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Abstract
Prediction of COVID-19 incidence and transmissibility rates are essential to inform disease control policy and allocation of 
limited resources (especially to hotspots), and also to prepare towards healthcare facilities demand. This study demonstrates 
the capabilities of nonlinear smooth transition autoregressive (STAR) model for improved forecasting of COVID-19 inci-
dence in the Africa sub-region were investigated. Data used in the study were daily confirmed new cases of COVID-19 from 
February 25 to August 31, 2020. The results from the study showed the nonlinear STAR-type model with logistic transition 
function aptly captured the nonlinear dynamics in the data and provided a better fit for the data than the linear model. The 
nonlinear STAR-type model further outperformed the linear autoregressive model for predicting both in-sample and out-
of-sample incidence.
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Introduction

The coronavirus disease 2019 (COVID-19) is arguably the 
world’s greatest tragedy of the twenty-first century, which 
has seen every country across the globe seeking transmission 
averting strategies and some developed countries produc-
ing vaccines in record times (Al-Raeei 2021; Bhadra et al. 
2020; Le et al. 2020). The COVID-19 is a novel coronavi-
rus caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-Cov-2) emerged from Wuhan, a capital city 
of Hubei province in China (Linton et al. 2020; Liu et al. 
2020). COVID-19 affects the respiratory system of humans 
and its infections occur when respiratory droplets of infected 

persons are transmitted to susceptible persons in a given 
population mostly through coughing and sneezing (Linton 
et al. 2020). This infectious disease has been reported in 
over 200 countries with more than 25.3 million confirmed 
cases and 848,000 deaths across the globe as of September 
1, 2020 (WHO 2020b). The COVID-19 disease was declared 
a pandemic by the World Health Organization (WHO) on 
March 11, 2020 (WHO 2020a).

Within the WHO sub-regions, Africa is ranked fifth 
with 1,056,120 confirmed cases of coronavirus and 21,999 
deaths as of September 1, 2020 (WHO 2020b). The conti-
nent of Africa has been predicted to be the next epicentre for 
COVID-19. In spite of the severe and deadly nature of the 
disease, there are no vaccine or antiretroviral drugs for treat-
ing COVID-19 infections. Different control measures such 
as physical distancing, ban on social gatherings, quaran-
tine, isolation, and partial/total lockdown of highly infected 
cities continue to be worldwide. With limited availability 
of vaccines and the stiff competitions in the acquisition 
of what is available, the developing world more than ever 
need enhanced surveillance and intensive-care unit man-
agement for infected patients in the fight against the spread 
of COVID-19. The rapid rate of COVID-19 infections and 
the emergence of more virulent strains of the virus poses 
a major global threat but more specifically to the African 
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continent because of the inherent deficiencies in the health-
care systems in most of its countries.

The aftermath of increasing number of confirmed cases 
and associated deaths across the globe, both mathematical 
and statistical models have been used to describe the trans-
mission dynamics and also forecast the incidence (Maleki 
et al. 2020; Sanyi et al. 2020; Zhang et al. 2020). The predic-
tion of COVID-19 incidence is of great importance to public 
health workers and policy-makers to support decision-mak-
ing regarding distribution of limited resources in areas with 
high infection rate (Roy et al. 2020a). Public health workers 
also need prior information on future incidence to prepare 
for demand of health care facilities.

Existing literature on infectious disease forecasting relies 
heavily on time-series models (Cortes et al. 2018; Zhang 
et al. 2014). Within the time-series framework, future inci-
dences of infectious diseases are forecasted based on the 
historic surveillance data. Linear time-series models such 
as Autoregressive Integrated Moving Average (ARIMA) 
models remain the most prominent used statistical technique 
in COVID-19 incidence forecasting (Ceylan 2020; Maleki 
et al. 2020; Roy et al. 2020b). However, the use of linear 
time-series models may not necessarily be appropriate in 
forecasting future infections, because the dynamics of his-
torical data of COVID-19 is likely to be influenced by social 
interventions such as ban on social gatherings and partial/
total lockdown of cities (Zhang et al. 2020). Such interven-
tions distort the dynamics of data generation process of the 
disease, which may result in non-constant model parameters. 
The dynamics of such data may be better described by a 
nonlinear regime changing time-series models. The regime 
switching models are nonlinear time-series models that 
allow model parameters to change for different regimes (Dijk 
et al. 2002). Among the regime switching models are the 
Threshold Autoregressive (TAR), Self-Exciting Threshold 
Autoregressive (SETAR), Markov Switching (MS), and the 
Smooth Transitional Autoregressive (STAR) models (Dijk 
et al. 2002; Zivot and Wang 2007).

In this study, the STAR models have been used to model 
and forecast COVID-19 incidence in African sub-region. 
The STAR models switch between regimes of the data based 
on continuous smooth transition functions. The STAR mod-
els nest most of the nonlinear times series models such as 
TAR and SETAR and its forecast performance has been bet-
ter compared to the nonlinear models (Dijk et al. 2002).

Materials and methods

Data description

The data used in this study were the daily new confirmed 
cases of COVID-19 across African sub-region. It was 

compiled from the official website of World Health Organi-
zation (WHO) and span over the period from February 25 
to August 31, 2020 (WHO 2020b). An average of 5560 
confirmed cases are observed in a day across African sub-
region. Figure 1 describes the behaviour of the daily new 
cases of COVID-19 observed over time in the sub-region. 
The number of confirmed cases of COVID-19 in the African 
sub-region showed an upward trend up till around July 23 
and declined afterwards.

Smooth transition autoregressive models

The smooth transition autoregressive (STAR) models are 
nonlinear time-series models, which allow the coefficient 
of the model to change between different regimes accord-
ing to a transition function. In this case, we let yt represents 
the confirmed new cases of COVID-19 in a particular day 
t. The two regimes STAR model can be defined for the data 
as (Teräsvirta 1994):

where �t =
(
1, yt−1,… , yt−p

)
, and �(1)

i
 and �(2)

i
(i = 0, 1,… , p) 

represent the model coefficients in both regimes, with p 
representing the order of the autoregressive process in each 
regime, G(yt−d;� , c) represents the transition function, and 
�t is the residuals of the model which is assumed to follow 
a white noise process with zero mean and constant vari-
ance �2. The transition variable yt−d is taken to be lagged 
endogenous variable of yt with d representing delay param-
eter (1 ≤ d ≤ p) and c represents a threshold parameter. The 
transition function G(yt−d;� , c) is a smooth continuous func-
tion that controls the switching dynamics, and it is bounded 
between 0 and 1.

The two most popular choices for the transition function 
G(yt−d;� , c) are the logistic and exponential functions (Teräs-
virta 1994). These two transition functions allow for changes 

(1)
yt = �t�

(1)
(
1 − G

(
yt−d;� , c

))
+ �t�

(2)G
(
yt−d;� , c

)
+ �t,

Fig. 1  Temporal pattern of daily new cases of COVID-19 over the 
study period
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in dynamics (Zivot and Wang 2007). The transition function 
based on the logistic function is defined as:

where � determines the speed and smoothness of transition 
from one regime to another, and the resultant model leads to 
a logistic STAR (LSTAR) model. When � → ∞ , the LSTAR 
model becomes a TAR model, and when � → 0 , it becomes 
a linear AR model. The transition function based on the 
exponential function is defined as:

and the resultant model leads to exponential STAR (ESTAR) 
model. When � → ∞ or 0 , the ESTAR model becomes a 
linear AR(p) model. The characteristics of the logistic and 
exponential functions are described in Fig. 2. The logistic 
function allows different dynamics to occur between the con-
traction and expansion regimes, whilst exponential function 
allows similar dynamics to occur with different dynamics 
in the middle between contraction and expansion period 
(Terasvirta and Anderson 1992). As � increase, both logistic 
and exponential functions become steeper leading to a fast 
transition between the two regimes.

The model requires that the COVID-19 incidence 
data be stationary and nonlinear (Teräsvirta 1994). The 
Zivot–Andrews unit root test (Zivot and Andrews 2002) was 
adopted for test of stationarity. The null hypothesis of unit 
root with structural change was tested against an alternative 
of trend stationary. In addition, the Lagrange multiplier (LM) 
type test (Teräsvirta 1994) was used for testing nonlinearity 
in the incidence data. The LM test, the null hypothesis of lin-
earity is tested against the alternative of nonlinear STAR-type 
model. Assuming d is known, the LM test is equivalent to the 
test of

(2)G(yt−d;𝛾 , c) =
1

1 + exp[−𝛾(yt−d − c)]
, 𝛾 > 0,

(3)G(yt−d;𝛾 , c) = 1 − exp[−𝛾(yt−d − c)2], 𝛾 > 0,

H0 ∶ �1,i = �2,i = �3,i = 0, i = 1, 2,… , p

against the alternative H1: ‘H0 is not valid’ after performing 
the auxiliary regression defined as (Luukkonen et al. 1988):

where et is the error term. The LM test statistic asymptoti-
cally follows a standard chi-square distribution under the 
null hypothesis with 3p degrees of freedom (Dijk et al. 
2002). The value of d has to be specified to perform the 
LM test. Thus, the test is performed for different values of 
d ∈ (1, 2, 3,… , p), where d is chosen for which the null 
hypothesis is rejected. If the null hypothesis is rejected for 
more than one d, then the appropriate value of d corresponds 
to the one with smallest P value. The data are considered 
nonlinear if the null hypothesis is rejected at 5% significance 
level. After rejecting the null hypothesis of linearity, the 
appropriate transition function should be selected by testing 
the following sequence of nested null hypothesis:

The decision rule in such a test is that LSTAR should 
be selected if H0,1 is the rejected. Again, ESTAR should be 
selected if H0,1 is not rejected, but H0,2 is rejected. On the 
other hand, LSTAR should be selected if H0,1 and H0,2 are 
not rejected, but H0,3 is rejected. After identifying a suitable 
transition function, the coefficients of the selected model can 
be estimated using nonlinear least-squares method (Teräsvirta 
1994; Terasvirta and Anderson 1992). The estimated model 
may be evaluated by examining the model residuals for the 
presence of autocorrelation and conditional heteroscedastic-
ity using Ljung–Box (LB) test and autoregressive condition 
heteroscedasticity (ARCH) test, respectively.

(4)

yt = � +

p∑

i=1

�1,iyt−i +

p∑

i=1

�1,iyt−iyt−d

+

p∑

i=1

�2,iyt−iy
2

t−d
+

p∑

i=1

�3,iyt−iy
3

t−d
+ et,

H0,1 ∶ �3,i = 0, i = 1, 2,… , p

H0,2 ∶ �2,i = 0 | �3,i = 0, i = 1, 2,… , p

H0,3 ∶ �1,i = 0 | �2,i = �3,i = 0, i = 1, 2,… , p.

Fig. 2  Characteristics of logistic 
and exponential function for 
different values of gamma
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The forecast performance of the fitted models may be 
compared to the linear AR model using mean absolute error 
(MAE) and root-mean-square error (RMSE). The MAE and 
RMSE are defined as:

where yt represents the observed and ⌢yt represents the pre-
dicted value, and n is the number of observations.

Results

The analysis was conducted on the log-transformed data to 
reduce the impact due to high variations in the data. The 
model building involved 178 observations, starting from 
February 25 to August 20, 2020, whilst the observations 
from August 21–31, 2020 were used to validate the forecast 
performance of the fitted model. The Zivot–Andrews test 
statistic of −4.644 and the associated critical value of −5.08 
at 5% significance level suggest that the data are not station-
ary. The next step is to test the null hypothesis of linearity 
as against the alternative of nonlinear STAR model using 
the LM test. In the LM test, an AR(5) model was used and 
the order of p was selected to minimize the Akaike informa-
tion criterion (AIC). The P values of the LM test as shown 
in Panel A of Table 1 suggest that the null hypothesis of 
linearity should be rejected at 5% significance level. The 
results of the test were consistent for all possible values of 
d. The appropriate value of d was found to be 1, since the 
p value associated with d = 1 is minimal compared to the 
other p values. Having rejected the linearity hypothesis, the 
appropriate transition function for the STAR model to cap-
ture the nonlinear dynamics of the data has to be selected. 
The results from the sequence of nested hypothesis show 
that the null hypothesis H0,1 is not rejected, but H0,2 and H0,3 

(5)MAE =
1

n

n∑

t=1

|yt −
⌢

yt|

(6)RMSE =

√√√√1

n

n∑

t=1

(yt −
⌢

yt)
2,

are rejected at 5% significance level (Panel B of Table 1). 
However, a comparison of the P values associated with H0,2 
and H0,2 suggests that the STAR model with logistic transi-
tion function (LSTAR) could be an appropriate model to 
capture the nonlinear dynamics of the COVID-19 incidence 
cases. The estimated parameters of the LSTAR model using 
nonlinear least-squares and the associated goodness-of-fit 
statistics are presented in Table 2. The estimated LSTAR 
model was evaluated by examining the models’ residuals 
for the presence of autocorrelation and conditional hetero-
scedasticity using LB test and ARCH test, respectively. The 
p values of the LB test show that there is no serial autocor-
relation in the residuals of the model up to lag order p. The 

Table 1  P values of the LM 
test for linearity (Panel A) 
for different values of d* and 
the sequential LM test for 
appropriate transition function 
(Panel B)

*In parentheses are the test statistic values of the LM test

Null hypothesis d = 1 d = 2 d = 3 d = 4 d = 5

Panel A
H0 ∶ �1,i = �2,i = �3,i = 0 < 0.001 (85) < 0.001 (74) < 0.001 (75) < 0.001 (49) < 0.001 (62)
Panel B
H0,1 ∶ �3,i = 0     0.881
H0,2 ∶ �2,i = 0 | �3,i = 0     0.034
H0,3 ∶ �1,i = 0 | �2,i = �3,i = 0     0.003

Table 2  Estimated parameters for the LSTAR models and goodness-
of-fit statistics

Parameters Estimate Standard error t value P value

Low regime

�
(1)

0
0.020 0.053 0.384 0.701

�
(1)

1
 − 0.584 0.068  − 8.591  < 0.001

�
(1)

2
 − 0.765 0.135  − 5.686  < 0.001

�
(1)

3
 − 0.315 0.080  − 3.932  < 0.001

�
(1)

4
 − 0.335 0.078  − 4.291  < 0.001

�
(1)

5
 − 0.381 0.071  − 5.365  < 0.001

High regime

�
(2)

0
1.568 0.712 2.201 0.028

�
(2)

1
0.257 0.276 0.931 0.352

�
(2)

2
 − 0.357 0.372  − 0.959 0.338

�
(2)

3
0.602 0.249 2.414 0.016

�
(2)

4
0.635 0.211 3.014 0.003

�
(2)

5
1.697 0.365 4.649  < 0.001

γ 6.331 2.034 3.113 0.002
c 0.610 0.096 6.342  < 0.001
Model diagnostics
AIC  − 407
LB(p) 1.682 0.891
ARCH(p) 10.688 0.058
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results from the ARCH test show that there is no ARCH 
effect in the residuals.

The predictive performance of the estimated LSTAR 
model was further compared with the linear AR(5) model 
using MAE and RMSE calculated for both models. Smaller 
values of MAE and RMSE indicate better model perfor-
mance. The in-sample forecast performance was determined 
based on the data for the study period (from February 25 to 
August 20, 2020). The in-sample forecast performance of 
the nonlinear LSTAR model outperformed the linear AR 
(5) model (Table 3). The estimated model was used to pre-
dict the incidence of COVID-19 beyond the sample period 
(August 21–31, 2020). The results based on the MAE and 
RMSE show that the nonlinear model surpasses that of the 
linear AR (5) model.

Discussion

In this study, the nonlinear smooth transition autoregressive 
model has been used to model and predict COVID-19 inci-
dence in the African sub-region. The model was based on 
daily confirmed new cases of COVID-19. Unlike the linear 
time-series models that assumed constant parameters for the 
entire data, the nonlinear STAR model allows the model 
parameters to change for different regimes of the data.

The Zivot–Andrews test showed that the historical inci-
dence data of COVID-19 has a unit root with structural 
change. The use of Zivot–Andrews test as opposed to the 
traditional unit root tests was influenced by the fact that, in 
the presence of nonlinearity, the results from the traditional 
unit root test are fallacious (Alimi et al. 2017). From the 
empirical results, the null hypothesis of linearity against 
the alternative STAR-type nonlinearity was rejected at 5% 
significance level. In addition, the results of a sequence of 
nested hypothesis showed that the nonlinear dynamics of 
COVID-19 incidence is better described by the STAR-type 
model with logistic transition function (LSTAR model). 
The presence of such nonlinear behaviour in the daily new 
cases of COVID-19 may be influenced by the major control 
strategies such as lockdowns, physical distancing, closure 
of borders with neighbouring countries, and “stay at home” 
measures implemented by different countries in the African 
sub-region (Zhang et al. 2020).

The sign of the estimated parameters of the fitted LSTAR 
model varies for different regimes. Such behaviour suggests 
that a model with fixed or constant model parameters will 
not be appropriate to capture the dynamic patterns of the 
incidence data. The estimated value of � indicates that the 
logistic transition between the two regimes is slow. The fore-
casting performance of the nonlinear LSTAR model was 
found to outperform the linear counter AR counterpart based 
on the MAE and RMSE. The performance of the LSTAR 
model was consistent in both in-sample and out-of-sample 
forecast.

conclusion

In conclusion, the case study presented here shows here 
highlights the need to consider nonlinear dynamics in mod-
elling and predicting the incidence of COVID-19. The use 
of nonlinear model such as LSTAR can capture any non-
linear dynamics that might be present in the data. The find-
ings of the study could be incorporated into the decision-
making process regarding prediction of future incidence of 
COVID-19.
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