinated every year in order to prevent shedding. Since this 
target may not be achievable, our study suggests that targeting symp-

tomatic infection for vaccination may be the most effective strategy. We 
also observed that for a relatively high rate of the primary vaccination 
for HSV-2 symptomatic infection, booster vaccination may not affect 
the long-term trend of disease prevalence in a significant measure, fur-

ther highlighting the importance of primary vaccination.

Since the proposed model is relatively simple and explanatory, our 
results should be considered in the context of study assumptions and 
limitations. In particular, we considered a vaccine with perfect clinical 
effectiveness; that is, the vaccine was 100% effective in reducing recur-

rent symptomatic episodes until the vaccine-induced immunity waned, 
and prevented viral shedding. However, recent clinical trials suggest 
that vaccine would at best (given current data) reduce recurrent disease 
by about 50% [18]. Furthermore, clinical trials suggest that vaccine 
may not fully prevent viral shedding while it may reduce it by about 
50%. Considering that vaccinated individuals could still contribute to 
viral shedding, our model could be extended to include viral shedding 
during vaccine-induced protection and investigate the dynamics of dis-

ease and its prevalence. Of particular importance in future studies is to 
evaluate whether vaccination under suboptimal effects shown in recent 
clinical trials [18, 30] would be a cost-effective measure to curb the 
incidence and prevalence of HSV-2.
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