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Blocking RpoN reduces virulence of 
Pseudomonas aeruginosa isolated 
from cystic fibrosis patients and 
increases antibiotic sensitivity in a 
laboratory strain
M. G. Lloyd1, J. L. Vossler2, C. T. Nomura3,4 & J. F. Moffat1

Multidrug-resistant organisms are increasing in healthcare settings, and there are few antimicrobials 
available to treat infections from these bacteria. Pseudomonas aeruginosa is an opportunistic pathogen 
in burn patients and individuals with cystic fibrosis (CF), and a leading cause of nosocomial infections. 
P. aeruginosa is inherently resistant to many antibiotics and can develop resistance to others, limiting 
treatment options. P. aeruginosa has multiple sigma factors to regulate transcription. The alternative 
sigma factor, RpoN (σ54), regulates many virulence genes and is linked to antibiotic resistance. 
Recently, we described a cis-acting peptide, RpoN*, which is a “molecular roadblock”, binding 
consensus promoters at the -24 site, blocking transcription. RpoN* reduces virulence of P. aeruginosa 
laboratory strains, but its effects in clinical isolates was unknown. We investigated the effects of 
RpoN* on phenotypically varied P. aeruginosa strains isolated from CF patients. RpoN* expression 
reduced motility, biofilm formation, and pathogenesis in a P. aeruginosa-C. elegans infection model. 
Furthermore, we investigated RpoN* effects on antibiotic susceptibility in a laboratory strain. RpoN* 
expression increased susceptibility to several beta-lactam-based antibiotics in strain P. aeruginosa 
PA19660 Xen5. We show that using a cis-acting peptide to block RpoN consensus promoters has 
potential clinical implications in reducing virulence and improving antibiotic susceptibility.

Multidrug-resistant organisms (MDROs) are an increasing problem in the healthcare setting. Both Gram-negative 
and Gram-positive MDROs are prevalent globally1. There are few or no antimicrobial agents available for treat-
ment of infections caused by these bacteria2. Pseudomonas aeruginosa, a Gram-negative, opportunistic pathogen 
is a leading cause of nosocomial infections and is associated with infections in burn patients3,4. P. aeruginosa is 
also responsible for colonizing the respiratory tract and causing chronic infections in individuals with cystic 
fibrosis (CF)5. It is the most common pathogen isolated from individuals with CF and is a major source of mor-
bidity and mortality6,7.

In CF patients, P. aeruginosa undergoes a transformation from a non-mucoid form upon initial colonization 
of the lungs to a mucoid form as the disease progresses. This results in a chronic debilitating pulmonary infection 
characterized by the overexpression of alginate. Mucoid strains synthesize large quantities of alginate, enhanc-
ing biofilm formation and protecting P. aeruginosa from antibiotics or the immune response8, possibly through 
formation of microcolonies9,10. While aggressive prevention regimens have led to a decline in P. aeruginosa prev-
alence in CF patients, multidrug resistant strains are still prevalent and occurred in 19.4% of CF infections in 
201511. P. aeruginosa is inherently resistant to a number of antibiotics12,13. It can also acquire resistance through 
exogenous resistance genes via horizontal gene transfer or mutations14, limiting treatment options. Antimicrobial 
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development is directed toward alternative treatments and novel targets. Promising strategies include enhancing 
activity of currently available antibiotics and decreasing virulence of the bacteria once an infection occurs15,16.

P. aeruginosa virulence is caused by many factors, including toxins, proteases, phospholipases, the presence 
of pili and flagella, and biofilm formation17. Virulence is regulated by a network of transcription factors, such as 
sigma factors RpoS and RpoN, and quorum sensing regulators18. The alternative sigma factor, σ54 or RpoN, reg-
ulates nitrogen assimilation, quorum sensing, motility, biofilm formation and other virulence factors19–27. RpoN 
regulation was recently linked to P. aeruginosa tolerance to several antibiotics28–30. RpoN binds to specific pro-
moters with conserved −24, −12 sequences upstream of RpoN-regulated genes throughout the genome and is a 
key virulence regulator31. The specific and conserved nature through which RpoN controls its regulon led us to 
develop the RpoN molecular roadblock, RpoN*. RpoN* is a cis-acting peptide that specifically binds the −24 site 
of RpoN consensus promoters, blocking transcription by RpoN and other factors32. The RpoN* peptide sequence 
includes the identical amino acids to A. aeolicus RpoN Region III that bind with high affinity to the −24 site33. We 
previously described engineering the rpoN* gene in the broad-host range plasmid pBBR1MCS-5 under control 
of the ITPG-inducible trc promoter32. The pBBR1MCS-5 plasmid contains the GmR cassette34 and is present at 
about 10 copies per cell35. When RpoN* is expressed in P. aeruginosa laboratory strains, transcription is affected 
globally and virulence is attenuated32. We showed that more than 700 genes are affected, either directly regulated 
by RpoN or indirectly by other transcription factors under RpoN control32. Furthermore, in P. aeruginosa, some 
genes may have promoter binding sites for multiple sigma factors31. Thus, loss of RpoN does not always equate to 
loss of transcription and gene expression. We showed that RpoN* affects virulence in a RpoN-deletion strain of P. 
aeruginosa PAO1. This demonstrates the roadblock’s ability to attenuate gene expression by blocking transcription 
of genes under dual-regulation with RpoN and other sigma factors32. This strategy of blocking multiple promoters 
throughout the P. aeruginosa genome may be an effective method to combat virulence and evade development 
of resistance.

P. aeruginosa isolated from CF patients are phenotypically and genetically varied36,37. Many P. aeruginosa clin-
ical isolates have mutations, including deletion or loss of function, in the rpoN gene38,39. It was not known how 
the cis-acting RpoN* peptide would affect virulence phenotypes in P. aeruginosa clinical isolates, particularly in 
strains that do not express or have low levels of RpoN. In this study, we describe the effects of RpoN* on in vitro 
and in vivo virulence of P. aeruginosa isolated from CF patients. We also describe RpoN* effects on antibiotic 
resistance in a laboratory strain. Expression of RpoN* reduced virulence-associated phenotypes in clinical iso-
lates and improved P. aeruginosa susceptibility to multiple antibiotics. This study demonstrates that RpoN* has 
potential clinical applications and represents an effective strategy to combat antibiotic resistance and infections 
with P. aeruginosa in CF patients.

Results
Virulence phenotypes were variable in P. aeruginosa isolates from CF patients.  P. aeruginosa 
isolated from different CF patients or within the same CF patient have varied phenotypes and genotypes36,37. P. 
aeruginosa adapts over time, leading to mutations and changes in expression of genes related to motility, quorum 
sensing, and overall virulence38,40. To determine the virulence-related phenotypic profiles of the strains used in 
this study (Table 1), each P. aeruginosa patient isolate was evaluated for motility and biofilm formation, compared 
to the virulent positive control strain P. aeruginosa PA19660 Xen5. Several patient isolates were highly motile 

Location Strain Source CF mutations Reference

Laboratory

PAO1-M — n/a C. Manoil (27)

PAO1-S — n/a D. Haas (15)

∆rpoN — n/a D. Haas (15)

PA19660 Xen5 Septicemia n/a Perkin Elmer

Clinical Isolate

Seattle Children’s Hospital (SCH)

SCH0057-7 unknown ∆F508/∆F508 This study

SCH0254-23 unknown ∆F508/unknown This study

SCH0254-116 unknown ∆F508/unknown This study

SCH0254-118 unknown ∆F508/unknown This study

SCH0256-1 sputum ∆F508/∆F508 This study

SCH0338-38 sputum unknown/unknown This study

SCH0354-1 sputum ∆F508/G551D This study

SCH0397-3 unknown ∆F508/unknown This study

SCH03269 sputum ∆F508/∆F508 This study

Upstate University Hospital (UUH)

UUH0101 sputum ∆F508/unknown This study

UUH0201 sputum ∆F508/∆F508 This study

UUH0202 sputum ∆F508/∆F508 This study

Table 1.  P. aeruginosa strains used in this study.
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in the swimming assay (flagella), including SCH0057-7, SCH0256-1, SCH0354-1 and UUH0201, while others 
were nonmotile (Fig. 1A, Supplemental Fig. S1A–C). Most strains were motile in the twitching assay (pili) and 
produced moderate biofilms, with SCH0254-118 migrating the furthest (Fig. 1B, Supplemental Fig. S1A’–C’) and 
forming the most extensive biofilm (Fig. 1C). SCH0254-116, SCH0397-3, and UUH0202 did not form biofilms.

The pathogenesis of patient isolates was evaluated in a P. aeruginosa – C. elegans infection model. All patient 
isolates were compared to E. coli OP50, an avirulent negative control. SCH0057-7 was the most pathogenic in the 
paralytic killing assay, which is mediated by hydrogen cyanide production41,42 (Fig. 2A). Other strains were moder-
ately pathogenic, including SCH0256-1, SCH0354-1, SCH0397-3, and UUH0202. SCH0057-7, SCH0338-58, and 
UUH0202 were highly pathogenic in the slow killing assay, which mimics establishment and proliferation of an 
infection and is mediated by the lasR, gacA, lemA, and ptsP genes43, while UUH0201 was moderately pathogenic 
(Fig. 2B). As expected, the virulence-associated phenotypes of patient isolates varied widely in vitro and in vivo.

RpoN protein levels varied among patient isolates.  Others reported that the rpoN gene was mutated 
or lost in approximately 20% of P. aeruginosa isolates from CF patients38. Loss or mutation in the rpoN gene can 
result in phenotypes similar to those observed in the patient isolates evaluated here20,22,23. Thus, we evaluated 
relative protein levels of RpoN in these patient isolates by western blot. RpoN levels were moderately high in the 
positive control P. aeruginosa PAO1-S, while low or minimal protein levels were detected in the isogenic ΔrpoN 
mutant negative control (Fig. 3). The faint bands in the ∆rpoN strain and several CF patient isolates are back-
ground signals due to non-specific antibody binding to another protein or sigma factor with a similar apparent 
molecular weight. RpoN levels varied in the CF patient isolates, with high levels in SCH0057-7, SCH0397-3, 
and UUH0201; intermediate levels in SCH0254-116, SCH0338-58, and UUH0202; and background levels in 
SCH0254-23, SCH0254-118, SCH0256-1, SCH0354-1, SCH03269, and UUH0101.

RpoN* expressed in CF patient isolates reduced virulence-associated phenotypes in vitro.  The 
effect of RpoN* expression on motility and biofilm formation in patient isolates was not known. Unfortunately, 
some patient isolates could not be transformed, and so only four isolates were evaluated for the effects of RpoN* 
expressed from a plasmid. SCH0057-7, SCH0256-1, SCH0338-58, and SCH0354-1 were transformed with 
a plasmid expressing RpoN* or the empty vector and selected with gentamicin. If RpoN* affected transcrip-
tion of virulence-related genes in different genetic backgrounds as previously reported32, we expected attenu-
ation of virulence-related phenotypes in P. aeruginosa CF patient isolates. RpoN* significantly reduced colony 
diameter in all four patient isolates in the swimming motility assay (Student’s t-test, **p ≤ 0.01, ***p ≤ 0.0001) 
(Fig. 4A, Supplemental Fig. S3 (top two rows)). RpoN* significantly reduced colony diameter in SCH0057-7, 

Figure 1.  Characterization of virulence phenotypes of P. aeruginosa strains isolated from cystic fibrosis 
patients. P. aeruginosa CF patient isolates were compared to laboratory strain PA19660 Xen5. All assays were 
conducted at 37 °C for 24 h. (A) Colony diameter of swimming, or flagellar, motility assay conducted on soft 
(0.3%) agar. (B) Twitching, or pili, motility assay conducted on semi-hard (1.3%) agar. Colony diameter was 
measured across point of inoculation to the edges of bacteria colony. (C) Biofilm formation assay was conducted 
in 96-well microtiter plates. Biofilms were stained with crystal violet (0.1%), solubilized in ethanol (95%), and 
absorbance measured at OD550. Bars are the mean ± SD; n = 5 to 6 replicates in motility assays and n = 10 in 
biofilm assay. Each assay was performed at least three separate times and representative results are shown.
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SCH0256-1, and SCH0338-58 in the twitching motility assay (Student’s t-test, **p ≤ 0.01, ***p ≤ 0.0001) 
(Fig. 4B, Supplemental Fig. S3 (bottom two rows)). Colony diameter varied widely in SCH0354-1 when RpoN* 
was expressed and was always smaller than with empty vector, although the difference was not significant. In 
the biofilm formation assay, RpoN* significantly reduced biofilm formation by SCH0057-7 and SCH0256-1 
(Student’s t-test, p ≤ 0.0001) (Fig. 4C). Thus RpoN* reduced virulence-associated phenotypes of P. aeruginosa 
isolated from CF patients.

Figure 2.  Pathogenesis of P. aeruginosa isolated from cystic fibrosis patients in P. aeruginosa – C. elegans 
infection model. Kaplan-Meier survival curves for P. aeruginosa – C. elegans infection assays. (A) Paralytic 
killing assay on BHI agar. Assay was conducted at room temperature and worm status scored every 2 h. (B) Slow 
killing assay on modified NGM agar (0.35% bactopeptone, 2% bactoagar). Assay was conducted at 20 °C and 
worm status scored every 24 h. Strains used included CF patient isolates, and E. coli for reference. n = 48 to 90 
worms per strain.

Figure 3.  RpoN protein in P. aeruginosa isolates is highly variable. Immunoblot (bottom) and analysis (top) of 
RpoN expression in P. aeruginosa CF patient isolates and laboratory strains PAO1-S and ΔrpoN. Immunoblots 
performed on 10% Mini-PROTEAN TGX Stain-Free gels (BioRad). RpoN protein levels were calculated by 
comparing measured total protein in each lane to the measured RpoN band (presented as arbitrary units 
(AU)). The background value in ∆rpoN was subtracted from all samples and values were normalized against 
PAO1-S. The graph and immunoblot are representative of immunoblots from multiple bacterial cultures and 
western blot analyses. Separate immunoblots are indicated by the dividing line. See Supplemental Fig. S2 for full 
immunoblots.
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RpoN* expression increased worm survival in P. aeruginosa – C. elegans infection model.  Initial 
evaluation of patient isolates revealed a single P. aeruginosa strain, SCH0057-7, that was both transformable 
and pathogenic in the P. aeruginosa – C. elegans infection assay. Therefore, effects of RpoN* on pathogenesis of 
SCH0057-7 were evaluated using the paralytic killing assay, which is based on P. aeruginosa hydrogen cyanide 
production and mimics conditions in the CF lung41,42. Wild-type P. aeruginosa SCH0057-7 was the positive, 
virulent control and E. coli was the negative, avirulent control. The test conditions were P. aeruginosa SCH0057-7 
expressing RpoN* or carrying the empty vector plasmid. If RpoN* affected virulence-related phenotypes in 
P. aeruginosa SCH0057-7, then we expected increased survival of C. elegans. Wild type SCH0057-7 and with 

Figure 4.  RpoN* expression decreases motility and biofilm formation. P. aeruginosa CF patient isolates with 
empty vector (E.V., black bars), or with RpoN*-expression vector (gray bars). Media was supplemented with 
gentamicin (30 mg/L), and IPTG (1 mM) when applicable, and all assays were conducted at 37 °C for 24 h. (A) 
Colony diameter of swimming, or flagellar, motility assay conducted on soft (0.3%) agar. (B) Colony diameter 
of twitching, or pili, motility assay conducted on semi-hard (1.3%) agar. (C) Biofilm formation assay conducted 
in 96-well microtiter plates. Bars are the mean ± SD (Student’s t-test, ***p ≤ 0.0001; **p ≤ 0.01). n = 4 to 5 
replicates in motility assays; n = 12 in biofilm assays.
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the empty vector killed approximately 80% of C. elegans (Fig. 5). In contrast, RpoN* expression significantly 
increased C. elegans survival (Mantel-Cox Log-Rank Test, p ≤ 0.0001). Thus, RpoN* expression reduced patho-
genesis of a patient isolate in a P. aeruginosa – C. elegans infection model.

RpoN* increased susceptibility to select antibiotics in vitro.  Antibiotic resistance is a problem in 
CF patients with P. aeruginosa infections44–46. We previously reported that RpoN* alters transcription of several 
genes involved in multidrug efflux pumps that confer natural resistance32. Additionally, RpoN is implicated in 
tolerance to various classes of antibiotics28–30. We evaluated the effects of RpoN* on antibiotic susceptibility using 
a MicroScan Neg MIC 43 panel. The test conditions were P. aeruginosa PA19660 Xen5 that was mock-transformed 
(no vector) or transformed with the empty vector or RpoN* plasmid. We expected that RpoN* would improve 
antibiotic susceptibility of P. aeruginosa. In PA19660 Xen5 mock-transformed or with the empty vector, antibiotic 
susceptibility profiles were the same, except for gentamicin, which increased in the empty vector strain due to the 
GMR selection marker (Table 2). In PA19660 Xen5 expressing RpoN*, susceptibility to five beta-lactam antibiotics 
was improved at least 2- to 4-fold (Table 2). Results presented in Table 2 are representative of a single experiment, 
however these results were highly consistent and repeatable over multiple experiments and biological replicates. 
The antibiotics with improved susceptibility were cefotaxime, cefepime, and ceftazidime (three cephalosporins), 
piperacillin (a ureidopenicillin), and imipenem (a carbapenem). Susceptibility to some antibiotics was unchanged 
(data not shown). For piperacillin, there was at least a 2-fold increase in susceptibility. This improvement is clin-
ically relevant as it changed the status from resistant to sensitive (Table 2). For the other drugs, which there was 
no change in clinical susceptibility status, presence of RpoN* increased the therapeutic potency of the drugs. The 
results demonstrate that RpoN* expression increased P. aeruginosa susceptibility to several antibiotics.

Discussion
Here, we confirm and expand results of previous studies by showing the ability of RpoN* to abrogate virulence 
phenotypes in P. aeruginosa isolates from CF patients and to improve susceptibility to several antibiotics. Our 
working model of the mechanism of action of RpoN* is that it binds the -24 promoter consensus sites, blocking 
transactivation by RpoN and other sigma factors. By altering the transcriptome, RpoN* reduced virulence in 
well-characterized laboratory strains32. Thus, the motivation for this study was to understand the clinical rel-
evance of RpoN*. We demonstrated that RpoN* expressed in CF patient isolates reduced motility and biofilm 
formation in vitro, independently of RpoN protein levels. The RpoN* molecular roadblock protected C. elegans 
from a highly virulent P. aeruginosa patient isolate in an in vivo infection model. RpoN* also improved P. aerug-
inosa susceptibility to antibiotics.

P. aeruginosa isolated from CF patients are highly variable36,37, with the rpoN gene often mutated or lost38. The 
patient isolates evaluated in this study had a broad range of motility, biofilm formation, RpoN protein levels, and 
virulence in C. elegans. There was no correspondence between most in vitro phenotypes, in vivo pathogenesis, 
and RpoN levels (Supplemental Fig. S4). The only correlation observed was between twitching, or pili-associated, 
motility and biofilm formation (Supplemental Fig. S4F, p = 0.0357, R2 = 0.37050). Other studies suggested that in 
vitro phenotypes of P. aeruginosa isolates can be related to disease status in CF patients47. Patient information and 
status of P. aeruginosa infections is limited for the isolates described here, so a comparison between phenotypes 
and patient status is not feasible. Interestingly, two isolates, UUH0201 and UUH0202, were obtained five months 
apart from the same patient, with UUH0201 collected first. The UUH0202 strain was less motile and RpoN 
protein levels dropped compared to UUH0201, but virulence increased. This supports the concept that in vitro 

Figure 5.  RpoN* promotes C. elegans survival in paralytic killing assay. P. aeruginosa CF isolate SCH0057-7 
wild type, with empty vector (E.V.), or with RpoN*-expression vector, were compared to avirulent E. coli OP50. 
Paralytic killing assay was conducted on BHI agar supplemented with gentamicin (30 mg/L) and IPTG (1 mM), 
when applicable. Assay was conducted at room temperature, and worm status scored every 2 h. Kaplan-Meier 
survival curves represent combined survival of three separate assays (exception: E. coli). Mantel-Cox log-rank 
test was used to analyze E.V. and RpoN* curves (***p ≤ 0.0001). n = 180 worms per SCH0057-7 condition, 
n = 60 worms for E. coli.
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phenotypes reflect P. aeruginosa infection status in CF patients47. Further work would be needed to fully elucidate 
such correlations.

The RpoN* molecular roadblock reduced virulence phenotypes in patient isolates with high or low levels 
of RpoN. Furthermore, there was no substantial difference between CF isolates transformed with the empty 
vector and in the absence of manipulation (wild type strains). For instance, RpoN protein levels were higher in 
SCH0057-7 than PAO1-S, and RpoN* reduced flagellar and pili motility, biofilm formation and pathogenesis. In 
contrast, relative RpoN protein levels were low in SCH0256-1 and SCH0354-1, and yet RpoN* reduced motility. 
Thus, the roadblock was effective in the presence or absence of the native sigma factor. This is possible since there 
is a redundancy among P. aeruginosa sigma factors, with multiple sigma factors having consensus promoter sites 
for the same gene31. Thus, in the absence of RpoN, other sigma factors promote transcription of certain genes. 
The results here confirm our previous findings, which show that RpoN* reduced virulence in a laboratory strain 
that was deleted for rpoN32. Unfortunately, barriers to transformation precluded evaluating RpoN* in some of the 
other clinical isolates. However, the strains that were successfully transformed represented much of the diversity 
across the patient isolates.

The CF patient isolates demonstrated variable pathogenesis in the C. elegans paralytic killing model that spans 
6 hours. Only one pathogenic isolate, SCH0057-7, was transformable and thus possible to evaluate the effects 
of RpoN* in vivo. This strain and several others were also pathogenic in the slow killing assay. This assay was 
not used to evaluate RpoN* because of difficulty maintaining the plasmid and RpoN* expression. Gentamicin 
selection and IPTG induction are not durable, we found32, because the C. elegans cuticle is impermeable and the 
compounds are poorly absorbed in the intestine48. While it is expected that expressing RpoN* in CF isolates 
would improve C. elegans survival in the slow killing assay, it is not feasible with the current vector. If issues with 
maintaining the plasmid and expression of the roadblock were resolved, it would be interesting to evaluate RpoN* 
in this assay using patient isolates.

The molecular roadblock, RpoN*, binds numerous promoters in bacterial genomes, altering the transcrip-
tome. RpoN* expression in P. aeruginosa greatly reduced transcription of the mex family genes32, which are 
involved in multidrug efflux pumps49. Increased expression of mex genes is linked to increased resistance to anti-
biotics14. Therefore, we investigated whether RpoN* alters P. aeruginosa susceptibility to antibiotics. We employed 
a clinical laboratory assay for testing bacterial susceptibility or resistance to antibiotics and found that RpoN* 
improved antibiotic susceptibility at least two-fold for five different antibiotics, including imipenem. This agrees 
with previous studies that showed RpoN is involved in P. aeruginosa tolerance of carbapenems, quinolones, and 
tobramycin28–30. Unfortunately, the commercial assay uses pre-determined antibiotic concentrations in a 96-well 
plate, limiting the scope of the roadblock’s effects. Additionally, the P. aeruginosa strain used here is sensitive to 
quinolones and tobramycin, so RpoN* effects on resistance to these antibiotics was not evaluated. Unfortunately, 
testing clinical strains was not feasible for this study. However, it will be important to test such strains, particularly 
those resistant to quinolones, carbapenems, and tobramycin, to determine the effects of RpoN*. Further studies 
are needed to uncover the full spectrum of RpoN* effects on antibiotic susceptibility.

MRDOs are increasing worldwide, even those with resistance to entire antibiotic classes. Alarmingly, nearly 
all antibiotics brought to market in the past 30 years are variations on existing drugs50. Research into alternative 
strategies to treat bacterial infections is a priority, including compounds to enhance activity of existing antibiotics 
or neutralize virulence factors. The molecular roadblock falls into the latter type. RpoN* binds consensus pro-
moters throughout the P. aeruginosa genome, affecting the transcription of numerous virulence factors. Due to 

P. aeruginosa PA19660 Xen5

Antibiotic
Class and Name:

Wild Type
n = 4

Empty Vector
n = 6

RpoN*
n = 6 Treatment Guidelines

of P. aeruginosa†Minimal Inhibitory Concentration (MIC)

Aminoglycosides:

   Gentamicin (Gm) 8 μg/mL
(I)

>38 μg/mL
(R)

>38 μg/mL
(R) On and off-label in combination with other antimicrobials

Carbapenems:

   Imipenem (Imp) 2 μg/mL
(S)

2 μg/mL
(S)

≤1 μg/mL
(S) On-label use as an individual drug

Cephalosporins:

   Cefepime (Cpe)
[4th generation]

4 μg/mL
(S)

4 μg/mL
(S)

≤2 μg/mL
(S)

On and off-label use individually or in combination with 
other antimicrobials

   Ceftazidime (Caz)
[3rd generation]

4 μg/mL
(S)

4 μg/mL
(S)

≤1 μg/mL
(S)

On and off-label use individually or in combination with 
other antimicrobials

   Cefotaxime (Cft)
[3rd generation]

16 μg/mL
(R)

16 μg/mL
(R)

8 μg/mL
(R) On-label use as an individual drug

Penicillins:

   Piperacillin (Pi) >64 μg/mL
(R)

>64 μg/mL
(R)

≤16–64 μg/mL
(S) On and off-label use in combination with tazobactam

Table 2.  RpoN* expression increases susceptibility to antibiotics. The interpretation as to whether the obtained 
MIC is resistant (R), intermediate (I), or sensitive (S) is based on therapeutic guidelines for treatment of an 
infection using a particular antibiotic against a specific organism. †Treatment information and use for each 
antibiotic obtained from UpToDate in September 2018.
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the many binding sites for RpoN*, it is unlikely that resistance to it would develop during treatment. The binding 
sequence of the RpoN consensus promoter is conserved across gram-negative and gram-positive bacteria (36, 
37). The effects of RpoN* on virulence phenotypes of Pseudomonas putida, Burkholderia cepacia, and Escherichia 
coli have been explored (unpublished data), suggesting that RpoN* may reduce virulence in multiple organ-
isms. More studies are needed to identify the spectrum of RpoN* activity and its resistance frequency. Currently, 
RpoN* is a tool for antimicrobial development and is not a usable drug. However, a study was recently published 
using a stapled RpoN-like peptide to reduce transcription of RpoN-related genes in E. coli51. They found that this 
stapled peptide, which binds to RpoN consensus promoters, could enter P. aeruginosa cells51. Finding a small 
molecule or stapled-peptide that works in the same cis-acting manner as RpoN* would be an effective, clinically 
relevant strategy to combat P. aeruginosa virulence and antibiotic resistance.

Materials and Methods
Bacteria and nematodes.  P. aeruginosa clinical isolates were provided by Seattle Children’s Hospital (SCH 
strains) and Upstate University Hospital (UUH strains). P. aeruginosa PAO1-M was provided by C. Manoil41, and 
P. aeruginosa PAO1-S and ΔrpoN were provided by D. Haas22. P. aeruginosa PA19660 Xen5 was purchased from 
PerkinElmer. E. coli OP50 was provided by D. Pruyne (SUNY Upstate Medical University). All strains are listed 
in Table 1. For long-term storage, bacteria were grown overnight in LB broth at 37 °C with shaking, and frozen 
in 10% glycerol at −80 °C. Caenorhabditis elegans N2 was purchased from the Caenorhabditis Genetics Center 
(University of Minnesota, Minneapolis, MN), and maintained on nematode growth media (NGM) seeded with 
E. coli OP50 at 20 °C52. Populations were synchronized via egg lay and grown to the young adult stage at 20 °C53.

Plasmids.  RpoN* and empty vector plasmids were previously described32. Plasmids were maintained in E. 
coli INV110 (Invitrogen) with gentamicin selection (30 mg/L). RpoN* expression was induced with isopropyl 
β-D-1-thiogalactopyranoside (IPTG, 1 mM).

Transformation.  Permissive P. aeruginosa patient isolates and a lab strain were transformed by electropora-
tion prior to all experiments, per standard protocol54. Transformed bacteria were selected on LB agar or BHI agar 
supplemented with gentamicin (30 mg/L). Individual colonies were picked for each assay.

Western blot analysis.  Overnight bacteria cultures were treated with Cell Lytic B Lysis Reagent (Sigma) to 
generate crude cell lysates. The soluble protein fraction was separated on 10% Mini-PROTEAN TGX Stain-Free 
protein gels (BioRad), activated for 5 minutes with UV light, imaged and transferred via semi-dry apparatus 
to a PVDF membrane. Membranes were incubated with primary antibody specific for E. coli RNA σ54 (1:500, 
BioLegend) overnight, then with secondary antibody HRP goat anti-mouse (1:10,000, Jackson ImmunoResearch). 
The chemiluminescent signal was generated with the Pierce SuperSignal West Fempto substrate kit (Thermo 
Scientific) and detected with ChemiDoc MP Imaging System (Bio-Rad Laboratories). Protein bands and total 
protein per lane were measured with Image Lab (Version 5.2.1; Bio-Rad Laboratories). RpoN bands were com-
pared to corresponding total detected protein in each lane and the background value in ∆rpoN was subtracted 
from all samples.

Phenotyping assays.  Assays to measure swimming, twitching55, and biofilm formation56, were conducted 
according to standard protocols. Transformed P. aeruginosa clinical isolates were grown in appropriate media 
supplemented with gentamicin (30 mg/L), and with or without IPTG (1 mM). Motility and biofilm assays were 
conducted at 37 °C for 24 h. Images of motility assays were obtained with IVIS-50 (Perkin Elmer) and colony 
diameter was measured with Living Image software (Perkin Elmer). To study biofilm formation, overnight cul-
tures were diluted 1:3 in LB broth with appropriate conditions, grown for 3 h at 37 °C with shaking. Log-phase 
cultures were diluted 1:50 into M63 minimal media with 0.4% arginine and 1 mM MgSO4 (30 mg/L gentamicin 
and 1 mM IPTG included for transformed cultures), and 100 µl added per well to a U-bottom 96-well plate and 
plates incubated at 37 °C for 24 h. Biofilms were stained with 0.1% crystal violet at RT, extracted in 95% ethanol, 
and absorbance was measured at 550 nm with a μQuant microplate spectrophotometer (BioTek).

P. aeruginosa – C. elegans infection assays.  For the paralytic killing assay, laboratory strains, clinical 
isolates, or transformed P. aeruginosa were spread on Brain Heart Infusion (BHI) agar (Difco) with, when appli-
cable, gentamicin (30 mg/L) and with or without IPTG (1 mM). E. coli was spread on BHI agar. All plates were 
grown overnight at 37 °C. Bacteria colonies were swabbed onto BHI agar, supplemented with gentamicin and/
or IPTG (1 mM) when applicable, and grown at 37 °C for 24 h41. Adult C. elegans were added to plates and the 
assay was conducted at room temperature, per standard protocol41. For the slow killing assay, laboratory strains 
or clinical isolates of P. aeruginosa were grown overnight in LB broth at 37 °C with shaking, and cultures were 
spread on a modified NGM agar (0.35% bactopeptone, 2% bactoagar)57. Plates were incubated at 37 °C for 24 h, 
then at room temperature for an additional 24 h. The assay was conducted at 20 °C, and worms were scored every 
24 h per standard protocol57.

Antibiotic sensitivity testing.  Transformed or mock transformed bacteria were grown overnight in LB 
broth with gentamicin (30 mg/L) and IPTG (1 mM) or only IPTG (1 mM), respectively. MicroScan Neg MIC 43 
panels (Beckman Coulter Inc., Brea, CA) were used. Panels were set up per manufacturer’s protocol (MicroScan 
Gram Negative Procedure Manual, version 09/2016) using the RENOX system (Beckman Coulter Inc., Brea, 
CA) with a final well concentration of 3–7 × 105 CFU/mL. The following modifications were made to the man-
ufacturer’s protocol: LB broth supplemented with IPTG (1 mM) and with or without gentamicin (30 mg/L) was 
used in place of saline for whole panel. Plates were incubated at 35 °C for 16–20 h and read using a MicroScan 
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autoSCAN-4 (Beckman Coulter Inc, Brea, CA). MIC values were determined by the MicroScan reader based on 
optical density. Quality control was performed on the panels per manufacturer’s protocol.

Statistics.  Data were analyzed using Excel and GraphPad Prism with a significance of p ≤ 0.05 (Microsoft, 
Washington; GraphPad Software Inc., California).
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