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Abstract: Breast cancer (BC) has recently become the most common cancer type worldwide, with
metastatic disease being the main reason for disease mortality. This has brought about strategies
for early detection, especially the utilization of minimally invasive biomarkers found in various
bodily fluids. Exosomes have been proposed as novel extracellular vesicles, readily detectable in
bodily fluids, secreted from BC-cells or BC-tumor microenvironment cells, and capable of conferring
cellular signals over long distances via various cargo molecules. This cargo is composed of different
biomolecules, among which are the novel non-coding genome products, such as microRNAs (miR-
NAs), long non-coding RNAs (lncRNAs), and the recently discovered circular RNA (circRNA), all of
which were found to be implicated in BC pathology. In this review, the diverse roles of the ncRNA
cargo of BC-derived exosomes will be discussed, shedding light on their primarily oncogenic and
additionally tumor suppressor roles at different levels of BC tumor progression, and drug sensitiv-
ity/resistance, along with presenting their diagnostic, prognostic, and predictive biomarker potential.
Finally, benefiting from the miRNA sponging mechanism of action of lncRNAs and circRNAs, we
established an experimentally validated breast cancer exosomal non-coding RNAs-regulated target
gene axis from already published exosomal ncRNAs in BC. The resulting genes, pathways, gene
ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis could be a
starting point to better understand BC and may pave the way for the development of novel diagnostic
and prognostic biomarkers and therapeutics.

Keywords: breast cancer; exosomes; non-coding RNA; microRNAs; long non-coding RNA; circular
RNAs; biomarkers

1. Introduction

According to the International Agency for Research on Cancer (IARC), in 2020, breast
cancer (BC) became the most prevalent cancer type worldwide, with more than 2.26 million
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new cases and nearly 685,000 deaths, most of which being a cause of metastatic disease.
Moreover, BC was the most common cause of cancer-related deaths in women and the
fifth most common cause of cancer death overall [1]. This increase, as well as the initiation
and progression of the disease, could be attributed to various genetic, reproductive, or
demographic risk factors. Early detection techniques available today include mammogra-
phy, ultrasound, magnetic resonance imaging, positron emission tomography, and breast
biopsies [2]. However, these techniques have limitations in terms of their accuracy, cost,
duration, and ease of use that limit their efficacy. As such, there is an urge to unveil novel,
robust, inexpensive, and minimally invasive biomarkers to ascertain BC at an early stage
and circumvent poor disease prognosis.

Discovering BC diagnostic and prognostic biomarker strategies have been increasingly
utilized as a means of early detection and avoidance of bad disease prognosis. Accordingly,
taking advantage of exosomes, which are cell-derived extracellular vesicles of endosomal
origin ranging in size from 30–100 nm [3] found in body fluids, i.e., saliva, urine, serum,
amniotic fluid, cerebrospinal fluid, bile, etc. [4–9], has become an insightful approach, espe-
cially with the ease of their detection in liquid biopsies. Currently, exosomes are attracting
tremendous attention for their important roles in cellular communication by enabling the
transfer of various types of cargo, such as proteins, mRNA, DNAs, and non-coding RNAs,
wrapped in a lipid bilayer, to recipient cells [3,4]. Among the different types of cargo,
non-coding RNAs are the ones attracting particular attention due to their promising clinical
applications, such as potential biomarkers in cancer diagnosis and prognosis.

The traditional notion of gene regulation is centered around the central dogma, which
proposes that DNA is transcribed into mRNAs, which are, in turn, translated into proteins.
However, recently, discoveries through several high-throughput genomic platforms suggest
that non-coding portions of the genome are also responsible for the tight regulation of
gene expression. It was demonstrated that just as little as <1% of the human genome
encodes proteins and that a large proportion of the genome is actively transcribed into
non-coding RNAs (ncRNAs) [10]. The well-studied ncRNAs are micro-RNAs (miRNAs),
which are small ncRNAs of ~20–23 nucleotides in length, and long non-coding RNAs
(lncRNAs), which are defined as transcripts longer than 200 nucleotides. Whereas miRNAs
regulate gene expression primarily through mRNA degradation or silencing, lncRNAs act
via several mechanisms at both the transcriptional and translational levels [11]. In addition,
another recently understood significant class of ncRNAs are the circular RNAs (circRNAs),
which are closed-end long non-coding RNAs, where their 5′ and 3′ ends are covalently
attached via a process called “back-splicing” [12]. CircRNAs are presented to be more
stable and resistant to degradation by exonucleases than most linear RNAs since they do
not harbor a 5′ or 3′ end, and are believed to exert analogous roles as lncRNAs [13]. The
abovementioned ncRNAs are essential for the regulation of various biological processes
and were shown to be dysregulated in several types of cancers, including BC [14]. In
addition, they could have a possible interaction, bringing about a higher level of regulation
and a novel mechanism of action conceptualized as miRNA sponging, where lncRNAs and
circRNAs bind and inhibit the functionality of miRNAs [11].

Exosomes were first reported to carry RNAs by Valadi et al. [15], where they were
demonstrated to be carrying mRNAs and miRNAs. Later on, evidence of other types
of ncRNA cargo in exosomes, such as lncRNAs [16] and circular RNAs [17], was also
reported. Exosomes readily shelter packaged cargo molecules from enzyme-mediated
destruction. They increase the circulating half-life and thus enhance the downstream
effects mediated by the transfer of their various types of cargo molecules—specifically,
ncRNAs-into other distant cellular entities [18]. LncRNAs and circRNAs that are capable of
interacting with miRNAs are termed competitors of endogenous RNAs (ceRNAs). CeRNAs
harbor microRNA response element (MRE) sequences, which permit their binding to
miRNAs. CeRNAs sponge miRNAs, preventing them from exerting their normal function
of inhibiting protein-coding mRNA translation through MRE complementarity (Figure 1).
CeRNAs play various roles in different phases of cancer, where they may act as oncogenes or
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tumor suppressor genes depending on the function of the protein-coding gene downstream
of the target miRNA [19–21].
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Figure 1. MiRNA sponging by circRNAs and lncRNAs. The central dogma proposes that protein-
coding regions of the genome give rise to mRNAs, which are, in turn, translated into proteins.
However, miRNAs, which are transcribed from the non-coding genome, could bind mRNAs via
MREs and inhibit their translation. LncRNAs and, circRNAs, which are also transcribed from the
non-coding genome, could bind and sponge miRNAs since they harbor MREs, resulting in the
translation of the previously miRNA-inhibited mRNAs into proteins. MRE: MicroRNA response
element. Figure was created with BioRender.com (accessed date: 24 July 2022).

Vast literature evidence is present regarding the existence of ncRNA cargo in exosomes
of the bodily fluids derived from breast cancer cells. Moreover, there is evidence of ncRNA
cargo in exosomes derived from breast cancer tumor microenvironment (TME) cells, such as
cancer-associated fibroblasts (CAFs) [22–29]. This brings about the notion that not only can
breast cancer cell-derived exosomes alter TME cells, but also that TME-derived exosomes
may alter breast cancer cells, and this is primarily achieved via the ncRNA cargo of
exosomes. Thus, exosomes from the collective breast tumor cells and the microenvironment
should be taken into consideration as mediators of carcinogenesis.

In this review, the various roles of the three types of ncRNA cargo of breast cancer and
TME-derived exosomes will be thoroughly investigated, stressing their overall oncogenic or
tumor suppressor roles in various levels of tumorigenesis and drug sensitivity/resistance.
In addition, the diagnostic, prognostic, and predictive potential of these three ncRNA
types will be presented. Lastly, an in silico approach will be adopted, taking advantage
of the miRNA sponging mechanism of action of lncRNAs and circRNAs to establish an
experimentally validated breast cancer exosomal non-coding RNAs-regulated target gene
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axis. This approach may be utilized to better describe the diverse effects of exosomal non-
coding RNAs in breast cancer and to manipulate this axis to develop novel therapeutics.

2. Oncogenic and Tumor Suppressor Roles of Exosomal Non-Coding RNAs in BC

Exosomes were shown to carry and transport various types of ncRNAs, including
miRNAs, lncRNAs, and circRNAs. In addition, BC cell and TME-derived exosomes were
demonstrated to carry and transport ncRNAs. Thus, taking into consideration the diverse
roles that these ncRNAs can play at different levels, such as at the transcriptional, transla-
tional, and epigenetic levels, they were presented to harbor oncogenic or tumor suppressor
potential, affecting BC progression and drug resistance.

2.1. Roles of Exosomal ncRNAs in BC Cell Growth and Proliferation

Exosomal miRNA has been shown as an important player in promoting or inhibiting
oncogenesis. A study has demonstrated the tumor-suppressive roles of miR-145 by mod-
ulating ROCK1, MMP9, ERBB2, and TP53 gene expression [30]. It was also reported by
Yan et al. that miR-105 elevates MYC protein levels in cancer-associated fibroblasts. The
increased expression of miR-105 and MYC enhanced glycolysis and increased the nutrient
use. The knockdown of MYC expression abolished miR-105- and MYC-induced nutrient
metabolism. This study demonstrated a MYC–miR-105–MXI1–MYC loop that leads to
miR-105-reprogramming in CAFs nourishing cancer cells with energy-rich metabolites and
contributing to sustained tumor growth [31]. Moreover, Li et al. have shown a potential
for triple negative breast-cancer-derived exosomal miR-1246 in promoting tumor growth
in normal human normal epithelial (HMLE) cells by targeting CCNG2 [32]. In another
study, Jung et al. validated that exosomal miR-210 could be transferred from hypoxic
breast-cancer-derived exosomes and promote angiogenesis and tumor growth in recipient
normal cells in the tumor microenvironment by acting on vascular remodeling-related
genes Ephrin A3 and PTP1B [33].

Exosomal lncRNAs were also shown to act as oncogenes or tumor suppressor genes
via their most robust miRNA sponging action and other mechanisms. The lncRNA X-
inactive-specific transcript (XIST) was shown to harbor a tumor suppressor potential in
breast cancer through its exosomal miR-503 sponging ability, where knockdown strategies
of XIST revealed the promotion of malignancy and stemness through the relief of exosomal
miR-503 sponging [34]. On the other hand, lncRNA SNHG3 was demonstrated to exert
an oncogenic role in breast cancer (BC) by facilitating a metabolic reprogramming event.
Exosomal SNHG3 was shown to act via sponging miR-330-5p, relieving its inhibitory
effect on its target gene pyruvate kinase M1 (PKM). Collectively, CAFs-secreted exosomal
SNHG3 resulted in a decrease in mitochondrial oxidative phosphorylation and an increase
in glycolysis carboxylation, leading to an increased breast cancer cell growth. In vitro and
in vivo CAFs-secreted exosomal SNHG3 knockdown strategies demonstrated a reversal
of the metabolic reprogramming, leading to a decreased breast cancer cell glycolysis
and growth [25].

In addition, the oncogenic effect of exosomal circRNAs has been verified by mul-
tiple studies. Zhang et al. showed that exosomal circFOXK2 facilitates oncogenesis in
breast cancer via interacting with IGF2BP3 and miR-370. The exosomal circFOXK2 level
was significantly increased in breast cancer cells with a high metastatic ability, and its
overexpression promoted the migration and invasion of BC cells [35]. In another study, exo-
somal circHIF1A significantly promoted triple negative breast cancer growth. An exosomal
circHIF1A/NFIB/FUS feedback loop was validated by Chen et al., as exosomal circHIF1A
modulated the expression and translocation of NFIB through post-transcriptional and
post-translational modification. FUS was found to be able to regulate the biogenesis of
exosomal circHIF1A by interacting with the flanking intron, and FUS was transcriptionally
regulated by NFIB [36].
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2.2. Roles of Exosomal ncRNAs in BC Metastasis

The intercellular communicator role of exosomes has made them a promising research
entity for their potential metastasis-promoting and metastasis-inhibiting abilities while
affecting the cells of the tumor microenvironment. Markedly, the non-coding RNA cargo
of exosomes is believed to enable the promotion or inhibition of metastasis via epigenetic
regulation [37] Literature evidence revealed that exosomal miRNAs could be transferred
from tumor-derived exosomes into normal cells, promoting metastasis. MiR-500a-5p
transferred from CAFs-derived exosomes was shown to enhance breast cancer metastasis by
binding to ubiquitin-specific peptidase 28 (USP28) [22]. Tumor-derived exosomal miR-7641
was demonstrated to promote metastasis via intercellular communication [38]. Transferred
miR-1246, expressed tremendously in metastatic breast cancer MDA-MB-231, was exhibited
to promote invasion in normal HMLE cells by targeting CCNG2 [32]. Hypoxic breast
cancer-derived exosomal miR-210 was proved to escalate into adjacent cells in the tumor
microenvironment, promoting angiogenesis and metastasis in recipient cells by targeting
Ephrin A3 and PTP1B, which are vascular remodeling-related genes [33]. MiR-1910-3p,
transferred from breast cancer cell-derived exosomes to normal mammary epithelial cells,
was validated to enhance metastasis by downregulating myotubularin-related protein
3 and activating the NF-κB and wnt/β-catenin signaling pathways [39]. The ceramide-
induced release of oncogenic exosomal miR-10b from breast cancer cells was indicated
to favor tumor progression by suppressing HOXD1 and KLF4 [40]. All of the previously
mentioned exosomal microRNAs were shown to be capable of inducing the invasion ability
of non-malignant breast cells upon coculture.

Through the process of metastasis, breast cancer cells acquire the ability to transmi-
grate through blood vessels. One contributor to this process is the tumor-derived exosomal
miR-939, which was reported by Di Modica et al. to assist in breast cancer metastasis by
regulating cadherin 5 (CDH5) and increasing vascular endothelial cells’ monolayer perme-
ability [41]. A study by Yang et al. showed that miR-146a promoted metastasis by acting
on TXNIP and activating the Wnt signaling pathway [42]. Gorczynski et al. reported that
antagomirs of exosomal miR-155 and miR-205 from EMT6/4THM breast cancer knock-out
mice models (CD200KO and CD200R1KO) impaired tumor growth and metastasis and
ameliorated survival in mice, confirming the important roles of these miRNAs in potenti-
ating metastasis [43]. It has been shown that exosomal microRNAs foster the interaction
between BC cells and other cells in the tumor niche; mainly fibroblasts. Donnarumma
et al. exhibited an important role for CAFs in inducing the stemness and EMT phenotype,
promoting metastasis in various breast cancer cell lines by releasing three exosomal microR-
NAs (miRs-21, -378e, and -143) [28]. Additionally, exosomal miR-9, upregulated in several
breast cancer cell lines, was reported to switch the normal fibroblasts (NFs) phenotype
into CAFs, thus enhancing tumor growth and metastasis [44]. However, another mode of
metastasis is the turbulence of glucose metabolism in the pre-metastatic niche. As demon-
strated by Fong et al., miR-122 modifies systemic energy metabolism in favor of disease
progression. Mechanistically, miR-122 suppresses glucose uptake by niche cells in vivo
and in vitro by downregulating glycolytic enzyme pyruvate kinase and thus increasing
nutrient availability in the pre-metastatic niche, enhancing metastasis [45]. In another study
on serum exosomal lncRNA small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3)
in (TNBC), a positive correlation was found between serum exosomal SUMO1P3 levels
and clinicopathological factors of TBNC patients. Thus, high levels of serum exosomal
SUMO1P3 were associated with lymphovascular invasion, lymph node metastasis, and
the tumor histological grade [46]. Exosomal microRNAs could also act as inhibitors of
tumor progression. Du et al. showed that let-7a inhibited TNBC migration by acting on the
c-Myc gene [47]. Park et al. identified three microRNAs—miR-1226-3p, miR-19a-3p, and
miR-19b-3p—that inhibit BC migration by regulating aquaporin 5 (AQP5) in MDA-MB231
cells [48]. Moreover, Wei et al. reported that miR-128 inhibits metastasis by downregulating
Bax protein in estrogen receptor-positive (ER+) MCF-7 recipient cells [49]. In another study,
miR-3613-3p downregulation in fibroblasts led to a marked decrease in the migrating ability
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of breast cancer cells by binding to the 3′ UTR of SOCS2, a regulator of several signaling
pathways, including growth hormone signaling [24].

In addition to the presented general metastasis-promoting abilities of exosomal non-
coding RNAs in breast cancer, they were shown to specifically promote distant metastasis
to the bone, lung, and brain. Once metastatic breast cancer cells colonize the bone mar-
row, they hijack signals coming from the normal bone remodeling process and stimulate
bone degradation [50]. MiR-19a and integrin-binding sialoprotein (IBSP), significantly
expressed and secreted from ER+ BC cells, are active players in this process. An osteoclast-
enriched environment is created in the bone by IBSP, stimulating the delivery of exosomal
miR-19a that acts on osteoclasts, inducing osteoclastogenesis [51]. Lung metastasis is
mediated by exosomal miR-138-5p by promoting the M2 polarization of macrophages
through the inhibition of KDM6B [52]. In addition, a high throughput sequencing study on
breast-cancer-exosomal lncRNAs revealed that they may be central players in pulmonary
pre-metastatic niche formation. Accordingly, BC-derived exosomal lncRNAs were demon-
strated to induce lung fibroblast conversion into malignant cells [53]. While the major event
of brain metastasis is the destruction of the blood–brain barrier (BBB), brain-metastatic
BC-derived exosomes highly expressing the lncRNA GS1-600G8.5 were found to disrupt the
BBB via targeting tight junction proteins, permitting the passage of breast cancer cells [54].
In another study on the exosome-mediated lncRNAs effect on the brain metastasis of BC,
the loss of the lncRNA XIST was proposed to play a crucial role. A loss of XIST was shown
to promote EMT and stemness through a process of protein stabilization [34]. Tumor ex-
pansion could also be induced by the interaction between the different types of non-coding
RNAs. Yang et al. confirmed that circPSMA1 enhances the tumorigenesis and metastasis of
TNBC through the circPSMA1/miR-637/Akt1-β-catenin (cyclin D1) regulatory axis [55].
Zhang et al. have demonstrated that the overexpression of circFOXK2, shown to be up-
regulated in high metastatic breast cancer cells, could promote migration and invasion by
acting with miR-370 and the RNA binding protein IGF2BP3 [35].

2.3. Roles of Exosomal ncRNAs in Immunoregulation and Cellular Polarization

Exosomal non-coding RNAs have been presented to exhibit distinct immunoregu-
latory roles in breast cancer, either harboring an oncogenic potential via enabling the
immunosuppression/immune evasion of cancer cells or acting as tumor suppressor entities
through facilitating an immune response. These are, in turn, achieved primarily via the reg-
ulation of the immune checkpoint entity programmed death-ligand 1 (PD-L1) expression,
whereby PD-L1 expression enables immunosuppression. Exosomal miR-27a-3p expression
was demonstrated to be upregulated in breast cancer following endoplasmic reticulum
(ER) stress in macrophages. MiR-27a-3p was presented to be able to confer immune eva-
sion by leading to the upregulation of PD-L1 through relieving the inhibitory effects of
MAG12 on PD-L1 via PTEN upregulation, leading to the inactivation of the PI3K/AKT
pathway [56]. Similarly, PD-L1 expression was demonstrated to be enhanced via CAFs-
derived exosomal miR-92. Mechanistically, immune evasion was achieved via miR-92,
which inhibited LATS2, inducing YAP1-mediated PD-L1 transcriptional activation [27].
PD-L1 expression was also presented to be enhanced through the loss of the lncRNA XIST
expression in breast cancer, which promoted exosomal miR-503 upregulation, leading to
the M1-M2 polarization of microglia and resulting in immunosuppression [34]. In another
instance, the exosomal non-coding RNA delivery strategy was proposed as a potential
immune-checkpoint blockade tool in TNBC. Exosomal miR-424-5p delivery was shown to
suppress PD-L1 signaling, inducing an inflammatory microenvironment and enhancing
anti-tumor activity [57]. Additionally, a PD-L1-independent immunosuppression mecha-
nism in TNBC was demonstrated through the miRNA sponging characteristic of exosomal
circPSMA1. circPSMA1 was shown to sponge miR-637, leading to the activation of a key
immune-related Akt1-β-catenin (cyclin D1) signaling axis, promoting tumorigenesis [55].

In addition to their role in immunoregulation, exosomal non-coding RNAs were
documented to contribute to the cellular polarization of macrophages. Macrophages are
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categorized into M1 and M2, owing to the nature of their cytokine profile and surface
markers. M1 macrophages generate an inflammatory response, secreting pro-inflammatory
cytokines such as interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin 12
(IL-12), and IL-6. M2 macrophages harbor an immunosuppressive characteristic and in-
duce tumorigenesis, producing anti-inflammatory cytokines, such as transforming growth
factor-β (TGF-β) and IL-10 [58]. Macrophages in the tumor microenvironment, i.e., tumor-
associated macrophages (TAMs), are the most abundant immune cell type. They adopt
distinct M2 phenotypes and harbor a tumor-promoting potential [59]. M1-M2 macrophage
cellular polarization was shown to be mediated via the exosomal lncRNA BCRT1, provid-
ing them with TAMs-like characteristics and thus promoting the angiogenesis, migration,
and immune evasion of BC cells [60]. At the molecular level, the epigenetic factor ly-
sine demethylase 6B (KDM6B) is thought to control macrophage polarization. Exosomal
miR-138-5p delivery from BC cells to macrophages was proposed to result in KDM6B
downregulation, consequently leading to the M1-M2 polarization of macrophages [52].
Because macrophage M2 polarization was shown to confer a tumor-promoting potential,
macrophage repolarization to M1 was proposed as a therapeutic strategy. The treatment of
BC cells with epigallocatechin gallate (EECG) was presented to lead to the repolarization
of M2 TAMs into M1. EECG-induced miR-16 expression in tumor cells and the exosome-
mediated transfer of miR-16 into TAMs resulted in decreased TAM infiltration and M2
polarization, suppressing tumor growth [61]. Macrophage repolarization to M1 was further
demonstrated to be mediated via exosomal ncRNAs, namely miR-130 [62] and miR-33 [63],
in two studies on 4T1 metastatic breast cancer cells. In both studies, the exosomal de-
livery of miRNAs (miR-130 and miR-33) was shown to induce M1 repolarization of the
macrophages manifested in the upregulation of M1-specific markers and cytokines and the
downregulation of M2-specific markers and cytokines. Whereas miR-130 led to a reduced
migratory and invasive potential of 4T1 cells along with an improved phagocytotic ability
of M1 macrophages, miR-33 resulted in decreased proliferative, invasive, and migratory
abilities of 4T1 cells [64].

2.4. Roles of Exosomal ncRNAs in BC-Drug Sensitivity/Resistance

Recent research on the involvement of exosomal non-coding RNAs in conferring drug
sensitivity/resistance has provided evidence on their mechanism of action to affect the
response to several types of breast cancer therapeutics, such as trastuzumab-mediated
immunotherapy, tamoxifen-mediated hormonal therapy, and several chemotherapeutic
agents, such as docetaxel, cisplatin, adriamycin, carboplatin, epirubicin, and gemcitabine.
The mode of action of the aforementioned drugs is diverse, where trastuzumab is a mono-
clonal antibody used to treat human epidermal growth factor receptor 2 (HER2)-positive
BCs [65], while tamoxifen is utilized for estrogen receptor (ER)-positive BCs, where it
antagonizes estradiol binding to the ER [66]. As for the various chemotherapeutic agents,
they generally act to interfere with cellular division, induce DNA damage, and cause
cell death [67]. Accordingly, Table 1 summarizes the specific involvement of exosomal
non-coding RNAs in conferring BC drug sensitivity/resistance, along with the different
mechanisms enabling this phenomenon and the presence of clinical evidence.

In order to confirm that exosomal ncRNAs are the mediators of drug resistance, several
studies have adopted the strategy of co-culturing drug-sensitive cells with drug-resistant
cells (Figure 2A) or in drug-resistant-cells-derived conditioned media (Figure 2B) in an
attempt to demonstrate the exosomal ncRNA-mediated switch from drug sensitivity to
resistance [32,68–82].

Additionally, another mechanism by which breast cancer cells utilized the exosome-
mediated ncRNA transfer in favor of developing drug resistance was the induction of
cellular dormancy in the bone marrow microenvironment through mesenchymal stem cells
(MSCs) priming. Consequently, dormant cells were able to evade chemotherapeutic agents,
leading to metastatic disease recurrence [83,84]. Overall, the exosome-mediated transfer of
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ncRNAs from resistant to sensitive cells presents a novel therapeutic targeting window for
drug-resistant BCs, given the robust evidence on the enhancement of drug resistance.
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Figure 2. The exosomal ncRNAs-mediated switch of BC cells from drug sensitivity to resistance.
(A) Co-culture of drug-resistant with drug-sensitive cells leads to an exosomal ncRNAs-mediated
switch into drug resistance. (B) Culture of drug-sensitive cells in drug-resistant BC-cells-conditioned
media, which contains drug-resistant cell-secreted exosomes, leads to an exosomal ncRNAs-mediated
switch into drug resistance.

Table 1. The role of exosomal ncRNAs in drug sensitivity/resistance.

Immunotherapy

Exosomal ncRNA(s) Drug Role Mechanism Clinical Evidence
and Status Reference

miR-1246,miR-155 Trastuzumab
Enhancement of

trastuzumab
resistance

N/A yes, upregulated [85]

miR-567 Trastuzumab
Enhancement of

trastuzumab
sensitivity

Inhibiting autophagy via
ATG5 suppression yes, downregulated [86]

SNHG14 Trastuzumab
Enhancement of

trastuzumab
resistance

N/A yes, upregulated [77]

AGAP2-AS1 Trastuzumab
Enhancement of

trastuzumab
resistance

N/A no [73]

AFAP1-AS1 Trastuzumab
Enhancement of

trastuzumab
resistance

Promoting ERBB2
translation via AUF1

binding
yes, upregulated [72]

Hormonal Therapy

Exosomal ncRNA(s) Drug Role Mechanism Reference

miR-221, miR-222 Tamoxifen Enhancement of
tamoxifen resistance

Negatively regulating
p27 and ERα no [81]

miR-205 Tamoxifen Enhancement of
tamoxifen resistance

Inhibiting apoptosis via
E2F1 downregulation no [68]

miR-181a-2 Tamoxifen Enhancement of
tamoxifen resistance

Downregulating ERα and
activating PI3K/AKT

signaling
no [87]

UCA1 Tamoxifen Enhancement of
tamoxifen resistance N/A no [80]

HOTAIR Tamoxifen Enhancement of
tamoxifen resistance N/A yes, upregulated [75]

circ_UBE2D2,
miR-200a-3p Tamoxifen Enhancement of

tamoxifen resistance

miR-200a-3p sponging,
leading to alterations in
cell viability, EMT, and

ERα status

no [71]
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Table 1. Cont.

Chemotherapy

Exosomal ncRNA(s) Drug Role Mechanism Clinical Evidence Reference

multiple miRNAs Docetaxel Enhancement of
docetaxel resistance N/A no [82]

miR-23b Docetaxel Enhancement of
docetaxel resistance

Inducing metastatic
breast cancer cell

dormancy via
suppressing

MARCKS

yes, upregulated [84]

miR-134 Cisplatin Enhancement of
cisplatin sensitivity

Negatively
regulating STAT5B,
Hsp90, and Bcl-2

yes, downregulated [88]

miR-222 Adriamycin Enhancement of
adriamycin resistance N/A no [79]

miR-222/223 Carboplatin Enhancement of
carboplatin resistance N/A no [83]

miR-1246 Docetaxel, Epirubicin,
Gemcitabine

Enhancement of
docetaxel, epirubicin,

and gemcitabine
resistance

Negatively
regulating Cyclin-G2 yes, upregulated [32]

miR-126a Doxorubicin
Enhancement of

doxorubicin
resistance

Inducing IL-13+ Th2
cells, promoting

angiogenesis, and
enhancing cell

viability via
S100A8/A9

upregulation

no [78]

miR-155 Doxorubicin,
Paclitaxel

Enhancement of
doxorubicin, and

paclitaxel resistance
N/A no [76]

miR-423-5p Cisplatin Enhancement of
cisplatin resistance N/A no [74]

miR-378a-3p,
miR-378d

Doxorubicin,
Paclitaxel

(neoadjuvant)

Enhancement of
doxorubicin and

paclitaxel resistance

Activation of WNT
and NOTCH

stemness pathways
via DKK3 and

NUMB suppression.

yes, upregulated [69]

HOTAIR Neoadjuvant
chemotherapy

Enhancement of
chemoresistance N/A yes, upregulated [75]

H19 Doxorubicin
Enhancement of

doxorubicin
resistance

N/A yes, upregulated [70]

3. Diagnostic, Prognostic, and Predictive Biomarker Potential of Exosomal ncRNAs

Given the robust evidence on the role of exosomal ncRNAs in BC onset and pro-
gression, they have been presented as novel biomarkers of diagnostic, prognostic, and
predictive potential, where they were shown to be readily clinically detectable in several
studies. Table 2 outlines the current literature evidence of exosomal ncRNA annotations as
diagnostic, prognostic, and predictive biomarkers.
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Table 2. Diagnostic, prognostic, and predictive biomarker potential of exosomal ncRNAs in BC.

Noncoding RNA Source Biomarker Type Status Clinical Evidence Mechanism Reference

miR-421, miR128-1,
miR128-2 plasma Diagnostic/Prognostic Upregulated Yes N/A [89]

miR-3662, miR-146a,
miR-1290 serum Predictive/Diagnostic Upregulated Yes N/A [90]

miR-424, miR-423,
miR-660,

let7-i
urine Diagnostic Up, down, down,

downregulated Yes N/A [91]

miR-148a serum Diagnostic/Prognostic Downregulated Yes N/A [92]

miR-17-5P serum Diagnostic Downregulated Yes N/A [93]

miR-1246, miR-155 serum Predictive/Prognostic Upregulated Yes N/A [85]

miR-1910-3p serum Diagnostic Upregulated Yes

downregulated
myotubularin-

related protein 3,
activated the NF-κB
and wnt/β-catenin
signaling pathway,

and promoted
breast cancer
progression

[39]

miR-1976 plasma, tissues Diagnostic Downregulated Yes N/A [94]

miR-21 (with
MMP1) urine Diagnostic Downregulated,

Upregulated Yes [95]

Let-7b-5p,
miR-122-5p,

miR-146b-5p,
miR-210-3p,
miR-215-5p

plasma Diagnostic N/A No N/A [96]

miR-21, miR-222,
miR-155 serum Diagnostic/Predictive Upregulated Yes N/A [97]

miR-16, miR-30b,
miR-93 serum, plasma Diagnostic Up, down,

upregulated Yes N/A [98]

miR-106a-3p,
miR-106a-5p,
miR-20b-5p,

miR-92a-2-5p

plasma, serum Diagnostic Upregulated Yes N/A [99]

miR-1246 serum Diagnostic Upregulated No
Suppresses the
expression of

cyclin-G2 (CCNG2)
[32]

miR-1246, miR-21 plasma Diagnostic Upregulated Yes N/A [100]

SNHG14 serum Diagnostic Upregulated Yes N/A [77]

HOTAIR serum Diagnostic/Prognostic Upregulated Yes N/A [75]

HOTAIR plasma Diagnostic/Prognostic Upregulated Yes

Positively
correlated with
ERBB2/HER2

expression

[101]

AFAP1-AS1 serum Diagnostic/Prognostic Upregulated Yes
Promotes ERBB2

translation via
AUF1 binding

[72]

SNHG16 peripheral blood Prognostic Upregulated Yes

Promotes CD73
expression on γδ1

T cells via the
TGF-β1/SMAD5
pathway, enabled

via miR-16-5p
sponging

[102]

H19 serum Diagnostic/Prognostic Upregulated Yes N/A [70]

SUMO1P3 serum Diagnostic/Prognostic Upregulated Yes N/A [46]

circFOXK2 tissues Diagnostic Upregulated No Acts with IGF2BP3
and miR370 [35]

circPSMA1 serum Prognostic Upregulated Yes

circPSMA1 sponges
miR-637, activating

Akt1-β-catenin
(Cyclin D1)
signaling

[55]

hsa-circRNA-
0005795,

hsa-circRNA-
0088088

serum Diagnostic Downregulated,
Upregulated Yes N/A [103]
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4. In Silico Analysis of lnc/circRNA-Sponged miRNAs’ Experimentally Validated
Target Genes and Pathways in the BC Exosomal Axis

In an attempt to uncover potential genes and pathways implicated in BC progression
and affected by exosomal non-coding RNAs, we took advantage of the already published
exosomal ncRNAs dysregulated in BC and the miRNA sponging mechanism of action
of lncRNAs and circRNAs and in silico investigated genes and pathways downstream
of the BC exosomal lncRNA/circRNA-miRNA-target axis. Accordingly, we utilized the
miRTargetLink 2.0 [104] tool to uncover potential shared genes and pathways that are
experimentally validated to be targeted by miRNAs, sponged by either lncRNAs or cir-
cRNAs in the BC exosomal axis, where these ncRNAs were selected from the reviewed
literature. MirTargetLink incorporates experimental validation (strong/weak) information
for genes from miRTarBase 8.0 [105]. Strong and weak validations are attributed to the
respective assays, where luciferase reporter assay, Western blot, and qPCR are considered
as strong evidence whereas microarray, NGS, pSILAC, CLIP-seq, and others as weak ev-
idence. As for the pathways information, miRTargetLink incorporates annotations from
mirPathDB 2.0 [106] for strong and weak experimentally validated miRNA pathways.
After manually curating the literature, miRNAs (hsa-miR-503 [34], hsa-miR-330-5p [25],
hsa-miR-16-5p [102], hsa-miR-106a-5p [107], hsa-miR-370 [35], hsa-miR-637 [55], and hsa-
miR-200a-3p [71]) were obtained and were sponged by their respective lncRNAs/circRNAs
(XIST, SNHG3, SNHG16, HAND2-AS1, circFOXK2, circPSMA1, and circUBE2D2) in the
BC exosomal axis (Figure 3). This miRNA set was used as an input for the miRTargetLink
tool, where the authors sought after genes that are strongly experimentally validated to be
targeted by a minimum of two miRNAs from our miRNA set, ending up with a set of 20
strong validated genes (Figure 4). Interestingly, the vast observed literature indicated that
all of the resulted genes were implicated in BC pathology at some point [108–127].
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Figure 4. Strongly experimentally validated shared target genes downstream of the BC exosomal
lncRNA/circRNA-miRNA-target axis. Green nodes indicate genes and blue nodes indicate miRNAs.
Minimum miRNA threshold = 2.

In addition, in order to identify shared pathways among our miRNA set, a similar
approach was followed, though with increasing the minimum targeting threshold from
two to four miRNAs to narrow down our results, along with obtaining weak and strong
experimental evidence since the tool would not permit choosing only strong or weak. A set
of 117 shared pathways were obtained, containing BC, integrated BC, and ErbB signaling
pathways (Figure 5), and this is supportive of the implication of the exosomal non-coding
RNA axis in BC pathology.
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In an attempt to further explore the functional significance of the resultant strong
validated gene set and investigate their functional implication in BC and other pathways,
the DAVID functional annotation and enrichment analysis tool (2021 update) [128] was
used to enable the authors to conduct gene ontology [129] (GO) terms enrichment analysis
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and Kyoto Encyclopedia of Genes and Genomes [130] (KEGG) pathway analysis, among
others. For both analyses, the authors set a minimum gene count threshold of 5 out of
the total 20 resultant strong validated genes, along with an FDR cut-off of 0.05 in order to
narrow down the list of significant GO terms and KEGG pathways.

GO terms enrichment analysis classifies the results into three subsets of GO annota-
tions, namely biological process (BP), molecular function (MF), and cellular component
(CC). Table 3 outlines the significant GO terms associated with our gene set for each GO
term annotation subset.

Table 3. Significant gene ontology (GO) terms associated with strong experimentally validated shared
target genes downstream of the BC exosomal lncRNA/circRNA-miRNA-target axis. Minimum gene
count: 5. FDR cut-off: 0.05.

Biological Process

GO Term Gene Count FDR

negative regulation of transcription from RNA polymerase II promoter 10 4.70 × 10−5

regulation of cell cycle 7 4.70 × 10−5

regulation of cyclin-dependent protein serine/threonine kinase activity 5 4.70 × 10−5

positive regulation of gene expression 8 4.70 × 10−5

negative regulation of G1/S transition of mitotic cell cycle 5 4.70 × 10−5

positive regulation of MAPK cascade 6 4.70 × 10−5

negative regulation of apoptotic process 8 4.70 × 10−5

cytokine-mediated signaling pathway 7 4.70 × 10−5

G1/S transition of mitotic cell cycle 5 6.50 × 10−5

positive regulation of protein kinase B signaling 6 8.00 × 10−5

cell division 7 8.80 × 10−5

positive regulation of protein phosphorylation 6 8.80 × 10−5

positive regulation of phosphatidylinositol 3-kinase signaling 5 1.10 × 10−4

cellular response to DNA damage stimulus 6 2.40 × 10−4

negative regulation of cell proliferation 6 3.00 × 10−3

positive regulation of transcription from RNA polymerase II promoter 8 4.00 × 10−3

protein phosphorylation 6 4.30 × 10−3

positive regulation of cell proliferation 6 5.20 × 10−3

response to drug 5 5.40 × 10−3

negative regulation of gene expression 5 7.50 × 10−3

nervous system development 5 1.40 × 10−2

positive regulation of transcription, DNA-templated 5 6.30 × 10−2

Molecular Function

GO Name Gene Count FDR

protein kinase binding 7 2.90 × 10−4

identical protein binding 9 4.40 × 10−3

protein binding 20 1.20 × 10−2

protein serine/threonine/tyrosine kinase activity 5 1.50 × 10−2

Cellular Component

GO Name Gene Count FDR

cyclin-dependent protein kinase holoenzyme complex 6 2.30 × 10−8

nucleus 18 3.20 × 10−6

nucleoplasm 14 1.20 × 10−4

cytoplasm 15 6.10 × 10−4

centrosome 5 2.30 × 10−2

macromolecular complex 5 3.90 × 10−2

membrane 8 5.90 × 10−2

extracellular region 6 3.20 × 10−1
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The KEGG pathway analysis of our gene set resulted in a list of significant KEGG
pathways that are represented in Table 4. Interestingly, the BC pathway was found to
be one of the significant KEGG pathways, where 8 of the 20 total genes were found to
be implicated in BC pathogenesis at different levels, subtypes, and signaling pathways
(Figure 6). In addition, among the notable significant KEGG pathways related to BC were
the PI3K-Akt signaling pathway, p53 signaling pathway, cell cycle, and MAPK signaling
pathway. Moreover, supporting the well-documented role of exosomal non-coding RNAs
in BC drug resistance, EGFR tyrosine kinase inhibitor resistance and endocrine resistance
were also significant KEGG pathways associated with our selected gene set.

Table 4. Significant KEGG pathways associated with strongly experimentally validated shared target
genes downstream of the BC exosomal lncRNA/circRNA-miRNA-target axis. Minimum gene count:
5. FDR cut-off: 0.05. Unrelated KEGG pathways were eliminated.

KEGG Pathway Gene Count FDR

PI3K-Akt signaling pathway 15 4.40 × 10−14

p53 signaling pathway 10 6.60 × 10−13

Pathways in cancer 14 1.10 × 10−10

Cell cycle 9 2.00 × 10−9

Cellular senescence 9 8.10 × 10−9

MicroRNAs in cancer 10 7.50 × 10−8

Breast cancer 8 1.50 × 10−7

Proteoglycans in cancer 8 1.10 × 10−6

EGFR tyrosine kinase inhibitor resistance 6 2.80 × 10−6

Focal adhesion 7 1.40 × 10−5

Endocrine resistance 5 1.80 × 10−4

MAPK signaling pathway 6 1.00 × 10−3

Rap1 signaling pathway 5 2.50 × 10−3

Chemical carcinogenesis-receptor activation 5 2.50 × 10−3

Ras signaling pathway 5 3.30 × 10−3
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5. Search Strategy

The search strategy was separated into three approaches: targeting miRNAs, lncRNAs,
and circRNAs in BC exosomes using the PubMed medical subject heading (MeSH) database.
For exosomal miRNAs in BC, PubMed searched for the following: “Breast Neoplasms”
[MeSH] AND “Exosomes” [MeSH] AND “MicroRNA” [MeSH]. For exosomal lncRNAs
in BC: “Breast Neoplasms” [MeSH] AND “Exosomes” [MeSH] AND “RNA, long non-
coding” [MeSH]. As for exosomal circRNAs in BC: “Breast Neoplasms” [MeSH] AND
“Exosomes” [MeSH] AND “Circular RNA” [MeSH]. All of the MeSH terms found below
the abovementioned MeSH terms were also included. Other databases, such as MEDLINE
Ovid and Embase, were also searched using the same strategy, where the same set of articles
was returned. Therefore, we concentrated our review on the results of PubMed searches. In
addition, information on the number of publications, along with signature publications
and the discovery timeline of exosomal ncRNAs in BC, are presented in (Figure 7).
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6. Challenges

Exosome research has witnessed a rapid growth and exosomes have shown to be a
great platform in diagnostic, prognostic, and therapeutic applications. However, there
are certain challenges that hinder the progress in this field and should be targeted. One
major challenge in exosomal research is the absence of a competent standardized isolation
and purification method. Despite several techniques being available, ultracentrifugation
being the most common one, there are limitations that affect the yield, diversity, purity,
and function of the isolated exosomal product [131–133]. To begin with, ultracentrifuga-
tion, which is the gold standard method that isolates exosomes according to their density,
is time-consuming, cumbersome, and yields a product with a low purity and different
morphology [131,132,134,135]. Flow-cytometry-based analyses suggest that the isolated ex-
osome fractions from this technique are often contaminated by co-isolated plasma proteins.
The latter may haggle the precision of exosome-based diagnosis [136]. Other techniques,
such as size exclusion chromatography, ultrafiltration, and immune-affinity, that sepa-
rate exosomes according to size and function are exorbitant and impotent in removing
impurities [135]. Another challenge is exosome quantification [135]. Current techniques
include, among others, nanoparticle tracking analysis, flow cytometry, tunable resistive
pulse sensing, electron microscopy, dynamic light scattering, microfluidics-based detection,
and surface plasmon resonance. However, all of these techniques yield inaccurate results
because none of them have the required high sensitivity to detect exosomes of all sizes,
except for electron microscopy, where exosomes are counted manually. However, this
needs elbow grease and is time consuming. In addition, some of the exosomes may be
lost during sample preparation [134]. To elaborate more on the issue of non-sensitivity,
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flow cytometry machines could miss exosomes below 300 nm in size due to their side
detection limitation [134]. Apart from the low sensitivity, nanoparticle tracking analysis,
flow cytometry, and surface plasmon resonance need the use of high-cost equipment [134].

The study of non-coding RNAs has shown several challenges as well. First, regarding
research on microRNAs as biomarkers and knowing that each subtype of BC has its specific
array of microRNA, the selected patients in a study should be the ones having the least
variability in the subtype of BC, histotype, ethnicity, and age at diagnosis, due to these
being the major factors affecting the microRNA profile of each patient. Another challenge
in this field is in the experimental design, where many studies have a poor one. The
third challenge is in the isolation of miRNA. miRNAs are usually isolated as total RNA
using guanidine/phenol/chloroform-based protocols, where the RNA yield in serum and
plasma is usually low. Moreover, there are limitations in the detection of microRNAs.
Different techniques are used for the detection of miRNAs. Utilizing microarray and in
situ hybridization is not enough to assign miRNA as biomarkers for early breast cancer
(EBC) since these platforms have a low sensitivity. In addition, sequencing is still an
expensive assay to be routinely used for miRNA detection. The most commonly used
method is a RT-qPCR assay for the specific validation combined with a statistical test
that defines the accuracy of the results. However, the absence of a standard endogenous
control is still a major limitation in this assay. Finally, it is worth stating that the selection of
one microRNA as a biomarker is not adequate but that a panel of microRNAs would be
more definitive [137].

Despite the promising results, research on exosomal LncRNAs is still in its infancy,
with several limitations, as more studies must be conducted to unveil and elaborate their
specific relation to diseases, pathways, and their underlying molecular mechanisms [133].

As for circRNA, more unprejudiced techniques, such as RNA sequencing, should
be used to discover novel circRNA. However, this technique has certain limitations that
hinder its accuracy. To elaborate more, the results are highly dependent on the protocol
chosen for library preparation and on RNA quality. Secondly, RT-qPCR is a potent method
for authenticating genome-wide data. However, an appropriate normalization of RT-
qPCR data is challenging, and the use of a single, unvalidated reference gene may lead
to an unreliable conclusion. Finally, future studies should explore more about the novel
technologies for circRNA detection, such as nanopore RNA sequencing, which can provide
information on the entire circRNA [138].

7. Conclusions and Recommendations

In this paper, an experimentally validated BC exosomal non-coding RNAs-regulated
target gene axis was established, where 20 signature genes that are downstream of this axis
were pinpointed, and literature evidence demonstrated the involvement of these genes at
some point during BC pathology. In addition, this target gene axis was shown to be impli-
cated in BC-related pathways, supporting our hypothesis. Furthermore, GO and KEGG
pathway analyses on the 20 signature genes showed promising associations with different
BC subtypes and various BC-related signaling and drug resistance pathways. Hence, we
propose that this target gene set could be a starting point for future studies, aiming to
better understand and interpret the different stages of BC pathology and mechanisms of
drug resistance.

As future perspectives, more research should be carried out to target the challenges
in exosome research and establish a standardized protocol for the exosomal non-coding
RNA assessment from sample collection to data analysis. Regarding exosome isolation,
there is a need to find an ascendible, reproducible, time-efficient, and cost-effective isolation
protocol [136]. Moreover, limitations in exosome quantification may be solved by updating
the flow cytometers to have multi-angle lasers for a better resolution of exosomes [134]. In
addition, future studies should explore more about novel technologies and techniques for
standard and proper detection and isolation methods for exosomal non-coding RNAs [137,138].
Finally, future experimental validations should be conducted to address the clinical value
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of the experimentally validated breast cancer exosomal non-coding RNAs-regulated target
gene axis that we identified in BC. Specifically, further research will be needed to validate
this gene set and the specific ncRNAs implicated in the related axis and their potential in the
development of novel diagnostic, prognostic, or therapeutic strategies against BC.
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