
fcell-09-617366 February 17, 2021 Time: 20:9 # 1

TECHNOLOGY AND CODE
published: 23 February 2021

doi: 10.3389/fcell.2021.617366

Edited by:
Jiangning Song,

Monash University, Australia

Reviewed by:
Tzong-Yi Lee,

The Chinese University of Hong Kong,
China

Cangzhi Jia,
Dalian Maritime University, China

*Correspondence:
Jichao Wang

wangjc@qibebt.ac.cn
Xinjiao Gao

gaox@ustc.edu.cn
Han Cheng

chenghan@zzu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cellular Biochemistry,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 14 October 2020
Accepted: 12 January 2021

Published: 23 February 2021

Citation:
Li S, Yu K, Wu G, Zhang Q,

Wang P, Zheng J, Liu Z-X, Wang J,
Gao X and Cheng H (2021)

pCysMod: Prediction of Multiple
Cysteine Modifications Based on

Deep Learning Framework.
Front. Cell Dev. Biol. 9:617366.
doi: 10.3389/fcell.2021.617366

pCysMod: Prediction of Multiple
Cysteine Modifications Based on
Deep Learning Framework
Shihua Li1,2†, Kai Yu1†, Guandi Wu1†, Qingfeng Zhang1, Panqin Wang2, Jian Zheng1,
Ze-Xian Liu1, Jichao Wang3* , Xinjiao Gao4* and Han Cheng2*

1 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, Guangzhou, China, 2 School of Life Sciences, Zhengzhou University, Zhengzhou, China, 3 CAS Key
Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences,
Qingdao, China, 4 MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for
Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China

Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs),
acting as a molecular switch to maintain redox homeostasis and regulating a series of
cell signaling transductions. Identification of sophistical protein cysteine modifications
is crucial for dissecting its underlying regulatory mechanism. Instead of a time-
consuming and labor-intensive experimental method, various computational methods
have attracted intense research interest due to their convenience and low cost. Here,
we developed the first comprehensive deep learning based tool pCysMod for multiple
protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation,
S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites
curated from literature and sites collected by other databases and predicting tools were
integrated as benchmark dataset. Several protein sequence features were extracted and
united into a deep learning model, and the hyperparameters were optimized by particle
swarm optimization algorithms. Cross-validations indicated our model showed excellent
robustness and outperformed existing tools, which was able to achieve an average
AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation,
S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable
and suitable for protein cysteine modification prediction. Besides, we constructed a
comprehensive protein cysteine modification prediction web server based on this model
to benefit the researches finding the potential modification sites of their interested
proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will
undoubtedly greatly promote the study of protein cysteine modification and contribute
to clarifying the biological regulation mechanisms of cysteine modification within and
among the cells.

Keywords: protein cysteine modifications, feature extraction, deep learning, post-translational modifications,
prediction

Abbreviations: PTMs, post-translational modifications; Cys, cysteine; H2S, Hydrogen sulfide; NO, nitric oxide; SVM,
support vector machine; ESC, embryonic stem cell; PSO, particle swarm optimization; CKSAAP, composition of k-spaced
amino acid pairs; BE, binary encoding profiles; PSSM, position-specific scoring matrix; AAC, amino acid composition; Sp,
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INTRODUCTION

Post-translational modifications (PTMs) occur at specific amino
acids extending the chemical repertoire of the 20 standard
amino acids, which reversibly coordinate the signaling networks
(Mann and Jensen, 2003; Mertins et al., 2013; Strzyz, 2016).
Although cysteine (Cys) appears the least frequently among these
common amino acids, it tends to act as a powerful molecular
switch to maintain redox homeostasis and regulate a series of
cell signaling transductions by PTMs (Marino and Gladyshev,
2011). The susceptibility of Cys to a variety of oxidative post-
translational modifications is mainly dependent on the thiol
groups, which are considerably more easily oxidized and highly
nucleophilic (Brandes et al., 2009; Kumsta et al., 2011). According
to different molecular conjugations to the thiol groups, cysteine
modification can be classified into different types. Nitric oxide
(NO) binding to some cysteine resides causes S-nitrosylation (Jia
J. et al., 2014) and hydrogen sulfide (H2S) causes S-sulfhydration
(Mishanina et al., 2015; Yang et al., 2015). Cumulated H2O2
reacting with cysteine leads to S-sulfenylation (Yang et al., 2015),
S-sulfinylation (Akter et al., 2018), and S-sulfonylation (Lim et al.,
2008). Cysteines can also bind metals such as Cu, Zn, and Fe to
form iron-sulfur clusters and zinc finger domains (Oteiza, 2012;
Rouault, 2015). The thioesterification reaction happened on lipid
including S-prenylation and S-palmitoylation (Roth et al., 2006).
These modifications lead to a cascade of biochemical reactions
and regulate various physiological and pathological processes,
such as autophagy (Carroll et al., 2018), protein stabilization
(Kröncke and Klotz, 2009), redox homeostasis (Fra et al., 2017),
and cell signaling (Hourihan et al., 2016), demonstrating a
close relationship with many human diseases including cancers,
diabetes, and so on. In this regard, to dissect the molecular
mechanisms and regulatory roles of cysteine modification, it
is urgently needed to precisely parse the potential cysteine
modification sites and types.

With the rapid development of high-throughput sequencing
and excellent specific chemical probes, cysteine modification
profiles get unprecedented accumulation. For example, through
a low-PH quantitation method, Fu et al. (2019) detected 1,547
sulfhydration sites on 994 proteins. Akter et al. (2018) identified
and quantified 387 S-sulfinylation sites on 296 proteins in A549
and Hela cells. Recently, with label-free quantification strategy,
Shen et al. (2017) identified 2,190 S-palmitoylated peptides
on 883 proteins in liver. However, because the experimental
methods are time consuming and labor intensive, the cysteine
modification profiles expanded slowly, which significantly
restricted the research on dissecting the molecular functions
of cysteine modification. It is necessary to develop in silico
tools to accurately predict cysteine modification sites, which will
definitely promote the experimental identification of sophistical
protein cysteine modification sites and types.

There are several computational tools used for predicting
distinct cysteine modification types. For S-nitrosylation, Xue
et al. (2010) collected 504 modification sites and constructed the
first tool GPS-SNO for predicting S-nitrosylation sites. SNOSite
(Lee et al., 2011b) predicted S-nitrosylation sites based on
586 experimental sites using support vector machine (SVM).

iSNO-ANBPB (Jia C. et al., 2014) mainly adopted an adapted
normal distribution bi-profile Bayes (ANBPB) feature extraction
model. PreSNO (Hasan et al., 2019) used the LR model to
integrate four encoding schemes with support vector machines
and RF algorithms to predict SNO sites. In 2018, Xie et al. (2018)
developed DeepNitro for the prediction of protein nitration and
nitrosylation sites based on deep learning. iSulf-Cys (Xu et al.,
2016) is the first program designed for predicting S-sulfenylation
sites based on 1,105 sites quantified in RKO cells. Ju and
Wang (2018) improved the model performance and developed
Sulf_FSVM. MDD-Palm (Weng et al., 2017) can identify
S-palmitoylation sites based on SVM. Recently, Ning et al.
(2020) developed GPS-Palm using a deep learning based graphic
presentation system for the prediction of S-palmitoylation.
Although numerous predictors with considerable performance
have been developed, the limitations are that all of these tools
can predict just one kind of modification type and there is
still room for improvement in model performance, while some
modification types such as S-sulfinylation and S-sulfhydration are
still lacking excellent predictors.

Previously, we have developed several protein post-
translational modification tools for enzyme-specific lysine
acetylation (Yu et al., 2020), calpain-specific cleavage site
(Liu et al., 2019), and S-glutathionylation site (Li et al., 2020)
prediction based on deep learning framework and particle swarm
optimization (PSO) algorithm, which achieved significantly
better performance than exiting tools. Traditional machine
learning based method requires careful feature selection and
scaling, which limited its performance. However, as a branch
of machine learning, deep learning based method can fit
high-dimensional features and clarify biological problems
better than other algorithms. For example, Xu et al. (2017)
constructed a predicting system for histone modification
and discovered a potential embryonic stem cell (ESC) fate
decision mechanism. DeepBind (Hassanzadeh and Wang,
2016) provided many candidate DNA-binding proteins by
predicting DNA and protein-binding events. These results
suggested an unprecedented excellent chance to utilize deep
learning to solve biological problems. However, a credible deep
learning framework is still lacking for comprehensive cysteine
modification prediction.

In this work, after integrating the experimentally verified
cysteine sites curated from literature and sites collected
by other databases and predicting tools, we developed the
first comprehensive deep learning based tool pCysMod
for multiple protein cysteine modification prediction,
including S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation. Seven sequence features
including binary encoding profiles (BE), amino acid composition
(AAC), position-specific scoring matrix (PSSM), and
composition of k-spaced amino acid pairs (CKSAAP) were used
to represent the sequences. These features were extracted and
united into a deep learning model, and the hyperparameters were
optimized by particle swarm optimization algorithms. Cross-
validations indicated our model showed excellent robustness
and outperformed existing tools. Besides, we constructed a
comprehensive protein cysteine modification prediction web
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server based on this model to benefit the researches finding the
potential modification sites of their interested proteins, which
could be accessed at http://pcysmod.omicsbio.info.

METHODS

Benchmark Dataset Preparation
The cysteine modification sites were collected in two major
aspects. On the one hand, we curated the experimentally
verified sites by searching the literatures from PubMed. For
each modification, we used “nitrosylation,” “palmitoylation,”
“sulfenylation,” “sulfhydration,” and “sulfinylation,” together with
“cysteine” as our keywords. After traversing all related literatures
in PubMed, we manually collected all experimentally verified
sites. One the other hand, several databases and predictors with
known cysteine modification sites were integrated, including
GPS-SNO training dataset (Xue et al., 2010), Deep-Nitro training
dataset (Xie et al., 2018), SNOSite training dataset (Lee et al.,
2011b), GPS-Palm training dataset (Ning et al., 2020), iSulf-Cys
training dataset (Xu et al., 2016), Sulf_FSVM training dataset
(Ju and Wang, 2018), and dbPTM database (Huang et al.,
2018). Finally, we obtained 23,041 S-nitrosylation sites in 10,671
proteins, 2,766 S-palmitoylation sites in 1,413 proteins, 4,978
S-sulfenylation sites in 3,288 proteins, 2,721 S-sulfhydration sites
in 1,707 proteins, and 742 S-sulfinylation sites in 538 proteins as
our final training dataset (Table 1 and Supplementary Table S1).

TABLE 1 | A summary of each type of modification data.

Dataset Human Mouse Rat Other Total

Number of S-nitrosylation
sites (positive data)

10,784 4,103 1,629 2,819 38,670

Number of
non-S-nitrosylation sites
(negative data)

19,335

Number of
S-palmitoylation sites
(positive data)

748 1,773 74 174 5,532

Number of
non-S-palmitoylation sites
(negative data)

2,766

Number of S-sulfenylation
sites (positive data)

2,587 352 1 1,806 9,492

Number of
non-S-sulfenylation sites
(negative data)

4,746

Number of S-sulfhydration
sites (positive data)

2,010 0 0 525 5,070

Number of
non-S-sulfhydration sites
(negative data)

2,535

Number of S-sulfinylation
sites (positive data)

440 0 208 7 1,310

Number of
non-S-sulfinylation sites
(negative data)

655

To generate the positive and negative datasets, we retrieved the
protein sequence from UniProt database (UniProt Consortium
[UC], 2015) for each protein. For each modification, the golden
positive dataset was the modification sites from the benchmark
dataset, whereas all cysteine sites that were not modified on the
same protein were treated as the negative dataset. The sequence
box for feature extraction consists of a cysteine in the middle
and 15 upstream and downstream amino acids at both ends.
For the peptide of less than 31-amino acids, pseudo-amino acids
“∗” were added to make sure the peptides were of equal length.
If the sequence in the negative dataset was the same as the
positive set in the same cysteine modification, only the sequence
in the positive data set is preserved. In addition, due to the high
imbalance between positive and negative samples, we randomly
selected the same number of negative samples to ensure that the
number of positive peptides was equal to the number of negative
peptides (Zhao et al., 2012). At the same time, we used CD-Hit
(Fu et al., 2012) with a threshold of 90, 80, and 70% sequence
similarity treatment on a short peptide consisting of 31-amino
acids, and then performed fivefold cross-validation. In this work,
cross-validations were used to evaluate the performance of the
model. Since cross-validation is an efficient way of examining the
robustness and accuracy of a predicting model, it is unnecessary
to divide the benchmark dataset into training set and testing set
(Zhang et al., 2020).

Feature Extraction
Binary Encoding Profiles
Binary encoding (BE) (Song et al., 2010) was derived from
computational programming, which uses the binary digit, that
is, “0” or “1,” as the fundamental unit of information. Each
printable character can be uniquely represented by combining
bits. As mentioned above, each peptide in the benchmark
dataset consists of at most 21 types of amino acids, which
are ACDEFGHIKLMNPQRSTVWY∗. Hence, a 21-dimentional
binary vector was used to represent each amino acid. For
example, “A” was encoded as (100000000000000000000), “E”
was encoded as (000100000000000000000), and the pseudo-
amino acid “∗” was encoded as (000000000000000000001).
In this regard, each peptide was represented by a 651-
dimensional vector.

Amino Acid Composition
The amino acid composition (AAC) is an important feature to
identify β-barrel membrane proteins (Radivojac et al., 2010; Lee
et al., 2011a), which stand for the occurrence frequency of 21-
amino acids on any specific peptides. The feature length of this
encoding method is 21 for each peptide.

Position-Specific Scoring Matrix
Position-Specific Scoring Matrix (PSSM) was first introduced
as an alternative to consensus sequences (Stormo et al., 1982);
this feature was derived from a set of functionally related
aligned sequences, which is commonly used for computational
motif discovery in biological sequences (Stormo, 2000). For a
group of given peptides, PSSMs assume that the probabilities
for each position are statistically independent and calculate the
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probability for each specific amino acid at a particular position.
The probabilities for a particular position sum up to 1. In this
work, we calculated PSSMs for positive dataset and negative
dataset, so the dimension of this feature is 62.

Composition of k-Spaced Amino Acid Pairs
The encoding scheme based on the Composition of k-Spaced
Amino Acid Pairs (CKSAAP) (Zhao et al., 2012) is an effective
feature extraction method, which can reflect the information of
amino acid pair motifs in a set of peptides. The k-spaced means
two amino acids in a peptide separated by k-amino acids, and
CKSAAP encoding calculates the occurrence frequency for each
pair. When k = 0, it means the occurrence frequency of each
pair is composed of adjacent amino acids, and the dimension is
441. In this work, after taking computation and time cost into
consideration, we merely adopted k = 0, 1, 2, and 3, and the final
dimension of this method is 1,764.

Model Construction
Although each modification type has a special benchmark dataset
and needs a special model to fit, they have analogous model
architectures. Here, we introduce a general deep learning based
model architecture used in this work for cysteine prediction.
For each modification type, the benchmark peptide dataset was
encoded by four feature extraction methods mentioned above.
The model received the numerical transferred sequences in the
input layer, which consists of four independent DNN submodules
to train four input features. Then the four submodules were
merged and flattened into a fully connected layer after sufficiently
learning the features. Finally, pCysMod output a probability
of whether this peptide could undergo particular modification.
Early stopping and dropout functions were used to make
sure the training set was not over-represented. To optimize
the numerous hyperparameters in pCysMod, particle swarm
optimization algorithm was applied to generate the maximum
performance as previously reported (Yu et al., 2020). The python
package “pyswarm”1as used.

Performance Evaluation
Four common measurements were adopted to evaluate the
performance of pCysMod as previously described (Liu et al.,
2012), including specificity (Sp), sensitivity (Sn), accuracy
(Ac), and Mathews correlation coefficient (MCC). The detailed
descriptions of these four measurements are defined as below:

Sn =
TP

TP+ FN
(1)

Sp =
TN

TN+ FP
(2)

Ac=
TP+ TN

TP+ FP+ TN+ FN
(3)

MCC=
TP∗TN− FP∗FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(4)

1https://github.com/tisimst/pyswarm

We calculated the area under the receiver operating
characteristic (ROC) curve (AUC) values to show the model
performance. Four-, six-, eight-, and tenfold cross-validations
were used to evaluate the robustness and accuracy of pCysMod.
Tenfold cross-validation was used to compare the performance
of pCysMod with the existing tools.

Implement of the Web Server
pCysMod model was constructed by Keras, with TensorFlow as
its backend implementation. The secondary structure and surface
accessibility information of the query sequence were calculated
by NetSurfP (Petersen et al., 2009), and the disorder information
was predicted by IUPred (Dosztanyi et al., 2005). The web server
was built in PHP and Python, which could be accessed at http:
//pcysmod.omicsbio.info.

RESULTS

The Construction of Computational
Model to Predict Cysteine Modification
Sites
Cysteine modification sites were obtained in the literature and
other predictive tools (Figure 1). After removing redundant
sequences and balancing the datasets, we finally obtained 19,335
S-nitrosylation-positive sites, 2,766 S-palmitoylation-positive
sites, 4,746 S-sulfenylation-positive sites, 2,535 S-sulfhydration-
positive sites, and 655 S-sulfinylation-positive sites. The number
of negative and positive sequences of different modifications
was the same and shown in Table 1. Then, we developed the
first model to predict multiple cysteine modifications named
pCysMod. The software was based on deep learning and
PSO algorithm. The sequence features were extracted by four
methods, including BE, AAC, PSSM, and CKSAAP (Figure 1).
Furthermore, we used Python, PHP, JavaScript, and HTML to
construct pCysMod online server, which can be accessed through
http://pcysmod.omicsbio.info.

The Characteristic of Cysteine
Modification Sites and Proteins
To better understand the structure of different cysteine
modification sites, we used the secondary structure prediction
algorithms PsiPred (McGuffin et al., 2000) and IUPred
(Dosztanyi et al., 2005) to classify the cysteine sites of all
proteins. The S-nitrosylation sites and S-palmitoylation sites
were predominantly distributed in coil, while S-sulfenylation,
S-sulfhydration, and S-sulfinylation sites in coil and helix
were relatively close (Figure 2A), and the cysteine sites were
mainly predicted to locate in ordered regions (Figure 2B).
Furthermore, we used Two Sample Logo (Vacic et al., 2006)
to analyze amino acid preference. The difference between
S-sulfinylation sites and non-S-sulfinylation sites are shown in
Figure 2C. Lysine and asparagine residues were enriched around
the S-sulfinylation sites, but cysteine residues were deleterious
to the modification. In S-nitrosylation cysteine modification, the
asparagine and glutamic were enriched near the modification
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FIGURE 1 | An overview of the model.

site (Figure 2C). Lysine residues also tended to be S-sulfenylated
and S-sulfhydrated, while cysteine residues were enriched in
S-palmitoylation cysteine modification (Figure 2C).

Using the collected human proteins with different cysteine
modifications, we conducted GO and KEGG enrichment
by clusterProfiler (Yu et al., 2012). We found that the
mostly enriched biological processes were catabolic process
in S-sulfinylation and S-nitrosylation, such as carboxylic
acid catabolic process and organic acid catabolic process
(Supplementary Figure S1). S-Sulfenylation and S-sulfhydration
were related to transcription, and S-palmitoylation tended
to affect transduction (Supplementary Figure S1). Based
on the enrichment results of GO cellular components, we
observed that ribosome was enriched in different cysteine
modifications (Supplementary Figure S1). GO molecular
function and KEGG pathway analyses also indicated that
the cysteine modifications other than S-palmitoylation were
involved in the redox process (Supplementary Figures S1,
S2). The results were consistent with previous studies, which
showed that S-nitrosylation, S-sulfenylation, S-sulfhydration, and
S-sulfinylation play critical roles in oxidative post-translational
modifications (Chung et al., 2013).

Evaluating the Performance of pCysMod
We generated the first model to predict multiple types of cysteine
modification based on the method mentioned above. Four-, six-,
eight-, and tenfold cross-validations were used to evaluate the
accuracy and robustness of pCysMod. The ROC curves and
AUC values are displayed in Figure 3. The best cross-validation
AUC values for S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation were 0.793, 0.807, 0.796,
0.793, and 0.876. The similar and considerable performance
declared the robustness and high accuracy of pCysMod. Since
cross-validation is an efficient way of examining the robustness
and accuracy of a predicting model, it is unnecessary to
divide the benchmark dataset into training set and testing set
(Zhang et al., 2020). We tested the predictive performance
of different feature extractions. The fivefold cross-validation
AUCs were calculated for different features, and the results
are visualized in the added Supplementary Figure S3, which
indicated that combining multiple features can obtain more
stable prediction performances. Not only that, in order to
avoid the overestimation of prediction performance due to
the possible high similarity of the sequences, we used CD-
Hit with a threshold of 70, 80, and 90% sequence similarity
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FIGURE 2 | The characteristic of cysteine modification sites and proteins. (A) The secondary structure. (B) The disorder information of cysteine modification sites.
(C) Preference for amino acids around the cysteine modification sites and non-cysteine modification sites.

analysis on short peptides composed of 31-amino acids,
and then performed fivefold cross-validation based on the
clustering results. Compared with only removing redundant
peptides, the results showed that not using CD-Hit did not
lead to an overestimation of the prediction performance
(Supplementary Table S2).

We then performed tenfold cross-validation to demonstrate
the superiority of pCysMod compared with existing tools,
including S-nitrosylation site-predicting tools GPS-SNO (Xue
et al., 2010), Deep-Nitro (Xie et al., 2018), iSNO-ANBPB
(Jia C. et al., 2014), and PreSNO (Hasan et al., 2019),
S-palmitoylation site-predicting tools GPS-Palm (Ning et al.,
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FIGURE 3 | The ROC curves and AUCs of 4-, 6-, 8-, and tenfold cross-validations are shown.

2020) and MDD-Palm (Weng et al., 2017), and S-sulfenylation
site-predicting tools iSulf-Cys (Xu et al., 2016) and Sulf_FSVM
(Ju and Wang, 2018). The performances of these predictors were
retrieved from previous reported literatures, which are shown
in Table 2. Through the comparison, we can conclude that the
performance of pCysMod is higher than or equal to existing
predictors, showing a considerable predictive power for general
cysteine modification prediction.

Finally, we have constructed an independent predictor
for each modification, with the same basic structure and
distinct hyperparameters. At the same time, we tested the
cross differentiating capabilities of five cysteine modification
predictors, that is, using the constructed model to predict other

TABLE 2 | Performance comparison of pCysMod with other predictors.

CysMod Predictor Sn (%) Sp (%) Ac (%) MCC AUC

S-Nitrosylation GPS-SNO 53.57 80.14 75.80 0.286 0.524

DeepNitro 40.0 85.0 77.7 0.236 0.743

PreSNO 60.4 76.9 75.2 0.252 0.756

iSNO-ANBPB 67.01 0.351

pCysMod 61.09 80.02 70.57 0.420 0.793

S-Palmitoylation GPS-Palm 68.47 85.04 82.67 0.448 0.855

MDD-Palm 74.0 74.0 74.0 0.40 0.80

pCysMod 62.91 80.29 71.66 0.439 0.807

S-Sulfenylation iSulf-Cys 67.31 63.89 65.59 0.312 0.715

Sulf_FSVM 68.54 68.03 68.29 0.365 0.747

pCysMod 75.66 70.08 72.84 0.458 0.796

types of cysteine modification. The prediction results show
that, different predictors have specificity for their corresponding
modification type (Supplementary Table S3). Although the
basic structure of each modified model is the same, the
internal parameters adjusted by the PSO algorithm are distinct,
showing a different modification feature and pattern of each
modification type.

Implementation of pCysMod Web Server
In order to provide an efficient and convenient way to facilitate
basic research, we generated the first comprehensive cysteine
modification prediction web server pCysMod. We tested the
pCysMod website on various commonly used web browsers,
such as Google Chrome, Internet Explorer, and Mozilla Firefox
to provide a robust service. The prediction and results pages
are shown in Figure 3. The input text box required FASTA
format protein sequence, and then we should select which type
of modification is needed to be predicted and its threshold
(Figure 4A). The prediction information was organized by two
aspects and displayed in the results page, including “Potential
cysteine modification sites” (Figure 4B) and “Secondary structure
and surface accessibility” (Figure 3C). The detailed modification
sites and types information are displayed in the “Potential
cysteine modification sites” section (Figure 4B), and the sequence
structure properties such as disordered information, secondary
structure, and surface accessibility features are shown in the
“Secondary structure and surface accessibility” (Figure 4C).
When multiple protein sequences were submitted, pCysMod will
predict and show the first one as a default. By clicking the
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FIGURE 4 | The web server of pCysMod. (A) The prediction page. (B) Potential cysteine modification sites. (C) Secondary structure and surface accessibility.

selection box, users can choose which protein to display, and
this will take 20 s in average. Besides, the proteins and peptides
used in this study were uploaded in the web server and users
can download the relevant data in the “Help” section. Overall,
pCysMod was the first comprehensive cysteine modification
prediction web server, which will undoubtedly greatly promote
the study of protein cysteine modification and contribute to
clarifying the biological regulation mechanisms of cysteine
modification within and among the cells.

DISCUSSION

Protein cysteine modifications lead to a series of biochemical
reactions, regulate various physiological and pathological
processes, such as autophagy (Carroll et al., 2018), protein
stabilization (Kröncke and Klotz, 2009), redox homeostasis
(Fra et al., 2017), and cell signaling (Hourihan et al., 2016),
demonstrating a close relationship with many human diseases
including cancers, diabetes, and so on. Although many efforts
have been made in this field, the experimental identification
of cysteine modification proteins is tedious and laborious and
the underlying molecular mechanisms are still unclear. In this
regard, to dissect the molecular mechanisms and regulatory roles
of cysteine modification, it is urgently needed to precisely parse
the potential cysteine modification sites and types.

Through carefully curated previous reported literatures,
predictors, and databases, we generated a benchmark
dataset that consists of five types of cysteine modification,
including S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation. The cysteine modification
sites prefer to enrich in ordered regions. Consistent with previous
reports, S-nitrosylation, S-sulfenylation, S-sulfhydration, and
S-sulfinylation play crucial roles in oxidative post-translational
modifications (Chung et al., 2013). Besides, the thioesterification
reaction can cause S-palmitoylation by reversibly adding one

or multiple palmitoyl moieties to cysteine residues (Roth et al.,
2006), and S-palmitoylation also mediates a series of biochemical
reactions, such as metabolism (Shen et al., 2017) and autophagy
(Kim et al., 2019).

Then, we generated the pCysMod to predict multiple
types of cysteine modification. Four-, six-, eight-, and tenfold
cross-validations declared the robustness and high accuracy
of pCysMod. Tenfold cross-validation comparison indicated a
considerable predictive power for general cysteine modification
prediction. We further generated the first comprehensive cysteine
modification prediction web server pCysMod to provide an
efficient and convenient way to facilitate basic research.

Although pCysMod has performed excellently in predicting
cysteine modification, the limitations still exit. Currently,
the cysteine modification data are still limited. We will
keep collecting more modification types for future plans to
generate a more comprehensive cysteine modification predictor.
Furthermore, more deep learning methods could be taken
into consideration, such as graph convolutional neural network
(GCN), capsule network, and attention mechanisms, which may
be an important and meaningful approach to help improving the
current performance.
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