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This study aimed to determine early diagnosis genes of acute myocardial infarction

(AMI) and then validate their association with ferroptosis, immune checkpoints, and

N6-methyladenosine (m6A), whichmay provide a potential method for the early diagnosis

of AMI. Firstly, we downloaded microarray data from NCBI (GSE61144, GSE60993,

and GSE42148) and identified differentially expressed genes (DEGs) in samples from

healthy subjects and patients with AMI. Also, we performed systematic gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and used

STRING to predict protein interactions. Moreover, MCC and MCODE algorithms in

the cytoHubba plug-in were used to screen nine key genes in the network. We then

determined the diagnostic significance of the nine obtained DEGs by plotting receiver

operating characteristic curves using a multiscale curvature classification algorithm.

Meanwhile, we investigated the relationship between AMI and immune checkpoints,

ferroptosis, and m6A. In addition, we further validated the key genes through the

GSE66360 dataset and consequently obtained nine specific genes that can be used

as early diagnosis biomarkers for AMI. Through screening, we identified 210 DEGs,

including 53 downregulated and 157 upregulated genes. According to GO, KEGG, and

key gene screening results, FPR1, CXCR1, ELANE, TLR2, S100A12, TLR4, CXCL8,

FPR2 andCAMP could be used for early prediction of AMI. Finally, we found that AMI was

associated with ferroptosis, immune checkpoints, and m6A and FPR1, CXCR1, ELANE,

TLR2, S100A12, TLR4, CXCL8, FPR2 and CAMP are effective markers for the diagnosis

of AMI, which can provide new prospects for future studies on the pathogenesis of AMI.

Keywords: acute myocardial infarction, differentially expressed genes, ferroptosis, immune checkpoints, m6A,

diagnostic gene biomarker

INTRODUCTION

Coronary heart disease affects 17.1 million people worldwide and results in a considerable number
of fatalities, making it a global health concern (1). Acute myocardial infarction (AMI) is one of the
most serious ischemic heart diseases caused by the rupture of atherosclerotic plaque (2–4). Early
and correct diagnosis may be of great benefit in treatment (5–7). Previous studies have identified
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several risk factors associated with the onset of AMI, including
age, gender, hypertension, diabetes, smoking, alcohol
consumption, and physical labor (8–11). There is growing
evidence that genetic factors contribute to the development of
AMI (12). In recent years, various therapeutic targets for AMI
have been identified through the study of genetic factors such
as mRNA (13–16). Therefore, it is necessary to explore new
biomarkers with high sensitivity and specificity for the diagnosis
of cardiovascular disease.

In recent years, the development of microarray technology
has allowed the identification of biomarkers for diagnosis and
prognosis through differentially expressed genes (DEGs) (16, 17).
Some ncRNAs can serve as biomarkers for many cardiovascular
diseases (18–20), including AMI (mir-1, mir-133, mir-208, and
mir-499) (21, 22), acute coronary syndrome (mir-208a, mir-34a,
mir-133a, and mir-499) (23), and heart failure (mir-499, mir-133,
mir-423-5p, and mir-126) (24–28). Thus, these stable, conserved,
and specific RNAs may provide a novel approach to diagnosing
cardiovascular diseases.

Herein, we downloaded the microarray data from NCBI,
identified DEGs in AMI samples, and compared them with
normal controls (29). The identification of DEGs was followed
by systematic GO and KEGG analyses (30–33). Protein–protein
interactions (PPIs) among the products of DEGs were studied
using STRING (34, 35). MCC and MCODE algorithms in
cytoHubba plug-in were used to screen 9 key genes in the
network. In order to further confirm the stability of these
genes, we also confirmed in the GSE66360 dataset, and finally
identified 9 key genes. Finally, the genes were identified
and examined to determine if these genes with AMI were
associated with immune checkpoints, ferroptosis, and N6-
methyladenosine (m6A) modification (33, 36, 37). In conclusion,
this study provides new insights into the molecular mechanisms
responsible for the occurrence of AMI.

MATERIALS AND METHODS

Microarray Data
From the GEO database1, we used the MiniML microarray
dataset (GSE42148, GSE60993, GSE66360 and GSE61144). The
GSE42148 dataset was based on a GPL13607 platform Agilent-
028004 SurePrint G3 Human GE 8x60K Microarray (Feature
Number Version). GSE60993 dataset was based on Illumina
HumanWG-6 V3.0 Expression Beadchip of the GPL6884
platform. GSE61144 dataset was based on Sentrix Human-6
V2 Expression BeadChip of the GLP6106 platform. GSE66360
dataset was based on the GLP 570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array. We included peripheral
blood from the patients with ACS who visited the emergency
department within 4 h after the onset of chest pain: a set of blood
samples of patients with STEMI (n = 7) and normal control (n
= 10) in GSE61144. Enrolled peripheral blood from the patients
with ACS who visited the emergency department within 4 hours
after the onset of chest pain: ST-elevation myocardial infarction
(STEMI, n = 7), Non-ST-elevation MI (NSTEMI, n = 10) and

1http://www.ncbi.nih.gov/geo.

normal control (n = 7) in GSE60993. And we selected the blood
samples of myocardial infarction (MI, n= 6) patients and healthy
control (n = 11) in GSE42148. Based on platform annotation
information, we converted the probes into gene symbols through
the Strawberry Perl language (version 5.32.1.1), and excluded
probes containing multiple genes. Furthermore, we removed the
batch effect using sva packing in R (38).

Filtering DEGs
We identified differential expression of RNAs using the “Limma”
package in R. There were 30 AMI cases and 28 healthy controls.
We then analyzed the adjusted P-values to correct the false
positive results in the GEO dataset. The adjusted P-value < 0.05
and | log2 fold-change (FC) | > 1.5 represented the statistical
standards for RNA expression screening. We obtained a box
graph using the R package GGplot2. The R packages ggord and
pheatmap were used to draw the PCA diagram and heatmap,
respectively. The above analysis methods were implemented
using R Foundation of Statistical Calculation (2020) version 4.0.3
(38, 39).

Functional Enrichment Analysis
We used GO for functional gene annotation, particularly
annotating molecular function (MF), biological pathways (BP),
and cellular components (CC). The KEGG enrichment analysis
provided a good reference for gene function research and the
correlating genomic functional information. To have a better
understanding of the effect caused by mRNAs, we applied
the ClusterProfiler package (version: 3.18.0) in R to analyze
GO functions of potential targets and the KEGG pathway
enrichment (40).

Screening of Candidate Diagnostic
Biomarkers
The interactive gene retrieval tool, STRING, is an online
biological database that provides gene analysis and builds gene
interaction networks at the protein level (41). In this study, we
constructed the protein–protein interaction network of DEGs
using STRING (Version 11.0) (33, 41). We then visualized the
PPI network using Cytoscape version 3.8.2 (34, 36). MCC and
MCODE algorithms in cytoHubba plug-in were used to screen
key genes in the network.

Diagnostic Value of Characteristic
Biomarkers in AMI
In order to test the predictive value of identified biomarkers, we
used the GLM function in R (version 3.6.3) package to build
logistics model, and used the GGploT2 package to visualize
the results. Receiver operating characteristic (ROC) curves were
generated using the mRNA expression data from the GSE42148,
GSE60993, and GSE61144 datasets. Data of 30 patients with AMI
and 28 patients without AMI was available. The diagnostic values
of the identified hub genes were evaluated using the area under
the ROC curve (AUC), which was between 0.5 and 1. The closer
the AUC is to 1, the better is the diagnostic effect. AUC ranging
from 0.5 to 0.7 indicates a low degree of accuracy, while the
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FIGURE 1 | Volcano plots and heat maps of differentially expressed genes in AMI. (A) Box plot after data standardization. (B) PCA results before batch removal for

multiple data sets. (C) PCA results after batch removal. (D) Volcano plots were constructed using fold-change values and adjusted P. The red point in the plot

represents the upregulated mRNAs and the blue point indicates the downregulated mRNAs with statistical significance. (E) Hierarchical clustering analysis of mRNAs,

which were differentially expressed between patients with AMI and healthy controls.
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FIGURE 2 | GO and KEGG enrichment analysis. The enriched KEGG signaling pathways were selected to demonstrate the primary biological actions of major

potential mRNAs. The abscissa indicates gene ratio and the enriched pathways were presented in the ordinate. Gene ontology (GO) analysis of potential mRNA

targets. The biological pathways (BP), cellular component (CC), and molecular function (MF) of potential targets were clustered based on the ClusterProfiler R package

(version: 3.18.0). In the enrichment result, p < 0.05 or FDR < 0.05 were considered meaningful.
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FIGURE 3 | The key genes were identified using MCC and MCODE. (A) Represents the 10 key genes calculated by MCC algorithm in cytoHubba; the darker the

color, the more critical the gene. (B) Denotes the gene related to the module with the highest score in MCODE calculation methods using Cytoscape. (C) The

intersection of the key genes calculated by MCC and MCODE is visualized using Venn diagram.

accuracy of AUC ranging from 0.7 to 0.9 is greater. When the
AUC value is >0.9, the accuracy is the highest.

Effect of the Immune Checkpoint-, m6A-,
and Ferroptosis-Related Gene Expression
in AMI
Based on the results of previous studies, we identified immune
checkpoint-, ferroptosis-, and m6A-related genes. The dataset
we downloaded was from the GEO database and the data
format was MiniML. We obtained the expression of immune
checkpoint-related genes. To derive ferroptosis-related genes, we
used the systematic analysis of the aberrances and functional
implications of ferroptosis in cancer published by Liu et al.
(42). We used the molecular characterization and clinical
significance of m6Amodulators across 33 cancer types published
by Juan Xu to derive the m6A-related genes (43). In addition,

we carried out multi-gene Spearman correlation analysis on
the immune checkpoint, ferroptosis and m6A methylation to
describe the correlation between immune checkpoint, ferroptosis
and m6A genes, respectively. And the value of P (<0.05) was
considered to be statistically significant. Besides, box plots, PCA
graphs, two-gene correlation graphs, and multi-gene correlation
graphs were obtained by boxplot, R software package ggord, R
software package ggstatsplot, and R software package pheatmap,
respectively. All of the above analysis methods were implemented
using the R foundation for statistical computing (2020) version
4.0.3 (43, 44).

Validation of Diagnostic Genes
To further validate the genes obtained in our study, we
downloaded an additional set of acute myocardial infarction data
(GSE number: GSE66360) from the GEO database, including
50 AMI patients and 49 healthy subjects. We performed a
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log2 transform of the obtained data and subsequently examined
the relative gene expression levels of the transiformed data
corresponding to the healthy subjects and AMI patients using
wilcoxon rank sum test. The values of P (<0.05) proved that there
were significant differences in gene expression levels between
healthy subjects and AMI.

RESULTS

Identification of Differentially Expressed
Genes
DEGs in GSE42148, GSE60993, and GSE61144 datasets were
identified using Limma quartile normalization and background
correction methods. Limma screening identified 210 DEGs,
including 53 downregulated and 157 up regulated genes
(Figure 1).

Functional Correlation Analysis
Using the “clusterProfiler” package in Bioconductor and
the gene function spectrum obtained through enrichment
analysis of GO and KEGG pathways, we found that DEGs
were mainly concentrated in the following functional
categories: Neutrophil extracellular trap formation, Lipid
and atherosclerosis, IL−17 signaling pathway, Cytokine–
cytokine receptor interaction, response to molecule of bacterial
origin, neutrophil degranulation, neutrophil activation involved
in immune response, defense response to bacterium (Figure 2).

Identification and Validation of Biomarkers
for Diagnostic Characteristics
In order to further explore central genes related to AMI and their
mechanism of action, 157 genes with upregulated expression
among the 210 DEGs in the AMI group were located and
uploaded to STRING online database to build a PPI network. A
PPI network with 156 genes as nodes and 85 edges was realized
(Supplementary Material 1). Among the 156 nodes, the top 9
genes with high binding degree were found by Cytoscape (version
3.8.2) MCODE and MCC calculation methods. These genes,
which were identified to play key roles in AMI, are listed as
follows: FPR1, CXCR1, ELANE, TLR2, S100A12, TLR4, CXCL8,
FPR2 and CAMP (Figure 3).

Diagnostic Effect of Characteristic
Biomarkers on Acute Myocardial Infarction
Ten biomarkers were used to distinguish AMI from control
samples demonstrating strongly predictive diagnostic results
(Figure 4). The AUC value of FPR1 was 0.841 (95% CI: 0.734–
0.948), CXCR1 was 0.791 (95% CI: 0.672–0.910), ELANE was
0.663 (95% CI: 0.522–0.804). The AUC value of TLR2 was 0.849
(95%CI: 0.738–0.960), S100A12was 0.754 (95%CI: 0.627–0.880),
and TLR4 was 0.799 (95% CI: 0.678–0.919). The AUC value of
CXCL8 was 0.723 (95% CI: 0.589–0.856), FPR2 was 0.785 (95%
CI: 0.662–0.907), and CAMP was 0.804 (95% CI: 0.691–0.918).

FIGURE 4 | Receiver operating characteristic (ROC) curve of differentially

expressed genes related to AMI, independence. TPR: true positive rate, the

ratio of positive samples to all positive samples predicted by classifier, i.e.,

TP/(TP+FN); FPR: False negative rate, the ratio of positive classes to all

negative classes in the sample predicted by the classifier, i.e., FP/(FP+TN). By

changing different thresholds, a pair of TPR and FPR will be obtained. ROC

curve is a curve drawn with FPR as abscissa and TPR as ordinate. As shown

in the figure, each point on the curve corresponds to FPR and TPR at different

thresholds. (The meaning of TPRate is the proportion of all samples of true

category 1 that are predicted to be category 1. The meaning of FPRate is the

proportion of all samples with true category 0 that are predicted to be category

1. AUC means that a positive sample and a negative sample are randomly

selected from the sample. The probability that the classifier predicts the

positive sample to be positive is P1, and the probability that the negative

sample is positive is P2. AUC means the probability that P1 > P2).

Acute Myocardial Infarction Is Associated
With Immune Checkpoints, m6A, and
Ferroptosis
From the 24 ferroptosis-associated genes that were collected,
changes were observed in gene expressions between patients with
AMI and healthy controls. Among the patients, we observed that
the ferroptosis-related genes ACSL4, CARS, LPCAT3, NFE2L2
and SAT1 were closely associated with AMI. Analysis of these
ferroptosis-related genes showed that the strongest association
was ACSL4 and NFE2L2, GPX4 and PRL8. Additionally, CISD1,
CS, CPX4 and PRL8 expression in AMI were significantly
lower than those in healthy controls. Studies have shown that
high levels of the antioxidant enzyme glutathione peroxidase
(GPx) are associated with improved prognosis after acute
coronary syndrome (ACS) and have a protective effect (42, 45).
Many regulators are involved in RNA methylation, including
methyltransferase (Writer), RNA-binding protein (Reader), and
demethylase (Erasers) (43, 44, 46). Therefore, we collected genes
associated with these three regulatory types and investigated their
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FIGURE 5 | Expression pattern of immune checkpoint-related mRNAs in AMI and control groups. (A) Comparison of expression levels of 8 immune

checkpoint-related RNA. Immune checkpoint-related RNA between healthy controls and AMI patients. G1 represents AMI patients and G2 represents healthy

controls. *p < 0.05, ***p < 0.001, the asterisk represents the degree of importance (*p). (B) Visualization of differentially expressed regulators in AMI. The AMI patients

were marked cyan, and the healthy controls were marked pink. *p < 0.05, **p < 0.01, ***p < 0.001, the asterisk represents the degree of importance (*p). (C)

Spearman correlation analysis of 8 immune checkpoint-related RNA in AMI. The higher the number in the circle, the stronger the correlation. The change in color on

the right represents a positive or negative correlation.

association with AMI. We found that the expressions of WTAP,
YTHDC1 and YTHDF1 were significantly increased in patients
with AMI (P< 0.01). Analysis of thesem6A related genes showed
that the strongest association was RBMX and ALKBH5, METTL3

and YTHDF1. However, METTL3, YTHDC2 and YTHDF2 in
AMI were lower than those in healthy controls. During the
verification of immune checkpoint, the expression level of LAG3,
HAVCR2, and TIGIT were all lower than those of the healthy
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FIGURE 6 | Expression pattern of ferroptosis-related mRNAs in AMI and control groups. (A) Comparison of expression levels of 24 ferroptosis-related RNA.

Ferroptosis-related RNA between healthy controls and AMI patients. G1 represents AMI patients and G2 represents healthy controls. *p < 0.05, **p < 0.01,

(Continued)
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FIGURE 6 | ***p < 0.001, the asterisk represents the degree of importance (*p). (B) Visualization of differentially expressed regulators in AMI. The AMI patients were

marked cyan, and the healthy controls were marked pink. *p < 0.05, **p < 0.01, ***p < 0.001, the asterisk represents the degree of importance (*p). (C) Spearman

correlation analysis of 24 ferroptosis-related RNA in AMI. The higher the number in the circle, the stronger the correlation. The change in color on the right represents a

positive or negative correlation.

group (P < 0.01). Analysis of these immune checkpoint of
AMI genes showed that the strongest association was LAG3 and
CTLA4, CTLA4 and PDCD1 (Figures 5–7).

Validation of Diagnostic Genes
We validated DEGs from a new AMI-related dataset,
GSE66360. Through verification, it was found that the p-
values corresponding to FPR1, CXCR1, ELANE, TLR2, S100A12,
TLR4, CXCL8, FPR2 and CAMP are all less than 0.05. And the
verification results partly support our conclusion that FPR1,
CXCR1, ELANE, TLR2, S100A12, TLR4, CXCL8, FPR2 and
CAMP have the potential to be a marker for early diagnosis
of AMI (Figure 8). We also validated ferroptosis, immune
checkpoints, and m6A-related gene expression and found
that the p-values corresponding to NFE2L2, SAT1, WTAP and
YTHDC1 are less than 0.05 (Supplementary Material 2).

DISCUSSION

Myocardial infarction is a leading cause of morbidity and
mortality worldwide. Studies show that in 2015 alone, 15.9
million patients suffered from AMI (47). Despite significant
improvements in the early diagnosis and treatment of AMI
in the past decade, it remains a leading cause of death and
disability. Therefore, the identification of new biomarkers for
the early diagnosis of AMI requires further investigation. In
recent years, RNA has emerged as a particular primary biomarker
for cardiovascular disease. With the development of gene
chip technology, microarrays have been widely used in heart
disease research (48, 49). In this study, we first used the GEO
gene expression dataset to detect differential gene expression
associated with AMI and identify DEGs via functional analysis.
Thereafter, we used MCC and MCODE to screen nine genes as
potential diagnostic markers. We also analyzed the independent
prediction ROC curve. Subsequently, we validated the association
of AMI with immune checkpoints, ferroptosis, and m6A.

Comparing the expression levels of patient target genes
that early predict STEMI development, we found significant
differences in FPR1, CXCR1, ELANE, TLR2, S100A12, TLR4,
CXCL8, FPR2 and CAMP expressions, which significantly
increased after STEMI. CXCR1 is internally expressed on
neutrophils and is responsible for chemotaxis and activation
of neutrophils (50). TLR is a type I membrane binding
protein that can recognize and defense against invading
microorganisms (51). So far, it has been reported that
TLR2 induces a proinflammatory responses within immune
cells. S100A12 play an important role in the development
of atherosclerosis (52). In cardiovascular diseases, TLR4 has
protective and harmful effects on some systems, such as

mediating various inflammatory effects of the aorta (53),
arterioles (54), fat cells and macrophages (55). CXCL8 mainly
arises from neutrophils, macrophages, monocytes, endothelial
cells, epithelial cells, and T-cells (56). FPR2 can inhibit
inflammatory processes by inhibiting neutrophils, exerting anti-
inflammatory and decomposition promoting properties (57).
CAMP induces immune cells to the site of injury or infection to
bind and neutralize lipopolysaccharide (LPS), thereby promoting
epithelialization and repair the injury (58). Through the
observation of these key genes, we found that these genes
share common functional attributes, namely inflammation and
immune response. Therefore, we consider that the future
research direction of AMI still tends to attack inflammation
and immunity, but of course, further basic experiments are still
needed to verify.

Through functional verification of DEGs, it was found
that the GO and KEGG pathways were mainly distributed in
inflammation, immunity, and bacterial defense mechanisms.
The occurrence and development of myocardial infarction
involves almost all kinds of immune cells, some of which can
lead to atherosclerosis and myocardial infarction, while others
may prevent the corresponding lesions. Immune activation is
the only way and early phenomenon of immune response.
Previous studies have shown that the process of myocardial
infarction is usually accompanied by the activation of host
immune cells and the occurrence of inflammatory response,
but it is not clear which immune cells are activated during
the occurrence and progression of myocardial infarction. In
GO and KEGG analysis of DEGs in patients with AMI,
we found that a variety of immune and inflammatory cells,
especially neutrophil, macrophage, and leukocyte, were widely
activated in patients with AMI. Therefore, we believe that
immune dysregulation or inflammation is significantly associated
with AMI.

In recent years, ferroptosis has been a hot topic in
investigations of atherosclerotic lesions, and frequent and long-
term whole blood donation can reduce iron content in the body,
which may be related to the reduced risk of atherosclerotic
cardiovascular events (59). In our study on the relationship
between DEGs and ferroptosis in AMI, we found that NFE2L2
and SAT1 genes related to ferroptosis were closely related to
the occurrence of AMI. Similarly, in the analysis of m6A-
related genes in patients with AMI, we found that methylation
of WTAP and YTHDC1 was closely related to the occurrence
of AMI. Although we found no correlation between immune
checkpoint and the occurrence and development of AMI in gene
expression, we found reliable immune checkpoint interaction in
AMI patients in the relationship between immune checkpoint
gene interaction. In conclusion, we suspect that the occurrence
of AMI is related to the immune checkpoint, ferroptosis, and
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FIGURE 7 | Expression pattern of m6A RNA methylation regulators in AMI. (A) Comparison of expression levels of 18 m6A RNA methylation regulators between AMI

patients and healthy controls. *p < 0.05, **p < 0.01, ***p < 0.001, the asterisk represents the degree of importance (*p). (B) Visualization of differentially expressed

(Continued)
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FIGURE 7 | regulators in AMI. The AMI patients were marked cyan, and the healthy controls were marked pink. *p < 0.05, **p < 0.01, ***p < 0.001, the asterisk

represents the degree of importance (*p). (C) Spearman correlation analysis of 18 m6A-related RNA in AMI. The higher the number in the circle, the stronger the

correlation. The change in color on the right represents a positive or negative correlation.

FIGURE 8 | Validation of differentially expressed genes in AMI. The figure (A–I) shows the expression of differentially expressed genes in the GSE66360 data sets in

AMI and non-AMI patients. The blue square represents gene expression in the AMI group, and the red circle represents gene expression in the healthy control group.

m6A. Nevertheless, at present, we have only detected different
expressions of genes related to immune checkpoint, ferroptosis
or m6A, and we have not further explored how to play a role in

the occurrence and development of AMI. Therefore, this path can
be further explored in the future. But this hypothesis needs to
be verified.
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This study has some limitations. For example, there are several
studies on the differential expression of AMI genes. However,
the results of those studies are different to this study. This
could be due to the following reasons: (1) different batches
of microarray analyses have different results to some extent;
(2) compared with other studies, this study adopted three
AMI data sets, providing a comprehensive analysis method
for bioinformatics for AMI. Therefore, the results of this
study are reliable. In addition, the reproducibility of immune
checkpoint-, ferroptosis-, and m6A-related genes obtained from
the dataset needs to be further validated. Further large-scale
basic studies can be carried out to verify the conclusions of
this study.

The timely diagnosis and treatment of AMI can help improve
global health. Considering this, our study aimed to identify new
genetic markers associated with AMI. We found nine genes
related to the occurrence of AMI. Furthermore, we believe
that the occurrence of AMI is related to immune checkpoint,
ferroptosis, and m6A.
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