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Abstract: The main aim of the study was to evaluate how the brain of a Paralympic athlete with
severe disability due to cerebral palsy has reorganized after continuous training geared to enhance
performance. Both corticospinal excitability of upper-limb muscles and electromyographic activity
during swimming were investigated for a Paralympic gold medalist in swimming competitions.
Transcranial magnetic stimulation (TMS) to the affected and intact hand motor cortical area revealed
that the affected side finger muscle cortical representation area shifted towards the temporal side,
and cortico-spinal excitability of the target muscle was prominently facilitated, i.e., the maximum
motor evoked potential in the affected side, 6.11 ± 0.19 mV was greater than that in the intact side,
4.52 ± 0.39 mV (mean± standard error). Electromyographic activities during swimming demonstrated
well-coordinated patterns as compared with rather spastic activities observed in the affected side
during walking on land. These results suggest that the ability of the brain to reorganize through
intensive training in Paralympic athletes can teach interesting lessons to the field neurorehabilitation.

Keywords: Paralympic sports; case study; female; motivation; electromyography (EMG); swimming;
neurorehabilitation

1. Introduction

It is well established that the human central nervous system has the capability to reorganize after
focal lesions like stroke and spinal cord injury, if physical rehabilitation is applied properly according to
the types of disabilities [1,2]. While athletic training that Paralympic athletes engage in is not regarded
as physical rehabilitation since the goal is to improve their performance and increase their competitive
level rather than to improve physical functions for daily living, this athletic training is also known to
induce plastic changes in the central nervous system in a use-dependent manner [3–5]. This athletic
training, therefore, is also expected to induce central nervous system (CNS) reorganization in the
Paralympic athletes.

However, there seems to be another major difference in athletic training and rehabilitation, that is,
the level of motivation that athletes and patients have. It is quite certain that every athlete has high
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levels of motivation to win a game or to improve their performances, while in patients after physical
damage it is difficult to keep motivation up or even to participate in rehabilitation programs [6].
Although motivation is well recognized to affect neural plasticity and it in turn has a great impact
on rehabilitation outcomes [7,8], how and to what extent motivation modulates neural plasticity is
still obscure.

The para-athletes, therefore, can be excellent examples that show how, and to what extent,
the human brain reorganizes, if intensive physical training is provided continuously to the human
body with disabilities with higher motivation levels [9,10]. In the present study, we explored the brain
and neuromuscular activities of a Para-gold medal swimmer who has a hemiplegic type of paralysis in
her left side body. The main aim of the presented study was evaluation of brain–muscle connectivity
as well as her neuromuscular activities both during swimming in water and walking, to provide new
insight into neurorehabilitation studies, namely, “Paralympic brain”.

2. Materials and Methods

2.1. Participant

The participant of this study was a Paralympic swimmer ZZ who has won totally 12 medals including
Gold awards in the Paralympic games of Beijing (2008), London (2012), and Rio de Janeiro (2016). ZZ, a
25-year-old female, suffers from hemiplegic cerebral palsy (CP). She has moderate levels of paralyses in
her left side limbs. She is ambulant with a dropped foot in the affected side, and her left elbow joint is
flexed at about 90 degrees due to hypertonia in the elbow flexors. Independent finger movements in the
affected side are impossible due to moderate to strong muscle tone. She started swimming when she was
seven years old. After she got involved in Paralympic swimming, she has continued regular training, that
is, swimming for two to four hours a day, with resistance training sometime in between the swimming
training. Figure 1 shows MRI images of her brain and the lesion site in black.
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Figure 1. Brain images and transcranial magnetic stimulation (TMS) targets indicated in red and yellow
dots. As shown in this brain image, the black colored area is the large damaged area, most probably due
to a stroke suffered perinatally. Note the yellow dot in the right hemisphere locates more temporally
than the yellow dot in the left hemisphere.

The participant received a detailed explanation of the experimental procedures before the
experiment and provided written informed consent. The study was approved by the Ethical Committee
of the Graduate School of Arts and Sciences (No 475-4), The University of Tokyo. The experiment was
carried out according to the principles and guidelines of the Declaration of Helsinki (1975).
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2.2. Experiments

2.2.1. Experiment 1

In this experiment, we evaluated corticospinal excitability of distal upper-limb muscles as a
measure of brain (i.e., primary motor cortex; M1) reorganization using transcranial magnetic stimulation
(TMS) techniques.

1. Transcranial magnetic stimulation

We applied single-pulse stimulation over the right (lesioned hemisphere) and left (nonlesioned
hemisphere) primary motor cortex (M1) using a 70 mm-diameter figure-of-eight coil connected to
a Magstim 2002 stimulator (Magstim Co. Ltd, Whitland, UK). We first identified the “hotspot” in
both hemispheres as the optimal area for eliciting motor-evoked potential (MEP) in the contralateral
resting first dorsal interosseous (FDI) muscle. The coil was placed tangentially to the scalp with
the handle pointed backward at a 45◦ angle with respect to the anteroposterior axis. To clarify the
positional relationship between the brain and the coil, the participant’s T1-weighted anatomical images
(170 slices; voxel size: 1.0 mm × 1.0 mm × 1.2 mm; repetition time (TR): 8 ms; field-of-view (FOV):
256 mm × 256 mm; flip angle (FA): 8◦; echo time (TE): 3.8 ms) scanned with a 3.0-T Achieva 3.0 scanner
(Phillips, Best, The Netherland) were imported into a frameless neuronagvigation system (BrainSight,
Rogue Research Inc, Montreal, QC, Canada), in which we marked stimulation sites over the anatomical
image. Then, in this optimal spot, we determined the resting motor threshold (rMT) as the minimum
TMS intensity (maximum stimulator output; MSO) that evoked MEPs of 50 µV in 5 of 10 trials at rest.
Muscle relaxation was monitored by providing visual feedback of electromyographic (EMG) signal.
The rMT was 40% and 44% of MSO in the right and left hemispheres, respectively.

2. MEP recruitment curve (stimulus response curve)

We assessed MEP responses relative to TMS intensity changes to evaluate corticospinal excitability
of the FDI both in the lesioned and nonlesioned hemispheres. We delivered TMS pulse over the FDI
hotspot in each hemisphere. The TMS intensity range was set from 110% to 150% of rMT in steps
of 10%. We recorded 10 MEPs at each intensity step with an interstimulus interval of 5 seconds and
calculated the average peak-to-peak amplitude for each intensity. Electromyographic activity was
recorded from the FDI muscles in both sides using surface electrode pairs and pregelled disposable
Ag/AgCl electrodes (A10040, Vermed Inc., Buffalo, NY, USA) placed on the skin, about 3 cm apart
in a belly-tendon montage. Signals were amplified (×1000; AMT-8 EMG, Bortec Biomedical Ltd.,
Calgary, AB, Canada), sampled (1 kHz) with a band-pass filter of 10–1000 Hz, and recorded with a data
acquisition unit CED 1401 controlled by Signal 5 Software (Cambridge Electronic Design, Cambridge,
UK). We analyzed EMG signals off-line using MATLAB (R2015b; MathWorks, Natick, MA, USA).

2.2.2. Experiment 2: Recording of Electromyographic (EMG) Activities during Swimming

It was visibly apparent that the ZZ’s affected side upper limb can move more dynamically in
water as compared to on land. In order to examine if there are any differences in EMG activities
during swimming in water and motor activities on land, we chose walking as a locomotive motor
activity on land for the comparison. In Experiment 2, two different motor tasks were performed by
subject ZZ while we recorded EMG activity: 1) walking at a comfortable speed and at a faster speed,
and 2) swimming in breast stroke and free style at comfortable and faster speeds. The reason why
faster speeds were tested in addition to the comfortable speed was that we aimed to make expected
differences in EMG activities during swimming and walking much clearer. For the walking test,
she walked straight for about 40 m on the pool-side at the two different speeds, and for the swimming
test she swam for 50 m at the two different speeds. Each measurement trial was repeated two times.

To quantify EMG activity levels while performing each motor task, the maximum voluntary
activation levels were tested manually for each muscle. EMG activities from a total of 16 muscles were
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recorded using a wireless system (Free EMG, Milan, Italy) while she walked on the floor and swam
in a standard pool. The muscles tested were the biceps brachii (BB), triceps brachii (TB), flexor carpi
radialis (FCR), extensor carpi radialis (ECR), rectus femoris (RF), biceps femoris (BF), soleus (SOL),
and tibialis anterior (TA), from both side limbs. Root mean square (RMS) values of EMG signals for
five seconds during stable phases in the walking and swimming tasks were obtained to compare with
those values during the maximum voluntary contractions of each muscle.

3. Statistics

No statistical comparisons were performed in this study, since this is the single case study. Data
were presented basically as means and standard errors (s.e.).

3. Results

3.1. TMS and MEP Recruitment Curves

The yellow dots in Figure 1 indicate the hot spot positions where the TMS induced the clearest
MEPs in each side FDI muscle. The hot spot positions of both sides first dorsal interosseous were not
symmetrical in the left and right hemispheres, indicating upward shift of the right hemisphere hot spot.

Figure 2 shows the changes in MEP amplitude in relation to the applied TMS intensity (% of
resting motor threshold, rMT) for both side FDI muscles. The results showed that the maximum slope
of the sigmoidal curve (0.99 vs. 0.28 mV/%rMT) and the maximum MEP amplitude (6.11 ± 0.19 mV vs.
4.52 ± 0.39 mV, mean ± s.e.) were higher, and the motor threshold was lower (44 vs. 48 % of maximum
output of the device) in the affected side FDI than in the nonaffected side FDI. This indicates that the
corticospinal excitability of the affected side FDI was higher than that of the nonaffected side FDI.
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Figure 2. Relations (recruitment curve) between the TMS intensity (%) and motor-evoked potential
(MEP) sizes obtained from first dorsal interosseous in the affected (red) and nonaffected (blue) sides.
Each open circle indicates the amplitude of MEP to the single TMS, and the filled circles indicate
the average of ten MEPs at each TMS intensity. The right panels show comparisons between the
affected side (red) and nonaffected side (blue) recruitment curves. Note the abscissa of the upper
panels is normalized with the motor threshold (MT) intensity, while the abscissa of the lower panels is
the absolute output intensity (% of the maximum output of the TMS apparatus). The higher slope,
the maximum MEP levels (plateau level in the LtFDI), and the lower MT clearly demonstrate that
excitability in the corticospinal tract to the affected side first dorsal interosseous (FDI) is much greater
than that of the nonaffected side.
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3.2. EMG Activities during Walking and Swimming

Figures 3 and 4 show typical examples of EMG activities recorded during walking at a comfortable
speed and swimming in a pool. As observed in this figure, EMG amplitude in the affected limbs
increased overall and showed clear on–off phases during swimming, unlike that during walking on
land. This tendency was more clearly observed in the affected side of upper limb muscles. As noticed
from her hemiplegic type of walking posture when she walked on land, aberrant EMG bursts appeared
irregularly in the affected upper limb muscles. In water, however, the greater and rhythmic EMG
bursts appeared, which corresponded to the dynamic upper limb motions during swimming.
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swimming in water. The clear phasic and rhythmic EMG activities appeared in the affected side of
muscles during swimming, while during walking rather aberrant bursts were observed in the wrist
muscles, FCR, and ECR.
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4. Discussion

The results of the present study revealed that 1) motor cortical area, specifically the area innervating
the left FDI muscle was drastically reorganized, and 2) the EMG activities in the affected side during
swimming were greater in size and qualitatively well-coordinated compared with those recorded
during functional movements on land. These results suggest that the swimming training that has
been performed by ZZ since the age seven years old has likely played a major role in the observed
reorganization of her brain, resulting in well-coordinated muscular activities in water.

The supposed underlying neural mechanisms are discussed below.

4.1. Reorganization of Motor Cortical Area

As shown in Figure 1, FDI motor cortical areas of both sides identified with MEPs by TMS
demonstrated that the hot spot in the injured hemisphere is located in a more medial region than
that of the contralateral nonaffected hemisphere. This means that the FDI cortical representation has
shifted to the area innervating trunk or lower limb muscles in the affected side of the brain. More
surprisingly the corticospinal tract (CST) excitability assessed by the input/output relation in Figure 3
clearly demonstrated that the CST excitability of the affected side was significantly higher than that of
the nonaffected side. This finding differs from that in adult stroke patients who often demonstrate a
flatter input/output recruitment curve and less CST excitability in the affected side than the less-affected
side [11]. Although underlying mechanisms leading this difference remain unclear, in persons with
cerebral palsy, depending on the developmental stage, size, and location of the brain damage, the CST
development during maturation process is known to undergo various pathophysiological changes [12].

In the case of ZZ, she has been involved in normal rehabilitation for cerebral palsy as well as
swimming training since she was seven years old. Both rehabilitation and swimming training might
affect the motor cortical reorganization observed in the present study. Specific motor skill training is
known to change motor cortical representation and its excitability [13–15]. These changes are more
prominent in the brains of professional athletes and musicians who have been engaged in higher
level motor skill training for a long time [4,5,16,17]. In the case of a Paralympic long-jumper with
below-knee-amputee, Mizuguchi et al. (2019) [9] found the unique bilateral motor cortical activation
when he exerted static knee muscle force in the amputated side of lower limbs, which was not
observed in the other subjects with below knee amputee who were not involved in any sports activities.
These previous studies suggest that the long-term swim training has induced long-term use-dependent
plastic changes that resulted in reorganization of her brain in addition to the expected changes through
development and physical rehabilitation.

4.2. The Well-Coordinated Muscular Activities in Water

The results of the present study showed that the recorded EMG activities in the affected side of
ZZ were greater in size and showed clearer on–off phases during swimming than walking on land.
These characteristics were shown both quantitatively and qualitatively, indicating her well-coordinated
movements in water rather than on land. This was visually apparent when one saw her swimming,
which was performed with more dynamic upper limb movements. Furthermore, as shown in Figure 5,
in many muscles in the affected side the relative EMG sizes to the MVC levels were greater than 100%,
which means that the EMG activation levels of those muscles during swimming were increased to a
higher level than the maximum voluntary activation levels on land. The most conceivable interpretation
is that the better motor coordination of ZZ in water is likely due to her intense swim training that she
has been doing since early childhood.
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Figure 5. Comparisons of EMG activity levels during different motor tasks with the MVC EMG levels
in the upper limb muscles. In the affected (left) side muscles, the EMG root square mean (RMS) values
were comparable to or even greater in the faster speed crawl than the MVC RMSs. MVC; maximum
voluntary contraction, FS-m; free style at moderate speed, FS-f; free style at faster speed, BS-m; breast
stroke at moderate speed, BS-f; breast stroke at faster speed, W-m; walking at moderate speed, and W-f;
walking at faster speed.

The neural mechanisms underlying the higher motor functions of ZZ in water is likely due to
cortical reorganization akin to use-dependent plasticity and reinforcement mechanisms induced by the
long-term repetitive nature of swim practice.

Of note, other factors should be taken into account, such as activity of the autonomic nervous system.
It is well known that physical characteristics of water have a reduction effect on sympathetic nervous
system activity [18]. For instance, there is experimental evidence indicating that increased sympathetic
activity enhances gamma drive, which in turn increases spinal stretch reflex excitability [19,20].
The hyper stretch reflex excitability is known to be the main neural factor underlying spastic hypertonia,
which is typically observed in persons with cerebral palsy. The observed flexed position of elbow joint
in the affected side of Subj. ZZ on land indicates the presence of spastic hypertonia in the elbow flexor
muscles. Thus, the lower sympathetic drive present in water may reduce her spastic hypertonia in the
affected side, facilitating better muscle coordination than when walking over ground. Furthermore,
her having less fear of falling in water is supposedly due to her well-coordinated swimming movement.
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A higher fear of falling is known to augment sympathetic nervous activity, and as a result it increases
stretch reflex excitability via augmented muscle spindle sensitivity [21]. Supposedly, ZZ has no fear of
falling in water as she expressed “I am free in water”, meaning free from gravity. It can be assumed
therefore that the combination of a sort of relaxation effect of water and her diminshed fear of falling
further decreased her sympathetic activity in water. This would allow her physical movements in water
to be more flexible and well-coordinated while eliminating hypertonia. Under such a circumstance in
water, she could have learned and obtained well-coordinated swimming skills through extensive daily
training from her childhood.

Finally, the results in the present study may have great impact in neurorehabilitation, especially for
cerebral palsy, since it shows that she can move her affected side limbs in water with well-coordinated
muscular activities, which possibly could not be accomplished with conventional rehabilitation. This is
in line with the specificity effects of motor learning with diminished generalization to other tasks.
Future studies are expected to explore underlying neural mechanisms of these processes in more detail.

In conclusion, this case report demonstrates the evidence of significant cortical and muscular
reorganization following cerebral palsy in a Paralympic gold medalist swimmer. The findings exposed
the magnitude of brain plasticity following a brain lesion, which leads to a remarkable improvement
in motor abilities when the person is highly motivated and trains very intensively.
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