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Abstract Oxidatively damaged biomolecules impair

cellular functions and contribute to the pathology of a

variety of diseases. RNA is also attacked by reactive

oxygen species, and oxidized RNA is increasingly recog-

nized as an important contributor to neurodegenerative

complications in humans. Recently, evidence has accu-

mulated supporting the notion that tRNA is involved in

cellular responses to various stress conditions. This review

focuses on the intriguing consequences of oxidative mod-

ification of tRNA at the structural and functional level.
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Introduction

The evolution of higher life forms is firmly associated with

the utilization of oxygen, which is essential for energy

production in the mitochondrial respiratory chain. Oxida-

tive modifications of biomolecules were adopted to

function as signals in intracellular communication. How-

ever, the high reactivity of oxygen must be tightly

controlled to avoid unwanted oxidative damage. During

mitochondrial energy production, oxygen is partially

converted into reactive oxygen species (ROS). About

1–2% of oxygen leaks out of the respiratory chain in the

form of superoxide (O2
•-), which is transformed into

hydrogen peroxide (H2O2). In the presence of Fenton-

reactive metals, such as the ferrous cation (Fe2?), H2O2 is

split into a highly aggressive hydroxyl radical (OH•) and a

hydroxyl anion (OH-). The majority of ROS arise as

byproducts of cellular energy production, whereas a

smaller portion is directly created by oxygenases. The

intracellular level of ROS is tightly regulated by anti-oxi-

dative enzymes and nonenzymatic antioxidants. ROS act as

second messengers and are essential components of signal

transduction pathways [1]. However, when the generation

of ROS exceeds their degradation by antioxidant enzymes,

a condition of oxidative stress arises. Overly elevated

levels of ROS cause oxidative damage to proteins, nucleic

acids, polysaccharides, and lipids, leading to disturbances

of cellular functions and eventually cell death [2].

Oxidative damage of biomolecules is increasingly

understood to serve a critical role in the pathogenesis of

human diseases, especially those involving neurodegener-

ation [3]. Neurons are rich in polyunsaturated lipids, which

are highly susceptible to oxidative stress damage. Also,

oxidative damage of nucleic acids was identified as a key

contributor to Alzheimer’s disease; the amount of

8-hydroxy-20-deoxyguanosine (8-oxo-dG), one of the

major products of nucleic acid oxidation, is increased in the

brains and cerebrospinal fluid of Alzheimer’s disease

patients. Not only DNA but also up to 50% of messenger

RNAs (mRNAs) are oxidatively damaged in the affected

brain areas of Alzheimer’s patients [4]. DNA damage can

result in a loss of genetic information, constituting a more

persistent insult than any injury of proteins and RNA

molecules that are quickly resynthesized. Most mRNA

molecules are relatively short-lived, so RNA oxidation
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reflects a kind of steady-state balance of oxidative damage

[5]. Oxidized mRNAs are not translated properly. Conse-

quently, protein levels are reduced and normal protein

function is lost [6]. Protein aggregation, as it is observed in

neurodegenerative diseases, may be a consequence. Oxi-

dative damage of mRNA is thought to contribute not only

to neuronal cell death in Alzheimer’s disease but also to the

pathology of Parkinson’s disease, epilepsy, atherosclerosis,

and amyotrophic lateral sclerosis (characterized by the

progressive degeneration of motor neurons) [6].

In addition to mRNA, ribosomal RNAs (rRNAs) and

transfer RNAs (tRNAs) are also targeted by ROS. The

binding capacity to Fenton-reactive ions is higher for rRNA

than for tRNA, thus rRNA was found to be more heavily

oxidized than tRNA [7]. Although repair mechanisms have

been described for RNA modified by alkylation [8], no

salvage activity was reported for oxidatively damaged RNA

which therefore undergoes enzymatic nucleolysis [9]. How

the damaged RNA is distinguished and marked for degra-

dation is largely unknown. Several RNA-binding proteins

bind 8-oxo-G with higher affinity than to non-oxidized

nucleotides, which could mark oxidized RNA for degra-

dation [10], including the human polynucleotide

phosphorylase (Pnp) and the Y box-binding protein-1

(YB-1) [11]. In comparison to mRNA, tRNAs are less

susceptible to degradation as a result of stabilization by

their tertiary structure and a high content of base modifi-

cations. In bacteria, a kind of quality-control process detects

mutant tRNAs at the level of tRNA precursors and promotes

their degradation [12]. Whether and how an oxidative

damage of mature tRNA is recognized and translated into a

degradation signal is currently unknown. However, during

recent years, evidence has accumulated showing that oxi-

dized tRNA plays a role in stress response regulation.

Stress induces tRNA cleavage

A detailed analysis of the cellular small RNA content by

deep sequencing revealed an unexpectedly high abundance

of tRNA fragments [13]. The length of tRNA fragments was

either 22 nucleotides, which is the typical size of microR-

NAs (miRNAs), or in the range of 30–40 nucleotides, which

corresponds to tRNA halves. miRNAs compose a class of

highly expressed, noncoding small RNAs involved in post-

transcriptional regulation of mRNA abundance. miRNAs

bind to the 3’-untranslated regions of target mRNAs via

imperfect base-pairing to inhibit their translation. The sec-

ond abundant class of RNA fragments was found to be

generated under various stress conditions by single cleavage

of tRNA molecules in the anticodon loop [14]. Several

findings support the assumption that such instances of tRNA

cleavage occur as specific events, rather than by degradation

in the course of metabolic turnover: (1) tRNA cleavage is

triggered by certain stress conditions, including nutritional

deficiency, heat shock, hypothermia, hypoxia, and oxidative

stress (Fig. 1), but not by others, such as irradiation. Simi-

larly, some apoptotic inducers (which actually also cause

stress), such as Fas ligand, promote tRNA cleavage, while

others, such as staurosporine, are inactive [15]. (2) Some

tRNA species are more vulnerable than others, e.g., nutri-

tional stress-induced cleavage of tRNA is specific for

methionine (tRNAMet) and tRNAVal, but not for tRNATyr

[14]. Similarly, oxidative stress mediated by H2O2 results in

strong cleavage of tRNAArg and some cleavage of tRNATrp,

but not of tRNATyr [15]. The data published so far are

incomplete; a comprehensive investigation of all tRNA

species exposed to various types of stress is still lacking. (3)

The specificity of this process is further emphasized by the

fact that tRNA cleavage is a conserved response to oxidative

stress among many eukaryotic species, from Saccharomy-

ces cerevisiae and Arabidopsis to human cells [15].

tRNAs are cleaved by specific enzymes

Stress-induced tRNA cleavage is carried out by specific

enzymes (Fig. 2). In yeast, tRNAs are cleaved by the Rny1

RNase [16]. In mammalian cells, angiogenin, a secreted

ribonuclease, is required for stress-induced endonucleolytic

cleavage of tRNAs [14]. Both RNases are normally spatially

segregated from cytoplasmic tRNAs, but they are released

into the cytoplasm under conditions of oxidative stress [16].

Angiogenin was originally recognized as an angiogenic

factor secreted by tumor cells into the surrounding medium

exhibiting enhanced secretion under hypoxic conditions.

In vivo, receptors on the surface of endothelial cells bind

and internalize angiogenin. Importantly, the induction of

new blood vessel outgrowth is dependent on its ribonuclease

activity. In endothelial cells, angiogenin is concentrated in

the nucleolus and also partially localized to the cytoplasm,

where it is bound by the ribonuclease inhibitor RNH1 [17].

Depletion of RNH1 increases tRNA cleavage consistent

with a role for cytoplasmic angiogenin [18].

Fig. 1 Triggers of tRNA cleavage. Various stress conditions induce

cleavage of tRNAs in the anticodon loop
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Yet another finding supports the view that tRNA cleav-

age is not just a simple degradation process: the cleavage is

controlled by RNA methylation. The DNA methyltrans-

ferase Dnmt2 is capable of methylating tRNA molecules as

well, in particular tRNAAsp, tRNAVal and tRNAGly. Dnmt2-

mediated methylation was shown to protect tRNAs against

ribonuclease cleavage by angiogenin [19].

The levels of full-length tRNAs do not decline signifi-

cantly during stress-induced tRNA cleavage; only a small

proportion of tRNA is targeted. Is there any function, then,

of the tRNA halves generated in a controlled way as a

response to many, but not all, stress conditions?

tRNA halves promote stress granule assembly

When exposed to environmental stress, eukaryotic cells

activate stress response programs. Energy-expensive

processes, such as transcription and translation, are reduced

to conserve energy for survival and the repair of stress-

induced damage. The expression of common housekeeping

genes is blocked, whereas the expression of genes that

repair stress-induced damage and promote cell survival is

increased. Cleaved tRNA may contribute to the transla-

tional arrest by inhibitory interactions with the translation

machinery. After cleavage, tRNA might persist in a fully

folded conformation, but the nicked anticodon loop would

prevent correct interaction with its respective codon

(Fig. 3). Elongation, therefore, would be stalled [20]. In

association with specialized proteins, tRNA halves might

directly regulate gene expression (see below). In addition

to interfering with protein translation, tRNA halves were

demonstrated capable of inducing the formation of stress

granules (SG) [21]. SG appear as part of the stress response

program as cytoplasmic aggregates in which nontranslated

transcripts accumulate. It is thought that SG compose the

Fig. 2 tRNAs are cleaved by

specific enzymes. Bacterial

endonucleases, PrrC, colicin D,

and colicin E5, cleave specific

subsets of bacterial tRNAs of

invading species in the anticodon

region. A similar tRNA

endonuclease activity is mediated

by c-toxin from the dairy yeast

Kluyveromyces lactis, to arrest the

growth of Saccharomyces
cerevisiae. Under oxidative

stress, tRNAs are cleaved by

Rny1 in yeast and by angiogenin

in mammalian cells. The

nucleolytic activity of angiogenin

is further regulated by RNH1, an

inhibitory protein, and by tRNA

methylation

Fig. 3 Functions of damaged

tRNAs. The nicked anticodon

loop in cleaved tRNA prevents

correct interaction with its

respective codon and elongation

is stalled. The 50-half tRNA

halves induce the assembly of

stress granules, cytoplasmic

aggregates which associate with

P-bodies to function in selective

degradation of mRNA. At least

one tRNA-derived fragment

was required for the

proliferation of prostate cancer

cells. In association with

specialized proteins, tRNA

halves contribute to the

regulation of gene expression by

guiding endonucleolytic

cleavage of target mRNAs
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sites where mRNAs are sorted into stored, degraded, or

translated ones. SG are physically associated with P-bod-

ies, another kind of cytoplasmic foci present in resting cells

that are enriched in RNA-degrading enzymes (Fig. 3).

P-bodies serve as a site of mRNA degradation.

SG formation was demonstrated to be enhanced by

angiogenin [21], which provided a traceable link to tRNA

cleavage. When cells were transfected with tRNA frag-

ments derived from stress-induced cleavage, transfection of

50-tRNA halves induced SG formation, while no such

effect was observed with the 30-tRNA fragments. These

results convincingly exhibit the signaling component of

tRNA-derived fragments in the cellular response to stress.

tRNA fragments in RNA-mediated translational

silencing

Post-transcriptional regulation of gene expression includes

the miRNA-mediated gene-silencing pathway, in which

selected mRNAs are prevented from translation. One of the

major silencing routes employs the RNA-induced silencing

complex (RISC). Non-coding RNA transcripts (pre-miR-

NAs) are processed by Drosha and Dicer nucleases and

loaded onto Argonaute (AGO) proteins, which are compo-

nents of the RISC. RISC-associated miRNAs recognize and

interact with complementary sequences of target mRNAs,

which are then silenced by degradation or stalled translation.

Also, tRNA fragments were found to be associated with AGO

proteins (Fig. 3) [22]. In HeLa cells, tRNA-derived *19

nucleotide-long fragments, mainly processed from the 50-end,

are highly abundant [23]. In murine embryonic stem cells, a

small RNA fragment was identified that mapped to a tRNAIle

gene. For this tRNAIle, an alternative fold was predicted

beside the tRNA cloverleaf structure, which could serve as a

substrate for the Dicer RNA processing enzyme [24]. tRNA-

derived small fragments with low inherent silencing activity

might compete with other small RNA species for association

with AGO, and due to their high abundance, significantly

diminish the silencing activity of ‘regular’ miRNAs [25].

Some small RNA fragments cleaved from tRNA in prostate

cancer cell lines were further characterized [26]. They were

18–25-nucleotides long, representing 50-ends or 30-ends of

mature tRNAs or tRNA precursors. At least one of them,

derived from the 30-end of a tRNASer precursor transcript,

was shown to be necessary for proliferation of these cancer

cells (Fig. 3). This fragment was cleaved from a pre-tRNA in

the cytoplasm by RNase Z (ELAC2), an enzyme involved in

tRNA maturation [27]. During this maturation process,

RNase Z removes a 30-trailer from pre-tRNA.

RNase Z not only trims tRNA precursors but is also

capable of cleaving target RNA at any desired site by a

silencing mechanism similar to that exerted by the RISC

[28]. For that silencing activity, RNase Z has to be loaded

with a guide RNA that brings the enzyme into contact with

the target RNA. By co-immunoprecipitation, small RNA

species associated with RNase Z were identified in human

cell lines. Among those small RNAs was the 50-half of

tRNAGlu, which indeed functioned as guide RNA in RNase

Z-mediated cleavage (Fig. 3). A mRNA targeted by the

tRNAGlu-half/RNase Z complex was identified as coding

for PPM1F, a serine/threonine protein phosphatase which

specifically dephosphorylates Thr-286 of the calcium/cal-

modulin-dependent protein kinase II (CaMKII) [29].

CaMKII is a multifunctional enzyme that is involved in

inducing apoptosis upon endoplasmatic reticulum stress

[30]. Downregulation of PPM1F, as a direct consequence

of tRNA cleavage, could therefore promote apoptosis in

cells under stress. How gene silencing with small tRNA-

derived fragments might be associated with stress is a

fascinating question that warrants further research.

Cleavage of tRNA in the anticodon loop by bacterial

and fungal endonucleases

Halves of tRNA molecules were also found in bacterial

species, in which tRNA anticodon damage is an activity of

a kind of innate immune system against invading species.

The bacterial tRNA endonucleases, PrrC, colicin D, and

colicin E5, cleave specific subsets of bacterial tRNAs in the

anticodon region (Fig. 2) [31–33]. Notably, the presence of

modified nucleosides within the anticodon loop seems to

determine which tRNAs are targeted. PrrC cleaves tRNA-
Lys at the 50 phosphate of the 5-methylaminomethyl-2-

thiouridine (mnm5S2U) wobble base in position 34 [31, 34,

35]. Colicin D shows specificity for all four tRNAArg iso-

accepting molecules, and cleaving them at nucleotide 38

impairs protein synthesis and promotes cell death [33].

tRNAs for Tyr, His, Asn, and Asp, which contain the

modified base queuine at the wobble position, are cut by

colicin E5 at the 30 phosphate of the wobble nucleotide. A

similar tRNA endonuclease activity mediated by c-toxin

was found in the dairy yeast Kluyveromyces lactis, which

arrests the growth of Saccharomyces cerevisiae. The c-

toxin is secreted as a component of a larger protein com-

plex and transported into the cytoplasm of target cells,

where it cleaves three tRNA species specific for Glu, Gln

and Lys at the 30 site of the modified wobble uridine

(mcm5S2U, Fig. 2) [36]. Modifications of the ribose in the

wobble base suppressed the cleavage [37]. In contrast to

the stress signaling function of tRNA halves described

above, no such function was described for the cleavage

products of bacterial and fungal tRNA endonucleases.

Instead, tRNA cleavage in bacteria and yeast results in

inhibition of protein translation and induction of cell death.
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Oxidative dethiolation of tRNAs

In addition to tRNA cleavage under stress conditions, single

nucleotides in tRNAs are chemically altered by high levels

of ROS. tRNA contains a variety of modified nucleotides,

some of which serve as targets for oxidative modifications.

The oxidative dethiolation of sulfur-containing nucleotides

is one example that has been investigated in detail.

Sulfur-containing tRNAs

There are more than 100 post-transcriptionally modified

nucleosides present in all types of RNA, and most of them

are located in tRNA. They function in modifying the trans-

lation process by precise decoding of the genetic

information [38–42]. The tRNA Modification Databases

[43, 44] contain a comprehensive list of modified nucleo-

sides identified to date in tRNA. Among them, 18 are

modified pyrimidine nucleosides containing either sulfur or

selenium at the nucleobase moiety. The structures of known

thio- and seleno-pyrimidine nucleosides are shown in Fig. 4.

Most of them are 2-thiouridines, which are substituted with a

side chain at the carbon C5, in addition to a sulfur atom at

C2. The 2-thiouridines most typically appear in the first

position of the tRNA anticodon (position 34, wobble posi-

tion). Three tRNAs, specific for lysine (tRNALys3), glutamic

acid (tRNAGlu) and glutamine (tRNAGln), contain hyper-

modified 2-thiouridines in the wobble position. The

2-thiouridine (S2U) unit in position 34 facilitates predomi-

nantly Watson–Crick base pairing with adenosine and

restricts the wobble pairing with G in the third position of the

codon [39, 45]. The S2U modification in the anticodon loop

of tRNA is also a recognition element for the cognate

aminoacyl tRNA synthetases (aa-RS) [46–48]. Notably, the

human tRNALys3 serves as a primer for the reverse

transcription of the human immunodeficiency virus type 1

(HIV-1) RNA; it contains 5-methoxycarbonylmethyl-2-

thiouridine (mcm5S2U) in position 34, which is required for

the formation of the initial complex with the viral RNA [49,

50]. In addition to S2U, selenium-containing uridine (Se2U)

has been identified in tRNAs from bacterial, mammalian and

plant species, and this modified unit is located at the wobble

position of three tRNAs specific for Glu, Gln and Lys (the

same as for S2U) [51–56]. All these modified units contain

thiocarbonyl/selenocarbonyl function, which is prone to

attack of oxidizing agents [57].

Loss of function of sulfur-containing tRNAs

in oxidative conditions in vitro

The earliest report on oxidative damage of tRNA describes

the inactivation of specific E. coli or rabbit liver tRNA

species for amino acid acceptor activity via treatment with

dilute iodine–potassium iodide and recovery of functional

tRNAs via the action of appropriate reducing agents [58].

Chemical modification of sulfur-containing pyrimidine

nucleosides in E. coli tRNA with various oxidizing

reagents showed that, in the presence of hydrogen peroxide

or cyanogen bromide (CNBr), the entire 5-methylamino-

methyl-2-thiouridine nucleoside was dethiolated, although

a detailed structure of products was not reported [59]. The

CNBr-oxidized tRNA species specific for Glu, Gln and Lys

lost their potential to be aminoacylated by their cognate

aa-RSs. It has been shown (either at the nucleoside or entire

tRNA level) that the 2-thiouridines are oxidized by H2O2 to

uridine and to another ‘‘H2O2-altered’’, unidentified prod-

uct, but not to a ring-opened or disulfide structure [60].

Dethiolation of E. coli tRNAGlu in oxidative conditions led

Fig. 4 The structures of sulfur-

and selenium-containing

pyrimidine nucleosides. S2U

and Se2U nucleosides present in

transfer RNAs, according to

Agris et al., http://rna-mdb.cas.

albany.edu/RNAmods/ [43] and

Dunin-Horkawicz et al., http://

modomics.genesilico.pl/ [44]
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to more than 95% conversion of the 2-thiouridine 34 to

uridine, as assigned by base composition analysis [61].

Notably, the H2O2-oxidized tRNAGlu lost much of its

binding affinity to tRNAPhe, which has the complementary

anticodon sequence. The stability of the tRNAGlu/tRNAPhe

complex after mnm5S2U oxidation was significantly

reduced, as determined by the temperature jump relaxation

method. The melting temperature of this complex dropped

by 20�C in comparison to the Tm of the parental tRNAGlu/

tRNAPhe complex. The rationale for the observed phe-

nomena was the decrease of the stacking interaction and

change in uridine conformational flexibility, in comparison

to the S2U nucleoside. Other experiments have shown that

probing the tRNALys3 (mcm5S2U at the wobble position)

with potassium peroxynitrite (ONOOK), which generates

hydroxyl radicals in the absence of heavy metal ions,

results in dethiolation and subsequent strand scission at the

wobble position, but the non-thiolated substrate is not

cleaved [62]. Hydroxyl radicals are thought to promote

cleavage of the polynucleotide backbone. Despite these

intense studies, only very limited information has been

made available on the structure of the dethiolated nucleo-

sides and the origin of the observed loss of tRNA function.

Dethiolation of S2U on nucleoside level

The removal of the sulfur atom from 2-thiopyrimidine

nucleosides proceeds either under reductive conditions or

under various oxidative conditions in a process called oxi-

dative desulfuration (desulfurization or dethiolation).

Reduction of S2U gives the corresponding 4-pyrimidinone

nucleoside (H2U). The action of oxidants may remove

sulfur in favor of hydrogen (desulfuration to H2U) or in

favor of oxygen (oxidation to U) (Fig. 5), and these reac-

tions usually occur simultaneously with a ratio dependent on

the kind of oxygen agent and reaction conditions [57, 63].

Dethiolation of S2U under reductive conditions

It has been reported that dethiolation of 2-thiopyrimidine

nucleosides proceeds in moderate yield under reductive

conditions in the reaction with dibenzoyldiazene [64] or

under treatment with dipotassium diazenedicarboxylate

[65]. However, desulfuration of 2-thiothymidine by Raney-

nickel reduction worked more efficiently to produce cor-

responding 4-pyrimidinone derivatives at an isolated yield

of 61% [66].

Dethiolation of S2U under oxidative conditions

Oxidative dethiolation of the 2-thiopyrimidine moiety has

been observed upon treatment with various oxidizing

agents: aqueous iodine [67], m-chloroperbenzoic acid [67],

dimethyldioxirane [68] and trans-2-phenylsulfonyl-3-phe-

nyloxaziridine (PSO) [69]. The reactivity of the

2-thiocarbonyl function towards aqueous iodine was found

to be the main cause of the low efficiency of 2-thionucle-

oside incorporation into the oligonucleotide chain during

the standard phosphoramidite oligonucleotide synthesis, as

desulfuration occurred during the oxidation step routinely

performed with this oxidizing agent [67, 70–73]. During the

evaluation of alternative oxidizing agents, it was discovered

that treatment of 2-thiothymidine with m-chloroperbenzoic

acid/pyridine solution rapidly produced the corresponding

4-pyrimidinone 20-deoxynucleoside in high yield [67].

Recently, the same oxidizing reagent was successfully

applied in a RNA nucleotide synthesis for the efficient,

selective transformation of 2-thiouridine into 4-pyrimidi-

none ribonucleoside [74]. Treatment of the sugar-protected

2-thiouridine derivative with dimethyldioxirane revealed

incomplete removal of the sulfur atom. Under these con-

ditions, the thiocarbonyl function at the C2 position of the

pyrimidine ring was partially dethiolated, leading to the

4-pyrimidinone nucleoside (yield 43%), and the disulfide of

2-thiouridine was formed with 20% yield [68]. We have

reported that the S2U nucleoside in the presence of PSO,

undergoes selective transformation to the H2U nucleoside.

The loss of the sulfur atom from 2-thiouridine was also

observed under H2O2 treatment in aqueous solution. Under

these conditions, the 2-thionucleoside is converted to the

4-pyrimidinone nucleoside and uridine [64, 75], and the

process is pH-dependent (Sochacka, unpublished results).

The development of the synthesis of the corresponding

S2U- and H2U-phosphoramidites has provided model oli-

gonucleotides for further studies on tRNA dethiolation.

Dethiolation of S2U on the RNA oligonucleotide level

For the first time, the effective desulfuration of the

2-thiouridine built into the 50-TdA(S2U)dGdC-30 pentamer

could be achieved by the treatment of oligomer in ‘organic

conditions’ with PSO in a water/acetonitrile solution [69].

The obtained product, as identified by MALDI-TOF mass

spectrometry, did not contain sulfur and, in accordance

Fig. 5 Transformation of 2-thiouridine and 20-deoxy-2-thiouridine to

products of desulfuration. The oxidative dethiolation of S2U (dS2U)

results in the production of 4-pyrimidinone nucleoside H2U (dH2U)

and uridine U (20-deoxyuridine, dU)

4028 B. Nawrot et al.
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with the results obtained at the nucleoside level, was

identified as the 4-pyrimidinone nucleoside. Further stud-

ies, carried out under in vitro oxidative stress conditions in

the presence of aqueous H2O2, demonstrated that the S2U-

containing RNA, which was homo-sequential to the anti-

codon loop of tRNALys3, was transformed predominantly

to H2U-RNA [76]. The affinity of H2U-RNA to its Wat-

son-Crick complement (A opposite of H2U), as determined

by UV/VIS melting experiments, was much smaller than

the affinity of S2U-RNA or U-RNA to the complementary

RNA. These novel results indicated that the sulfur-con-

taining nucleosides present in tRNA chains are transformed

preferentially to the H2U analog than to uridine when

dethiolated under oxidative stress conditions, which is

commonly accepted as the sole dethiolation product.

Biological consequences of desulfuration

of 2-thiouridine in tRNA

It has been recognized that the 2-thiocarbonyl group of

2-thiouracil nucleosides strongly influences their confor-

mation and plays a key role in the modulation of base pair

recognition [77, 78]. These properties are crucial for the

decoding ability of natural 2-thiouracil ribonucleosides

located in the anticodon wobble position of many tRNAs

[38–40]. 2-Thiouridines preferentially adopt a rigid C30-
endo sugar ring conformation [79, 80], for which the long-

range electrostatic effect between the 20-OH group and the

sulfur atom plays a dominant role [81]. The S2U-A base

pair in RNA duplexes is more stable than that of a parent

U-A one [82, 83]. Furthermore, due to steric hindrance and

the weaker H-bonding ability of sulfur relative to oxygen,

2-thiouracil ribonucleosides make the S2U-G wobble base

pairs less stable than base pairs containing uridine [80, 82–

84]. The specific hybridization properties of 2-thiouracil

ribonucleosides led to their practical use in the antisense

strategy and single-nucleotide polymorphism (SNP) anal-

ysis [85, 86, 87, 88].

Our recent studies on 4-pyrimidinone ribonucleoside

conformation in a solid state and in solution (NMR) have

demonstrated that the conformational characteristics of the

ribofuranose ring is dramatically affected by desulfuration

[74]. The 4-pyrimidinone nucleoside predominantly adopts

the C20-endo form (S conformer) in aqueous solution

(Fig. 6), and this ribose pucker is also fixed for H2U

molecules in the crystal state. The loss of 2-thiocarbonyl/2-

carbonyl function significantly influences the conformation

of nucleosides. The observed differences between the S2U,

U and H2U ribose folding (Table 1) may have important

biological consequences on tRNA fate and cellular func-

tion, because dethiolation of natural 2-thiouridines is

plausible under conditions of oxidative stress in the cell.

Notably, 4-pyrimidinone nucleosides are nucleoside

analogs lacking both the N3-amide hydrogen and the

thiocarbonyl/carbonyl function at the C2 position in the

heterobase moiety, characteristic for 2-thiouridines and

natural uridines, and thus offer entirely different possibil-

ities for base pairing within RNA and DNA duplexes

(Fig. 7). Interestingly, the UV-melting profiles of S2U-,

U- and H2U-RNAs hybridized to wobble complements (G

opposite of modification site) are almost identical, what

indicates that the mode of wobble base pairing is less

affected by dethiolation [76]. Plausible modes of hydrogen

bond patterns of H2U-A and H2U-G are shown in Fig. 7.

It is clear that shifting guanine residues along the

4-pyrimidinone moiety offers two hydrogen bonds that

might compensate for the original wobble hydrogen bonds.

This hypothesis should be addressed in future studies.

Moreover, some data reveal that dH2U-containing DNA

oligonucleotides undergo strand cleavage in certain con-

ditions [89]. We have also reported that H2U-containing

RNA is unstable in basic conditions and decomposes to its

abasic form, followed by strand scission [76]. These pre-

liminary results need to be further confirmed to consider

the H2U-containing anticodon loop as a strand scission

site, whereby such a possibility would offer new insight

into tRNA oxidative damage.

Conclusions

Oxidative damage of biomolecules, including RNA, con-

tributes to neurodegenerative and other diseases. tRNA is

cleaved under oxidative stress, and the resulting tRNA

Fig. 6 Crystal structure of H2U. The crystal structure shows

conformational details with respect to the plane passing through

atoms C10, C40 and O40 (C20-endo)

Table 1 Population of sugar S and N conformers (%) in aqueous

solution calculated on the basis of 3JH–H coupling constants

Nucleoside S (%) N (%) Reference

H2U 62 38 [74]

S2U 29 71 [90]

U 47 53 [91]
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fragments participate in stress signaling pathways, like the

induction of stress granule formation. Modified nucleosides,

which are found in wide variety in tRNA, might constitute a

primary target for oxidative attack. An example is the trans-

formation of S2U-tRNA to H2U-tRNA which creates a site of

tRNA damage. Such damage may disturb codon–anticodon

interactions and recognition of tRNA by aa-tRNA synthetases

and other enzymes involved in tRNA metabolism and func-

tion. Oxidative stress may, in fact, cause loss of function of

S2U-tRNAs, disrupting their participation in the production

of vital proteins, which might also be crucial for cellular

ageing through the accumulation of nonfunctional tRNA

species. Another potential implementation of the oxidative

desulfuration of 2-thiopyrimidine nucleosides might be as

anti-HIV-1 therapeutic strategies. The use of oxidizing agents

might block the function of tRNALys3 in priming reverse

transcription by preventing its binding to viral RNA. More-

over, some data suggest that H2U-containing RNA undergoes

strand cleavage at the modification site. Future research will

reveal whether there is any connection between the S2U-to-

H2U transition and the enzymatic cleavage of tRNAs with

functions in stress response signaling and nonself defense.
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