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Abstract: A plasmonic near-infrared multiple-channel filter is numerically and experimentally in-
vestigated based on a gold periodic composite nanocavities metasurface. By the interference among
different excited plasmonic modes on the metasurface, the multipeak extraordinary optical transmis-
sion (EOT) phenomenon is induced and utilized to realize multiple-channel filtering. Investigated
from the simulated transmission spectrum of the metasurface, the positions and intensity of trans-
mission peaks are tuned by the geometrical parameters of the metasurface and environmental
refractive index. The fabricated metasurface approached transmission peaks at 1128 nm, 1245 nm,
and 1362 nm, functioning as a three-passbands filter. With advantages of brief single-layer fabrication
and multi-frequency selectivity, the proposed plasmonic filter has potential possibilities of integration
in nano-photonic switching, detecting and biological sensing systems.

Keywords: metasurface; nanocavities; plasmonic filter

1. Introduction

Metamaterial, especially its two-dimensional equivalents, i.e., metasurface, has aroused
widespread attention due to its splendid electromagnetic wave manipulations properties,
such as beam steering [1], radiation patterns reconfiguration [2], and nearfield transforma-
tion [3]. Plasmonic metamaterials based on metal nanocavities, exhibiting notable optical
properties, including extraordinary optical transmission (EOT) [4], negative refractive
index [5], and enhancement of nonlinear effect [6,7], has been an active research field in
past decades, which provide great prospects of the application in sensing [8–10], plas-
monic color filtering [11–14], and subdiffractive imaging [15], etc. Metallic nanocavity
concentrates optical energy to deep subwavelength regions by the excitation of surface
plasmons, inducing confinement of electromagnetic fields with frequency-selective fea-
tures [16,17]. Periodic nanometallic cavities arrays in metamaterials support plasmons
near-field coupling among cavities [18], leading to collective resonances such as the EOT
phenomenon at selectable wavelength. Further on, the composite cavities structure is
introduced into the metamaterial [19–21], which generates an interaction giving rise to
plasmonic hybridization and strong optical field coupling among spectrally-overlapped
modes, resulting in the additive spectral response of metamaterial [22–25]. For example, a
polarization-insensitive NIR filter is presently based on asymmetry metallic elliptical and
circle nanocavities array metasurface [26], exhibiting 79 nm narrow linewidth generated by
a Fano resonance. The invertible plasmonic spin-Hall effect at the nanoscale is achieved by
breaking the spin degeneracy through the interference among the different plasmon reso-
nances in the U-shaped cavity metasurface [27]. An absorptive-type metasurface color filter
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is realized through truncated-cone hyperbolic metamaterial absorbers consisting of several
layers of metal-dielectric films with tapered angles [28]. Hence, with increasingly matured
nanofabrication, the realization of multi-wavelength and high-efficiency sub-wavelength
optical manipulation with a single-layer metasurface is worth investigating.

In this paper, a multi-channel infrared plasmonic filter based on a gold periodic com-
posite nanocavities metasurface is numerically and experimentally investigated. Plasmonic
modes excited in single horizontal nanocavity structure and double vertical nanocavities
structure are simulated by the finite-difference time-domain (FDTD) solutions, of which the
interference induces multipeak extraordinary optical transmission phenomenon utilized
in a plasmonic multi-frequency selective filter. By numerically analyzing the transmis-
sion spectrum of the metasurface, the transmission coefficient, operating channels, and
linewidths of the plasmonic filter are tuned by cavities’ geometric parameters and metasur-
face periods, especially the operating channels, which are also tuned by the environment
refractive index. The maximum transmission intensity and narrowest FWHM (full width
at the half-maximum) of the EOT peaks are optimized in the simulation as 73% and 8 nm,
respectively. The gold composite nanocavities metasurface was fabricated by Electron-
Beam Lithography and Ion Beam Etching technique. The transmission spectrum of the
fabricated metasurface was measured by a Fourier-transform infrared spectrometer with
three passbands at wavelength 1128 nm, 1245 nm, and 1362 nm, which has good accor-
dance in spectral positions with the simulation. Due to the advantages of multi-frequency
selectivity and the single-layer simple fabrication process, the plasmonic filter based on the
composite nanocavities metasurface has the potential to be a spatial component in high
precision optical systems such as biosensors and photodetection technologies.

2. Materials and Methods

The schematic of a periodic composite nanocavities metasurface on SiO2 substrate
is shown in Figure 1. The unit cell of the metasurface has composite gold nanocavities,
including one horizontal cavity connected with two vertical cavities on the opposite side.
The length of the horizontal cavity is L1 = 800 nm, and the lengths of vertical nanocavities
are L2 = 200 nm and L3 = 300 nm. Two vertical cavities are pointing upwards and
downwards with a distance S1 = 200 nm and S2 = 100 nm to the left and right end of the
horizontal cavity, respectively. The distance between two vertical cavities is S = 300 nm.
The width of all three composite nanocavities is a = 100 nm. The periods of the metasurface
are Px = 1200 nm and Py = 1100 nm. The thickness of the metasurface is h = 225 nm. The
environment refractive index ne = 1. The refractive index of SiO2 substrate is n = 1.45. The
transmission spectra and the electric field distributions of the metasurface are simulated by
the three-dimensional FDTD solution. In the 3D FDTD simulations, the Y-polarized light
(900 nm–1500 nm) is illuminated along the Z-axis. The dielectric parameter of Au in the
FDTD simulation is set as the Palik model. A semi-infinite SiO2 substrate is added below
the metasurface. Periodic boundary conditions (PBCs) are used in the x- and y-directions,
and perfectly matched layers (PMLs) are applied in the z-direction. The minimum mesh
step is set as 0.25 nm.
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In the fabrication process, the 225 nm-thick gold film was deposited on the SiO2
substrate by the Electron Beam evaporator (Denton Electron Beam Evaporator, Shang-
hai, China). The thickness of the SiO2 substrate is 1 mm. The composite nanocavities
structure was then fabricated on the gold film by Electron-beam lithography (EBL, Vistec
EBPG-5200+, Shanghai, China) process with AR-P 6200 polymethylmethacrylate (PMMA)
positive photoresist of 200 nm thickness. The structure was then developed and fixed using
MIBK and IPA. Ion Beam Etching (IBE, Ion Beam Etching System, Shanghai, China) tech-
nique was utilized to remove the photoresist using Ar gas. The size of the fabricated area
is 1.2 mm × 1.1 mm. The geometrical parameters were measured in the scanning electron
microscopy (SEM, Zeiss Ultra Plus Field Emission Scanning Electron Microscope, Shang-
hai, China) image. The transmission spectrum of the fabricated metasurface is detected
by a Fourier-transform infrared spectrometer (Fourier-transform infrared spectrometer,
Shanghai, China) with a linear-polarized source.

3. Results and Discussion
3.1. Simulated Results

The transmission spectrum of the single-horizontal nanocavity metasurface, the
double-vertical nanocavities metasurface, and the composite nanocavities metasurface are
simulated by the FDTD solution. Under a Y-polarized incident field, the single-horizontal
cavity metasurface obtains an EOT peak of 82% at 1132 nm, shown as the green curve
in Figure 2. At the 1132 nm transmission peak, the electric field is enhanced within the
horizontal cavity, as shown in Figure 3a, which is induced by the excited surface plasmon
polaritons (SPPs). Consequently, the single-horizontal cavity structure serves as the basic
mode structure. The simulated transmission spectrum (blue curve in Figure 2) of double-
vertical cavities metasurface under the X-polarization incident has two transmission peaks
at wavelengths 1205 nm and 1280 nm of 23% and 92% transmittance, respectively, which
has no transmission peak at this waveband with Y-polarization incident light. Similarly,
the electric field is confined within the left and right vertical cavity at transmission peaks,
respectively, as shown in Figure 3b. The transmission spectrum of composite cavities
metasurface with horizontal and vertical cavities under Y-polarized incident is simulated,
shown as the red curve in Figure 2, in which three EOT peaks, namely peak I, II, and III,
appear at 1126 nm, 1255 nm, and 1350 nm with 73%, 36%, and 43% transmittances, respec-
tively. At transmission peak I, the electric field is enhanced within the horizontal cavity,
shown in Figure 3c, which is directly motived by the basic mode before. Meanwhile, newly
generated transmission peaks II and III induced from the interaction between different
modes, where the electric field is enhanced within the L-shaped junctions of the vertical
cavities and horizontal cavity, which are red-shifted in peak position comparing with the
plasmonic modes in vertical cavities. Plasmonic hybridization is generated in composite
nanocavities, resulting in additive transmission spectral response. At three transmission
peaks, the near-field electrical field is confined within the nanocavities due to the SPPs
resonance, as shown in Figure 4. The confinement of the near-field electrical field is also
influenced by the surrounding environment [29]. The multipeak extraordinary optical
transmission phenomenon implemented by the composite nanocavities metasurface is
utilized in multi-channel infrared plasmonic filtering.

To meet various practical demands, the impact on the transmission spectra with sev-
eral geometrical parameters of the metasurface is investigated, offering different parameter
selection strategies of choosing transmission intensity, frequency positions and spacing
of transmission peaks together or individually. The influence of Au film thickness on the
transmission spectrum of composite nanocavities metasurface is investigated by FDTD.
With Au film thickness h increasing from 200 to 400 nm, EOT peak I presents an obvious
red shift and a higher transmittance with the broadening of FWHM, and Peak II and III are
just slightly blue-shifted in Figure 5, which leads to peak I and peak II overlapped when h
is over 350 nm. The increase in Au thickness causes more electric fields confined inside the
horizontal cavity and more material dissipation, leading to the variation of transmission
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peak I both in FWHM and amplitude. Peaks II and III are attributed to the coupling be-
tween different plasmonic modes, of which resonance wavelengths are almost unaffected
by the increase in h. Therefore, EOT peak positions and intensity can be simultaneously
selected by adjusting the thickness of Au film.
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Au film thicknesses h.

The transmission spectrums of the composite nanocavities metasurface with different
geometrical parameters S1 and S2 of vertical cavities are numerically investigated. As
shown in Figure 6, transmission peak I remains almost unchanged, while peaks II and III
are all shifted as S1 and S2 increase. S1 and S2 influence the coupling between plasmonic
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resonance in two vertical cavities, resulting in a change of the resonance wavelength of
peaks II and III. Distance between different vertical cavities is utilized to control the spacing
and position of the transmission peaks of the metasurface filter.
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The effect of lengths of the vertical nanocavities of the metasurface is also investigated.
Transmission peak II is red-shifted with peaks I and III stay almost unchanged with L1
increasing from 0 to 400 nm in Figure 7. Similarly, an increase in L2 only causes the
redshift of peak III. The length of a single vertical cavity only influences the EOT mode
associated with itself and has no impact on other EOT peaks. Therefore, the EOT peaks II
and III related to hybridization modes are able to be adjusted separately by lengths of the
vertical nanocavities.
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The effect of periods of the composite nanocavities metasurface on the transmission
spectrum is also numerically calculated by the FDTD solution. When lateral period Px
increases from 1100 to 1300 nm, peak I presents a slightly blue shift, and peaks II and
III are red-shifted, as shown in Figure 8. With vertical period Py increasing from 1000 to
1250 nm, peak I has an obvious red shift, while peaks II and III are almost unchanged. The
interaction of vertical cavities in adjacent periods is mainly influenced by Px, while that
of the horizontal cavity is sensitive to Py, resulting in peak I and peaks II/III modulated
by Py and Px, respectively. The spectral positions of EOT peak I and peaks II/III are
independently tuned by the periods of metasurface in different directions.

The spectra response of environmental refractive index of composite nanocavities
metasurface is also simulated by FDTD. As the environment refractive index ne increases,
the EOT peaks I, II, and III on transmission spectrum influenced by surface plasmon
resonance are all red-shifted (shown in Figure 9a), and the refractive index sensitivity
S (δλ/δn) are 1143, 1245, and 1360 nm/RIU (shown in Figure 9b), respectively. The
transmission peaks of the composite nanocavities metasurface have quite high refractive
index sensitivity. As a near-infrared multiple-channel filter, which is sensitive to the
surrounding environment, it offers a feasible way to realize an environment-refractive
tunable filter and provides the potential to be the integration component in nano-sensing.
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The impact of incident angle on transmission spectrum is simulated as shown in
Figure 10. Although transmission intensities of three peaks change simultaneously when
the incident angle is varied, the wavelength positions do not shift. When the incident
angle variation from the normal incidence is over ±10 degree, the impact on transmission
intensity increased.
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3.2. Experimental Results

A plasmonic infrared multiple-channel filter based on the composite nanocavities
metasurface was fabricated. The 225 nm-thick gold film was deposited on the SiO2 sub-
strate by the Denton Electron Beam evaporator. The composite nanocavities metasurface
was then fabricated on the gold film by Electron-beam lithography and Ion Beam Etching
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technique. The SEM image of the fabricated structure is shown in Figure 11. The geomet-
rical parameters were measured in the SEM image: the length of the horizontal cavity is
L1 = 802 nm, the lengths of vertical cavities are L2 = 204 nm and L3 = 301 nm, the horizontal
and vertical periods are Px = 1187 nm and Py = 1091 nm, respectively. The size of the fabri-
cated area is 1.2 mm × 1.1 mm. The transmission spectrum of the fabricated metasurface is
detected by a Fourier-transform infrared spectrometer with a polarized source, which is
shown as a red line in Figure 11. Transmission peaks at wavelengths 1128 nm, 1245 nm,
and 1362 nm of the measured spectrum exhibit good accordance in spectral tendency and
positions with the simulation result (black line in Figure 11). However, the narrow FWHW
and high transmittance of the metasurface in the simulation were not entirely presented in
the experiment.
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Figure 11. SEM images and the transmission spectrum of the fabricated composite nanocavities
metasurface.

Several possible reasons of difference between simulation and experimental result are
analyzed: imprecision in the EBL process leads to a loss of fidelity; the IBE process may
cause damage on the Au surface; the dielectric parameter of Au in the FDTD simulation is
set as Palik model, which has a minor difference with that of experiment [30]; the ohmic loss
within the Au film, etc. Especially, the transmittance of the first peak in the simulation was
not entirely presented in the experiment, for the narrow FWHW making it more susceptible
to facing the experiment imperfection.

For future research, a dielectric parameter of Au in the simulation could be set from
experimental determination rather than the Palik model to decrease the difference between
simulation and experimental results. The fabrication process might be improved by using
other alternative techniques such as FIB with implantation of Ga+ [31] to increase the
geometrical accuracy of the fabricated metasurface.

The composite nanocavities metasurface with a brief single-layer fabrication process
achieved the multi-peak EOT phenomenon in the near-infrared region, which implements
the multi-frequency selective filtering at the nanoscale.

4. Conclusions

In conclusion, a plasmonic infrared multiple-channel filter based on a gold periodic
composite nanocavities metasurface is numerically analyzed and experimentally demon-
strated. The multi-peak extraordinary optical transmission phenomenon of the metasurface
is generated from the coupling between different plasmonic modes in composite cavities,
processing multiple-channel filtering at wavelengths 1126 nm, 1255 nm, and 1350 nm in
simulation. Surface plasmon resonances in composite cavities are affected by geometrical
parameters of the cavities, periods of the metasurface, and environmental refractive index,
which are utilized to tune frequency positions, spacing, and intensity of EOT peaks. The
plasmonic composite nanocavities metasurface was fabricated by Electron-Beam Lithog-
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raphy and Ion Beam Etching technique. The experimentally measured spectrum of the
fabricated metasurface by a Fourier-transform infrared spectrometer obtained three trans-
mission peaks, which implemented multi-channel filtering at the nanoscale in the near-
infrared region. The multi-frequency selective ability and brief single-layer fabrication of
the proposed plasmonic near-infrared filter are essential for future spatial applications in
nano-optical systems such as biosensing and detecting.
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