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Abstract
In this paper we introduce a formalmethod for the derivation of a predator’s functional
response from a system of fast state transitions of the prey or predator on a time scale
during which the total prey and predator densities remain constant. Such derivation
permits an explicit interpretation of the structure and parameters of the functional
response in terms of individual behaviour. The same method is also used here to
derive the corresponding numerical response of the predator as well as of the prey.

Keywords Predator–prey model · Functional response · Numerical response ·
Mechanistic modelling · Structured population

Mathematics Subject Classification 92B05

1 Introduction

The functional response is defined as the average number of prey captured per indi-
vidual predator per unit of time as a function of the population densities of the prey,
the predator or both. Well known examples are the Holling I, II and III (Holling 1959)
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and the Beddington–DeAngelis (DeAngelis et al. 1975; Beddington 1975) functional
responses.While the Holling type II functional response was derived using a time bud-
get argument, the Holling type III as well as the functional response by Beddington
and DeAngelis were introduced without an explicitly modelled underlying mecha-
nism. However, as we show here, these responses (and many more) can be derived
from a system of fast state transitions of the prey or predator during which the total
prey and predator densities remain constant.

For example, Metz and Diekmann (1986) derived the Holling type II functional
response assuming two predator states, searching and handling, where the transition
from the searching to the handling state is the result of an actual prey capture. As
a consequence, the equilibrium distribution of predator densities over the two states
depends on the prey density: the higher the prey density, the greater the proportion
of the individual predators in the handling state and, since it is only the searching
predators that capture the prey, the average number of prey captured per predator per
unit of time varies with the prey density exactly as described by Holling.

Likewise, the Beddington–DeAngelis functional response, whose traditional inter-
pretation is in terms of predator interference, was derived in a different context by
Geritz and Gyllenberg (2012). They assumed two prey states, exposed and hiding,
in addition to the two predator states of searching and handling. The transition from
the exposed to the hiding state is mediated by the encounter with the predator. The
equilibrium density distributions of both the prey and the predator over their respective
states, therefore, depend on one another’s population density. As searching predators
capture only exposed prey, the functional response now is not just a function of the
prey density, as in the Holling type II functional response, but also of the density of
the predator itself.

Equally important as the functional response are the numerical responses of the prey
and the predator. One distinguishes between demographic and aggregative numerical
responses. The latter is a consequence of individuals moving in space and will not
be considered here. The demographic numerical response is the rate of change in
population density due to birth and death as a function of the population densities of
the prey, the predator or both. The same individual-level processes that determine the
functional response can also determine the numerical response. Examples of how the
numerical response of the prey can depend on the density of the predator (other than
through prey capture) have been given by Geritz and Gyllenberg (2013, 2014).

Most predator–prey models in the literature are special cases of the model by Gause
(1934) and Gause et al. (1936)

{ dX
dt = g(X)X − f (X)Y

dY
dt = γ f (X)Y − δY

(1)

where X and Y are the densities of the prey and the predator, respectively, g(X) is
the per capita growth rate of the prey population if the predator is absent, f (X) is the
predator functional response, γ > 0 is defined as the conversion factor of prey into
predator offspring and δ > 0 is the per capita natural mortality rate of the predator.
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The predator’s numerical response (through birth) in Eq. (1) is given by the term
γ f (X). However, the linear relationship between the predator’s numerical response
and its functional response is lost if different prey-handling states havedifferent fertility
levels. In this paper we give an example with two predator states (starving and well-
fed) where the former hunts to survive (but does not reproduce) while the latter hunts
to reproduce. The proportion of predator individuals in each state depends on the prey
density such that at low prey densities there are relatively more starving predators.
This leads to a nonlinear relation between the numerical and functional responses,
which on the population level can be described by a non-constant conversion factor
γ (X ,Y ).

Likewise, if searching and handling predator individuals have different death rates
and their relative densities vary with the prey density, then the mean death rate will
vary accordingly. Moreover, if two prey states (like exposed and hiding) have different
birth or death rates, and if the relative densities of the states depend on the predator
density (as in a previous example), then the numerical response of the prey will depend
on the predator density in a way that is not directly linked to prey capture. All in all
this leads to the more general model

{ dX
dt = g(X ,Y )X − f (X ,Y )Y

dY
dt = γ (X ,Y ) f (X ,Y )Y − δ(X ,Y )Y

(2)

Once the states and state transitions have been specified, the expressions for f , g, γ
and δ as functions of both X and Y follow automatically.

Functional responses provide a connection between two levels of description of a
biological population: themicroscopic level,where the interactions between individual
behavioural states are described, and a macroscopic level, where only the population
size is tracked. The interplay between behavioural states and functional responses has
been the focus of numerous research works, see e.g. Pettorelli et al. (2015), Abrams
(2015), Jeschke et al. (2002) and Alexander et al. (2012). More recently, several teams
are trying to understand the impact of stochasticity (due, for instance, to stochas-
tic interactions between predators and prey, or to the limited number of individuals
involved). For more details on stochastic models, we refer to Johansson and Sumpter
(2003), while the connection between stochastic and deterministic models is discussed
by Dawes and Souza (2013). Moreover, Billiard et al. (2018) have analysed the first
deviation from the deterministic dynamics implied by stochastic effects.

In the context of global warming and rapid changes of species range, the quanti-
tative information provided by functional responses is a valuable tool to understand
population dynamics. Recent studies on invasive species have adopted this approach,
for example Dick et al. (2013), Barrios-O’Neill et al. (2015), Taylor and Dunn (2018)
and Crookes et al. (2019), while other teams are using this notion to discuss the effi-
ciency of biocontrol agents, as given by Cabral et al. (2009) and Schenk and Bacher
(2002). In both cases, the precise description provided by the functional response
proves key to understanding the effect of the antagonistic behaviour on biodiversity
and species density. Other works investigate further the quantitative capabilities of
functional responses: they develop fitting methods and algorithms to estimate the
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parameters of the models, see Pritchard et al. (2017), Skalski and Gilliam (2001) and
Rosenbaum and Rall (2018).

In this article, we consider that both the predator and the prey population are struc-
tured by behavioural states. We give a formal method for the mechanistic derivation of
a predator’s functional responsewhich provides a clear interpretation of the population
dynamics in terms of the underlying individual level processes. In addition, we apply
the same method to derive the corresponding numerical response of the predator and
the prey as well.

Section 2.1 is focused on the time scale separation argument and the general method
used to derive the functional and numerical responses. In Sect. 2.2, we discuss the
existence and uniqueness issues for the fast dynamics that are necessary to apply the
time scale separation idea. We illustrate these notions with a canonical example in
Sect. 3.

In Sects. 4 and 5, we consider two cases where either the prey population or the
predator population is structured by behavioural states, while the other species is
only described by its total density. An interesting outcome is that the conversion rate
and the death rate of the predator population are no longer constant if we suppose
that the behavioural states of the predator population impact its reproduction rate or
mortality rate. In Sect. 6, we consider a case where both populations are structured by
behavioural states. In spite of the more complex interaction structure, we show that it
is still possible to understand the fast dynamics of the model and to derive explicitly
the functional and numerical responses. In each section, we compare the functional
responses that we obtain with the well known functions of Holling and Beddington
and DeAngelis.

In Sect. 7, we discuss the advantages and drawbacks of our approach.

2 The general method

2.1 Themodel

Consider a predator–prey model with x = (xi )mi=1 and y = (yi )ni=1 where xi and yi
denote the densities of the prey population and the predator population in the various
states. By assuming that the transitions between the different states are fast, we can
ignore slower processes such as birth and decay.

The ordinary differential equations which model the fast time scale scenario are
given by

⎧⎨
⎩

dxk
dt (t) = ∑m

i=1 Aki xi (t) + ∑m
i=1

(∑n
j=1 B

(k)
i j y j (t)

)
xi (t), k = 1, . . . ,m

dyk
dt (t) = ∑n

i=1

(∑m
j=1 C

(k)
i j x j (t)

)
yi (t) + ∑n

i=1 Dki yi (t), k = 1, . . . , n
(3)

with the consistency conditions on the parameter values

− Aii =
m∑

k=1,k �=i

Aki , ∀i ∈ [1,m] (4)
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−B(i)
i j =

m∑
k=1,k �=i

B(k)
i j , ∀i ∈ [1, n], j ∈ [1,m] (5)

−Dii =
n∑

k=1,k �=i

Dki , ∀i ∈ [1, n] (6)

−C (i)
i j =

n∑
k=1,k �=i

C (k)
i j , ∀i ∈ [1, n], j ∈ [1,m] (7)

The prey move from state i to state k with rate Aki , with k, i ∈ [1,m]. They leave
state i at rate Aii and enter one of the k �= i states with k ∈ [1,m] at rate Aki with
k �= i, k ∈ [1,m], such that (4) follows. When interacting with predators in state j ,
prey individuals in state i leave their state at rate B(i)

i j and move into one of the k �= i

states, k ∈ [1,m] at rate B(k)
i j with k �= i, k ∈ [1,m]. Then, the consistency condition

in (5) is required.
The predators move from state i to state k, with i, k ∈ [1, n], by interacting with the

prey in state j ∈ [1,m] with rate C (k)
i j or spontaneously with rate Dki . As for the prey

transitions, the consistency conditions on the parameter values which characterise the
interactions between the predator states are given in (6) and (7).

Note however that the model is not fully general since it does not include prey–prey
or predator–predator interactions, nor the formation of complexes of (possibly multi-
ple) prey or predator individuals, such as the formation of groups (see e.g. Geritz and
Gyllenberg 2013). For example, stalking of the prey and unsuccessful attacks can be
modelled as fast reactions, but they involvemixedpredator–prey states. These cases fall
outside the general framework presented here, as we include only pure prey and pure
predator states. However, while including prey–prey or predator–predator interactions
as well as mixed predator–prey states is straightforward for concrete applications (see,
for example, Jeschke et al. 2002), it becomesmore difficult to give a general qualitative
analysis of the fast dynamics. Moreover, we consider only two separate time scales.
The approach can be readily extended to multiple time scales.

In order to derive the corresponding functional response on the slow time scale,
it is necessary that the fast dynamics settles on a unique hyperbolically stable steady
state (x̂, ŷ), where x̂ and ŷ denote the population column vectors.

We calculate the functional response by considering the total number of prey in
state i caught with capture rate βi j by an individual predator in state j over the size Y
of the predator population

f (X ,Y ) =
∑m

i=1
∑n

j=1 βi j x̂i ŷ j

Y
(8)

with X denoting the size of the prey population.
Likewise, the prey numerical response can be expressed as

g(X ,Y ) =
∑m

i=1 λi x̂i
X

−
∑m

i=1 μi x̂i
X

(9)
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where λi and μi are respectively the per capita birth and natural mortality rates corre-
sponding to the prey state i . Next, for the predator, let γi j and δ j denote respectively
the per capita fecundity of a predator in state j that has captured a prey in state i
and the per capita natural mortality rate of a predator in state j . Then the predator’s
numerical response is given by

γ (X ,Y ) f (X ,Y ) − δ(X ,Y ) =
∑m

i=1
∑n

j=1 γi jβi j x̂i ŷ j

Y
−

∑n
j=1 δ j ŷ j

Y
(10)

where γ (X ,Y ) =
∑m

i=1
∑n

j=1 γi jβi j x̂i ŷ j∑m
i=1

∑n
j=1 βi j x̂i ŷ j

and δ(X ,Y ) =
∑n

j=1 δ j ŷ j
Y are respectively the

density-dependent conversion factor and mortality rate.
The equilibrium on the short time scale gives the frequency distribution of individ-

uals over the various states. This is the same as the distribution of the amount of time
that a single individual spends in the various states. Therefore, the population level
responses on the long time scale result from time-averaging on the short time scale.

Note that the function γ does not have a direct interpretation in terms of the indi-
vidual behaviour. It is a population level model component that we introduce here in
order to give the equation in the form of the predator–prey model in (1). The func-
tional form of the product of γ and f , on the other hand, does have an individual level
interpretation, which is given in Eq. (10).

2.2 Existence and uniqueness of the fast dynamics equilibrium

The system in (3) can be rewritten in matrix form as

{
ẋ = (A + B(y))x
ẏ = (C(x) + D)y

(11)

The matrices A + B(y), A and B(y) in Mm(R), where we use the notation Mm(R)

to denote the m × m-matrix space over R, are non-negative off-diagonal matrices
and have negative main diagonal entries. The same conditions apply to the matrices
C(x) + D, D and C(x) in Mn(R).

In the linear case, when B = 0,C = 0, because of the consistency conditions, the
matrices A and D correspond to the transition rate matrices of a continuous time
Markov chain and the system in (11) becomes

{
ẋ = Ax
ẏ = Dy

(12)

Under the assumption that this Markov chain is irreducible and aperiodic, there exists
a unique stationary distribution π , corresponding to the fast dynamics steady state we
are looking for and which can be found by solving the system in (11). Furthermore, the
convergence to the limit distribution is exponentially fast. As shown in the example in
Sect. 3, a similar argument is used in the triangular case, when the transitions of one
of the two species are not affected by the other population densities.
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Alternatively, when we consider the non-linear case (B,C �= 0), the existence
of the equilibrium corresponding to the fast dynamics is guaranteed by the Perron-
Frobenius Theorem and Shauder’s Fixed Point Theorem. We give the detailed proof
in the “Appendix A”. However, the uniqueness of this equilibrium is more difficult to
establish.

When we consider a model with a small number of states (typically 4 states in
total), the uniqueness and hyperbolic stability of the steady states can often be checked
directly. This is the case of the application that we will discuss in Sect. 6, where the
hyperbolic stability of the fast dynamics equilibrium is verified, as we show in the
“Appendix C”.

If the number of states is larger (more than 4 states in total), we have not been
able to prove or refute the uniqueness and hyperbolic stability of the steady states
under the assumptions presented in Sect. 2.1. If we relax these assumptions, however,
we can show that it is possible to build examples where the uniqueness does not
hold. In “Appendix D”, we construct matrices A,B,C,D that satisfy the assumptions
except for some diagonal coefficients of A and D that are equal to 0 (specifically
A11 = Ann = D11 = Dnn = 0). The fast dynamics has then at least two different
steady states. This example, where the uniqueness is an issue, can be seen as a model
for an actual biological system. Therefore the uniqueness problem appears not only as
a mathematical challenge, but also as an important question for the general application
of the method, which first of all requires a good understanding of the fast dynamics
asymptotic behaviour.

The example discussed in Sect. 3 is a triangular case of (11), where B(y) = 0 for
all y, while the applications in Sects. 4 and 5 model the scenario withA = 0 (i.e., only
a single prey state) and B(y) = 0 for all y and Sect. 6 gives an application with the
complete model form.

3 Application: when the transitions of the prey are not due to the
interactions with the predator states.

Consider the following ODE system

{ dxk
dt = ∑m

i=1 Aki xi (t), k = 1, . . . ,m
dyk
dt = ∑n

i=1

(∑m
j=1 C

(k)
i j x j (t)

)
yi (t) + ∑n

i=1 Dki yi (t), k = 1, . . . , n
(13)

The equations in (13) do not take into account the movements between different prey
states due to the interactions with the predator states, while the predator movements
can be induced by the prey states.

The first equation can be rewritten as ẋ = A · x, where x and ẋ are the column

vectors of respectively the different prey states (xi )mi=1 and their derivatives
(
dxi
dt

)m
i=1

and A is the matrix in Mm(R) with elements Ai j . The elements on the main diagonal
are all strictly negative, while the elements off the main diagonal are non-negative.
Furthermore, each column sums to zero. The negative diagonal entry represents the
lifetime rate of the corresponding state, while the off-diagonal entries are proportional
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to the transition probabilities of the embedded Markov chain of the continuous time
Markov jump process.

The equilibrium x̂ for the fast dynamics satisfies the equation A · x̂ = 0. We denote
by Em the matrix of ones in Mm(R). Let X and Y be the total population sizes.
Then, x̂ satisfies the equation Em·x̂ = X̄, where X̄ denotes the vector of length m
with all elements equal to X . Summing up the two equations, we obtain that x̂ =
(A+ Em)−1 · X̄ . We repeat the same procedure with the system of equations given by
(C(x̂)+D)·ŷ = 0, where ŷ denotes the column vector of length n of the predator states
at equilibrium and (C(x̂) + D) the matrix in Mn(R) evaluated at x̂. Furthermore, ŷ
satisfiesEn·ŷ = Ȳ,where Ȳdenotes the vector of lengthnwith all elements equal to the
total predator density Y . Then, the equilibrium is given by ŷ = (C(x̂)+D+En)

−1 · Ȳ.
Now we apply the above to the following matrix for the prey states

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−A11 A12 0 0 . . . 0
A21 −A22 A23 0 . . . 0
0 A32 −A33 . . . . . . 0
...

. . .
...

0 . . . . . . . . . −Am−1,m−1 Am−1,m
0 . . . . . . . . . Am,m−1 −Am,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The matrix is analogous to the transpose of the generator matrix corresponding to a
birth-death process where the parameters Ak+1,k and Ak,k+1 are respectively the birth
rates and the death rates. In this case, the prey transitions are not predator induced
and occur only between neighbouring states. The prey leave the class xk with rate
Akk = Ak−1,k + Ak+1,k . Moreover, the transitions from the (k − 1)-state and (k + 1)-
state to the k-state happen at rates Ak,k−1 and Ak,k+1, as shown below:

xk−1 xk xk+1

Ak,k−1

Ak−1,k

Ak+1,k

Ak,k+1

(15)

The ordinary differential equations for the k = 2, . . . ,m − 1 states are

dxk
dt

= Ak,k−1xk−1 − Akkxk + Ak,k+1xk+1 (16)

while the fast dynamics of the k = 1,m states is modelled by

dx1
dt

= −A11x1 + A12x2

dxm
dt

= Am,m−1xm−1 − Am,mxm (17)
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We use the solution of the balance equation for the stationary distribution of the
birth-death process. The equilibrium of the system ẋ = A · x is of the form

x̂k = x̂1

k−1∏
i=1

Ai+1,i

Ai,i+1
. (18)

Given the normalisation condition
∑m

k=1 xk = X for the total prey population, we
obtain

x̂1 = X

1 + ∑m
k=2

∏k−1
i=1

Ai+1,i
Ai,i+1

. (19)

We now set Ai+1,i = AiY , that is, we assume that the prey transitions from each
state to the consecutive one are directly proportional to the total predator density. If, for
example, consecutive prey states represent increasing levels of protection, then the prey
are likely to move from the current state to the next one at higher predator densities.
This applies to the context of prey defenses triggered by predator kairomones, e.g.
chemo-signals which warn the prey of danger (see, for example, Papes et al. 2010,
Apfelbach et al. 2005, Takahashi et al. 2005). We denote

∏k−1
i=1

AiY
Ai,i+1

by AkY k−1.
Then:

x̂1 = X

1 + ∑m
k=2 AkY k−1

(20)

x̂k = x̂1AkY
k−1. (21)

Additionally, we assume that the predator has two states: searching and handling.
In particular, we assume that the handling state includes every action of the predator
that occurs after prey capture, such as the actual killing of the prey, carrying the prey
to the lair, eating, digesting, resting and giving birth. On the other hand, the searching
state is considered as an highly active state. Therefore, births happen only while the
mother is in the handling state, although rarely enough to be negligible on the short
time scale in order not to violate the assumption of constant total prey size. The ODE
for the searching predators with density S and with attack rates (ci )mi=1 corresponding
to each prey state is given by

dS

dt
= −

(
m∑
i=1

ci x̂i

)
S + dH (22)

where H is the density of the handling predators, 1
d is the average handling time and

S + H = Y .
The fast dynamics equilibrium for the searching predators and the handling preda-

tors is

Ŝ = 1

1 + 1
d

∑m
i=1 ci x̂i

Y (23)

123
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Ĥ =
1
d

∑m
i=1 ci xi

1 + 1
d

∑m
i=1 ci x̂i

Y . (24)

Sincewe include prey capture as a fast process, we need that the predator population
size is much smaller than the prey population size, i.e. Y � X , so that the effect of
the prey capture on the total prey population size X is negligible. The prey capture is
proportional to the predator population size. If we did not make the assumption of rare
predators, then the prey would die out on the short timescale. The total population size
Y in this example and in the applications in Sects. 4, 5 and 6 is always themagnified or
scaled-up predator population size. In “Appendix B” we give the technical details and
assumptions about the individual behaviour in order to achieve time scale separation
between the fast dynamics and the slow dynamics.

The predator functional response f (X ,Y ) is calculated as in (8) and given by

f (X ,Y ) = X · c1 + ∑m
k=2 ckAkY k−1

1 + ∑m
k=2 AkY k−1 + 1

d X
(
c1 + ∑m

k=2 ckAkY k−1
) . (25)

If 1
d X

(
c1 + ∑m

k=2 ckAkY k−1
) � 1+∑m

k=2 AkY k−1, the food source is superabun-
dant and an increase in the prey density X does not increase the feeding rate, which
reaches a constant saturation level d, as in the Holling type II functional response.
Then the function in (25) is increasing with the total prey population until it saturates
at this value.

Furthermore if there is only one prey state the functional response in (25) simplifies
to the Holling type II functional response

f1 (X ,Y ) = c1X

1 + 1
d c1X

. (26)

We recall that in (25) we assume A21 = A1Y , that is the rate which determines the
transitions of the prey from the defended state x1 to the exposed state x2 is linearly
depending on the total predator density. This interpretation agrees also with the indi-
vidual behaviours modelled by Geritz and Gyllenberg in (2012) for their mechanistic
derivation of the Beddington–DeAngelis functional response, where the available prey
are in state x1, while the x2 class denotes those individuals that found a refuge from
the predators. In particular, in the literature the most common form of the function by
Beddington and DeAngelis is given by

f (X ,Y ) = aX

1 + bX + cY
. (27)

Here we obtain a generalisation of the Beddington–DeAngelis functional response in
(27), which differs from the one in Geritz and Gyllenberg (2012) because we suppose
that the prey in both states x1 and x2 can be captured but at different rates:
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Fig. 1 The functional response given in (29). Parameter values: a c1 = 10, c2 = 15, d = 1, A1 = 0.5,
A21 = 2; b c1 = 20, c2 = 10, d = 1, A1 = 0.5, A21 = 2

x̂1 = A12X

A12 + A1Y
, x̂2 = A1Y X

A12 + A1Y
(28)

f2(X ,Y ) = c1A12X + c2A1XY

1 + A1
A12

Y + c1
1
d X + c2A1

A12

1
d XY

. (29)

The graph of the function in (29) is illustrated in Fig. 1. When the prey pop-
ulation X increases, the asymptotic behaviour is the same as described above
for the class of functions in (25). At high predator density Y , the functional
response in (29) with c1 < c2 increases and tends to the Holling type II
functional response (Fig. 1a). This is in contrast to the Beddington–DeAngelis
functional response, which is a decreasing function of Y . On the other hand,
if c1 > c2 the functional response decreases with the total predator size Y
(Fig. 1b).

If c2 = 0 (or sufficiently small), the functional response in (29) is a Beddington–
DeAngelis functional response of the form given in (27) with a = c1A12, b = c1

1
d

and c = A1
A12

.
If c1 = 0 (or sufficiently small), then the slow predator dynamics will have an

Allee effect, i.e., the predator population cannot grow when its density is below
a given threshold. In particular, it would not be able to invade the predator-free
population. This is because of the XY term in the numerator of the functional
response, which gives a squared Y term for the population level birth rate of the
predator. Then, at low predator densities, the predator birth term is dominated by
the negative linear term describing predator death. Allee effects in predator–prey
systems lead to homoclinic or heteroclinic bifurcations. At the individual level,
we assumed that A21 = A1Y , that is the rate at which the prey enter state
x2 is proportional to the total predator density. If c1 = 0 and c2 > 0, then
the predators consume only the prey in state x2. However, if the total predator
density Y is small, there are not enough prey in state x2 for the predators to sur-
vive.
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4 Application: a functional response with density dependent
handling time

4.1 Individual level reactions, population equations and fast equilibrium

We analyse the same scenario presented in Sect. 3, that is, the predator population
is structured in two classes, the searching predators S and handling predators H . In
this application we consider only one prey state. We define with c1 the attack rate.
We assume moreover that the handlers return to the searching state with prey density
dependent rate c2X or spontaneously with rate d. This assumption is ecologically
reasonable if the uptake of resources from the corpse of the killed prey declines with
the handling time. The capture of a new prey becomes thenworthwhile especially if the
prey density is high and an indicator of the overall prey density is given by the average
time until a new prey gets into the handling predator’s field of vision. Furthermore,
the density dependent transition may be the result of an actual encounter with a prey
individual ormay be triggered by prey kairomones (as assumed in the previous section,
but with the roles of prey and predator reversed). All these interactions are fast time
processes in comparison to birth and natural death and are summarised below:

S + X
c1−→ H the searching predator enters the handling state (prey capture)

H + X
c2−→ S + X the predator quits handling with prey-dependent rate

H
d−−→ S the predator quits handling spontaneously (30)

Note that in the first transition the prey disappears due to prey capture, while in the
second the prey acts merely as a catalyst.

The corresponding population level differential equations of the fast time dynamics
are given by applying the law of mass action and the time scale separation is presented
in details in “Appendix B”:

{ dS
dt = −c1XS + c2XH + dH
dH
dt = c1XS − c2XH − dH

(31)

The total predator population is constant and given byY = S+H . Then,we can reduce
the system of equations to only one equation and solve the steady state equation. The

fast dynamics equilibrium is (Ŝ, Ĥ) =
(

(d+c2X)Y
d+(c1+c2)X

, c1XY
d+(c1+c2)X

)
.

4.2 Functional response

We can now derive the corresponding functional response

f (X) = c1X Ŝ

Y
= c1X(c2X + d)

d + (c1 + c2)X
(32)
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Fig. 2 The functional response given in (32) here presented for d = 1 and the following values for c1 and
c2: a c1 = 50, c2 = 2; b c1 = 15, c2 = 18; c c1 = 8, c2 = 20. The dashed lines represent the asymptotes
corresponding to each curve

The functional response in (32) is a two-parameter function, because only the ratios
c1
d and c2

d matter and the shape of the functional response is therefore affected by these
fractions, as shown in Fig. 2. Furthermore, by considering the formulation

f (X) = c1X

1 + 1
c2X+d c1X

, (33)

we observe that the functional response in (32) is like the Holling type II functional
response, but with a density dependent handling time given by the ratio 1

c2X+d . The
higher the prey density is, the faster the predator will quit handling and start searching
for fresh food. Note that such behaviour is functional because if the prey is scarce,
then the predators will tend to diligently consume the food source until it is completely
exhausted and handle the prey longer than if the prey were abundant.

4.3 Predator numerical response

We assume that the predators in the handling state give birth. Therefore the per capita
reproduction rate of the predators is proportional to

Ĥ(X)

Y
= f (X)

c2X + d
= γ (X) f (X) (34)

The conversion factor γ (X) = 1
c2X+d is then a decreasing function of the prey density

X and in particular it is proportional to the average time spent handling the prey. If we
assume that in this particular scenario the predator per capita natural mortality rate is
the same for the predators both in the searching state and in the handling state, then
the mortality rate is constant as in (1).

123



2444 C. Berardo et al.

5 Application: type III functional response and corresponding
predator numerical response

5.1 Individual level reactions, population equations and fast equilibrium

We now assume that the searching predators are divided into two subclasses according
to the level of starvation, well-fed (S1) and starving (S2). It is natural then to assume
different capture rates for the two classes, e.g. starving predators have a lower capture
rate than satiated predators, c1 > c2. We suppose again the handling predators in class
H . We denote with H1 the predators that enter state H from state S1 and with H2
the predators that enter H from state S2. The predators in H1 and H2 handle the prey
for, on average, 1

d1
units of time, then they enter class S1. If a well-fed predator does

not capture a prey in on average 1
d2

units of time, it enters the state S2. We assume
that starving predators have very low per capita fecundity since they are hunting to
survive and restock their basic energy reserve. On the contrary the well-fed predators
invest part of the energy gained from the food source for reproduction. In this case,
the per capita fecundities for the two types of consumers, namely Γ1 and Γ2, differ.
In particular Γ1 > Γ2, since in case of starvation the individuals are likely to cease
energy allocation to reproduction, see Kooijman and Kooijman (2010).We assume the
offspring to be in state S2. We consider the transitions between the different predator
states to be fast processes with respect to birth and death. In addition, we consider the
total predator population size considerably smaller than the total prey size. The time
scale separation is achieved through the scaling given in “Appendix B”.We summarise
below the individual level processes:

S1 + X
c1−→ H1 the well-fed predator enters the handling state (prey capture)

S2 + X
c2−→ H2 the starving predator enters the handling state (prey capture)

H1
d1−−→ S1 from the handling to the well-fed state

H2
d1−−→ S1 from the handling to the well-fed state

S1
d2−−→ S2 from the well-fed state to the starving state (35)

The equations that describe the population level fast time dynamics are given by

⎧⎪⎪⎨
⎪⎪⎩

dS1
dt = −c1XS1 + d1 (H1 + H2) − d2S1
dS2
dt = −c2XS2 + d2S1
dH1
dt = c1XS1 − d1H1
dH2
dt = c2XS2 − d1H2

(36)

If the total predator density is constant, then the conservation law dY
dt = dS1

dt + dS2
dt +

dH1
dt + dH2

dt = 0 holds. The fast dynamics is settled on the asymptotically stable
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equilibrium

Ŝ1 = c2X

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y
Ŝ2 = d2

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y

Ĥ1 =
c1c2
d1

X2

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y

Ĥ2 =
c2d2
d1

X

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y (37)

5.2 Functional response

The functional response corresponding to the dynamics above is

f (X) = c1X Ŝ1 + c2X Ŝ2
Y

= c2X(d2 + c1X)

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

) (38)

The functional response in (38) is an increasing function of X up to a saturating level
given by d1, as shown in Fig. 3a. It is a type III functional response of the form

f (X) = aX + bX2

1 + cX + dX2 (39)

with a = c2, b = c1c2
1
d2
, c = c2

(
1
d1

+ 1
d2

)
and d = c1c2

d1d2
. A necessary condition for

the function to be convex in the neighbourhood of 0 is that the second derivative has to
be positive. This is true if and only if c1

c2
> 1+ d2

1
d1
, that is the attack rate of the well-

fed predators, c1, is sufficiently higher than the attack rate of the starving predators,
c2. This result is consistent with the biological interpretation of the individual level
dynamics that we have provided.

In the literature the most common form of the Holling type III functional response
is

f (X) = bX2

1 + dX2 (40)

The function in (39) can be mathematically reduced to the function in (40), if we let
c2 → 0 and c1 → ∞, such that the product c1c2 stays constant. This can be interpreted
as well-fed predators being extremely efficient hunters, while starving predators are
very unsuccessful searchers.
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5.3 Predator numerical response

On the slow time scale, we suppose that the reproduction rate of the predators is
proportional to the density of the handlingpredators at the fast time equilibriumand that
the energy intake from the consumption of the prey is partly allocated to reproduction.
At an individual level, we consider the following reactions, which happen at a slow
time scale with respect to the interactions modelled in (35):

H1
Γ1−→ H1 + S2 the well-fed predator in the handling state

produces offspring in stateS2

H2
Γ2−→ H2 + S2 the starving predator in the handling state

produces offspring in stateS2 (41)

The per capita reproduction rate in this particular scenario is not a constant, but it
is an increasing function of the total prey population size (see Fig. 3c) with saturating
value given by the fecundity rate of the well-fed predator individuals, Γ1, at high prey
density:

Γ1 Ĥ1 + Γ2 Ĥ2

Y
= c2

1
d1
X (Γ1c1X + Γ2d2)

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

) = γ (X) f (X). (42)

The conversion factor

γ (X) =
1
d1

(Γ1c1X + Γ2d2)

(d2 + c1X)
(43)

is a function of the prey density (see Fig. 3b), saturating on the value Γ1
d1

when the

food source is abundant. In fact, 1
d1

is the average time spent handling the prey and Γ1
denotes the per capita fecundity of the well-fed predators. Furthermore, the function
γ (X) is increasing if and only if Γ1 > Γ2, which is consistent with the biological
assumptions given in Sect. 5.1.

Suppose further that the predators in the two searching states differ not only in their
capture rates, but also in their respective mortality rates δ1 and δ2, with δ2 > δ1. The
individual level interactions occurring at the slow time scale which model the natural
mortality of the predators are then given by

S1
δ1−→ † natural death of the well-fed predator

S2
δ2−→ † natural death of the starving predator (44)
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Fig. 3 a The functional response given in (38), with saturating value d1 (dashed line). b The conversion

factor γ (X) defined in (43) with saturating level given by Γ1
d1

(dashed line). Note the positive intercept with

the vertical axes, corresponding to the value Γ2
d1

. c The per capita reproduction rate γ (X) f (X), derived
in (42), with asymptote Γ1 (dashed line). d The per capita mortality rate for the predators given in (45).
Parameter values: c1 = 10, c2 = 0.2, d1 = 4, d2 = 3, Γ1 = 10, Γ2 = 2, δ1 = 0.2, δ2 = 0.5

Under these assumptions we note that the average per capita mortality rate is given
by

δ(X) = δ1 Ŝ1 + δ2 Ŝ2
Y

= δ1c2X + δ2d2

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

) (45)

Mortality is then no longer constant, but a decreasing function of the prey density, as
shown in Fig. 3d. In particular, in the absence of the prey, the function δ takes the
value of the per capita mortality rate of the starving predators, δ2.

5.4 Alternative interpretation of the individual level processes

As far as the functional response is concerned, the model can be interpreted also in the
context of predators structured according to their level of experience. This is the usual
interpretation of theHolling type III functional response, although until now a rigorous
derivationwasmissing. Herewe showhow theHolling type III functional response can
be derived with our approach. Suppose that class S2 contains the individuals that lack
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experience and are not well skilled in capturing the prey, while class S1 includes those
experienced individualswith success rate c1 > c2. Note that at lowprey density, almost
all predators will be inexperienced. Predators in both classes, after interaction with the
prey, enter the class of handling predators H . The average time spent handling the prey
is 1

d1
units of time. Predators that have captured (and handled) a prey are considered

experienced (class S1), but they lose this status, and hence the ability to capture prey
at high rate, after on average 1

d2
units of time (transition to class S2). Furthermore, we

assume that the individual level processes that determine the interactions between the
predator and prey states are fast time reactions with respect to birth and death. The
above scenario can be visualised in the following way:

S1 + X
c1−→ H the experienced predator enters the handling state (prey capture)

S2 + X
c2−→ H the inexperienced predator enters the handling state (prey capture)

H
d1−−→ S1 from the handling to the experienced state

S1
d2−−→ S2 from the experienced to the inexperienced state (46)

The ODE system which describes the population level fast time dynamics is the
following

⎧⎪⎪⎨
⎪⎪⎩

dS1
dt = −c1XS1 + d1H − d2S1
dS2
dt = −c2XS2 + d2S1
dH
dt = c1XS1 + c2XS2 − d1H

(47)

The total predator density Y is constant, such that dY
dt = dS1

dt + dS2
dt + dH

dt = 0 Then
the fast dynamics settles on the asymptotically stable equilibrium:

Ŝ1 = c2X

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y
Ŝ2 = d2

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y

Ĥ = c1c2
1
d1
X2 + c2d2

1
d1
X

d2
(
1 + c2

1
d1
X

)
+ c2X

(
1 + c1

1
d1
X

)Y (48)

The corresponding functional response has already been given in (38).
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6 Application: a functional response that induces an Allee effect in
the predator population dynamics

6.1 Individual level reactions, population equations and fast equilibrium

In the following model, we assume that the prey has a natural tendency to seek protec-
tion, but that searching predators are able to overcome the prey defenses, for example
by causing them to panic and by attacking the isolated individuals. As shown byGeritz
and Gyllenberg (2012), this leads to fast-processes that are the opposite of those in
the Beddington–DeAngelis model. The individual level reactions are:

E
a−−→ P the exposed prey finds a refuge

P + S
b−→ E + S the protected prey leaves the refuge

S + E
c−→ H the searching predator enters the handling state (prey capture)

H
d−−→ S the handling predator quits handling (49)

The corresponding differential equations for the fast time population dynamics are

⎧⎪⎪⎨
⎪⎪⎩

dE
dt (t) = bSP − aE
dP
dt (t) = −bSP + aE
dS
dt (t) = −cES + dH
dH
dt (t) = +cES − dH

(50)

with the conservation laws E + P = X and S+ H = Y (see “Appendix B” for details
on the time scale separation between the fast and slow dynamics). The corresponding
fast time equilibrium is given by

Ê = 1

2p

(
−q (p + Y ) +

√
Δp,q(X ,Y )

)
(51)

P̂ = 1

2p

(
p (q + 2X) + qY −

√
Δp,q(X ,Y )

)
(52)

Ŝ = 1

2 (q + X)

(
−q (p − Y ) +

√
Δp,q(X ,Y )

)
(53)

Ĥ = 1

2 (q + X)

(
pq + qY + 2XY −

√
Δp,q(X ,Y )

)
. (54)

where p = a
b , q = d

c and Δp,q(X ,Y ) = q
(
p2q + 2p (q + 2X) Y + qY 2

)
. In the

“Appendix C”, we give the phase portrait corresponding to the system in (50), for
different values of the parameters, in order to show that the fast dynamics equilibrium
is unique and hyperbolically stable.
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6.2 Functional response

We derive the corresponding functional response (Fig. 4a)

f (X ,Y ) = cÊ Ŝ

Y
= cq

2 (q + X) Y

(
pq + qY + 2XY −

√
Δp,q(X ,Y )

)
. (55)

When p → 0, that is a → 0 or b → ∞, the functional response tends to the
Holling type II functional response, since the prey is most of the time available for
being captured:

f (X ,Y ) = cX

1 + c
d X

. (56)

The case inwhichq → ∞, that is c → 0 or d → ∞, corresponds to the scenariowhere
the predators are almost all the time searching. Therefore, the predators searching and
attacking the prey correspond to the total predators Y and the portion of prey subjected
to predation is given by bY

a+bY X = Y
p+Y X , with bY

a+bY being the probability for the

prey to be in the vulnerable state. Taylor expanding with respect to 1
q near zero and

retaining only the lowest order term in 1
q , we get (Fig. 4b)

f (X ,Y ) = cXY

p + Y
. (57)

We note that if both q → ∞ and p → 0, then the functional response in (55)
becomes linear, as in the Holling type I functional response. In this case the predators
handle the prey for an infinitely short time and the prey is most of the time exposed
to the predators’ attacks. The function is increasing with the attack rate c. This is a
typical functional response for filter feeders as shown by Jeschke et al. (2004).

6.3 Prey and predator numerical responses

If we assume that only the handling predators give birth, then the predator per capita
birth rate is proportional to

Ĥ(X ,Y )

Y
= f (X ,Y )

d
(58)

i.e. it is proportional to the functional response, as usual. On the other hand, when
we consider the searching predators S and the handling predators H having different
death rates δ1 �= δ2, then the overall per capita death rate is

δ1
Ŝ(X ,Y )

Y
+ δ2

Ĥ(X ,Y )

Y
= δ1

(
1 − f (X ,Y )

d

)
+ δ2

f (X ,Y )

d
(59)
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Fig. 4 a The functional response given in (55). b The functional response defined in (57). Parameter values:
a = 1, b = 0.2, c = 10, d = 1

which is no longer constant, as usually given in the literature, but depends on X and
Y .

We note that the product of XY in the numerator of the functional response in (57)
leads to a squared Y term in the population equations for the prey and the predator. In
the predator equation for the slow dynamics, this leads to an Allee effect (i. e. at low
predator densities almost all prey are protected and cannot be captured), since the per
capita birth rate at low predator densities is of order Y (see 58), while, when q → ∞
and the density of the handling predators is very small, the per capita death rate is
approximated by the constant value δ1 (see 59). A similar situation was modelled from
first principles by Geritz and Gyllenberg (2013).

If we assume that only the protected prey in class P give birth, i.e., if no other slow
interactions between the individual prey or their resources occur, then the prey per
capita birth rate is proportional to

P̂(X ,Y )

X
= 1 − d · f (X ,Y )

cX(d − f (X ,Y ))
. (60)

However, when the hiding prey and the available prey have different death rates μ1 �=
μ2 and if there are no other sources of slow death, e.g. interference competition among
the prey, then the overall per capita death rate is

μ1
Ê(X , Y )

X
+ μ2

P̂(X , Y )

X
= μ1

d · f (X ,Y )

cX(d − f (X , Y ))
+ μ2

(
1 − d · f (X , Y )

cX(d − f (X , Y )

)
.

(61)

Furthermore, we note that by visualising the prey and predator numerical responses
in terms of the functional response, it is possible to understand what the former look
like in the limiting cases of the latter as treated above in (56) and (57).
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7 Conclusions

In this paper, we proposed a method for the derivation of the functional response from
a system of prey-predator interactions which occur on a fast time scale, with respect
to birth and death. Many functional responses appear in the literature, but they often
lack of interpretation at the individual level. The time scale separation argument that
we use in this paper is a possible approach to link the macroscopic behaviour of the
population to the microscopic dynamics of the state transitions of individuals. Such
derivation permits an explicit interpretation of the structure and parameters of the
functional response in terms of the individual behaviour.

Elements of the two time-scales are implicit in the traditional approach to deriv-
ing the Holling type II functional response, as the consumption rate of the predator
instantaneously adjusts to the current prey density. Here we formalise the two-time
scales approach in a systematic way. Specific instances of this method can be found
in the literature, for example in the works by Metz and Diekmann (1986) and Geritz
and Gyllenberg (2012, 2013). However, in this paper we embed these instances into
a more general and formal framework that, in addition to the predator’s functional
response, also gives a derivation for the numerical responses of the predator as well
as of the prey.

In addition to a general outline of themethod, we give several concrete applications,
including an application that leads to a generalisation of the Holling type III functional
response. The functional response Holling type III has been associated with switching
between alternative prey depending on their relative abundance. An explicit derivation
was given by Leeuwen et al. (2007). Alternatively, the Holling type III functional
response can be associated with different hunger states of the searching predators
instead of different experience levels. We give here a mechanistic explanation for the
latter. The specific form, as found in the literature, is recovered as a limiting case and is
easily understood in terms of the explicitly modelled underlying individual behaviour.

In another application, the handling predator may abandon its catch if it detects
another live prey. This leads to a Holling type II functional response with density-
dependent handling time. In particular, both the handling time and the conversion
factor are decreasing functions of the prey density. Such behaviour is adaptive if the
uptake of resources from the killed prey declines with the handling time.

Furthermore, we discuss the functional response corresponding to a simple non-
linear system for the fast dynamics, where we consider two states for the predators
and for the prey and we are able to compute explicitly the fast dynamics equilibrium.
Here the predators may overcome the prey defenses by causing panic among the prey
and by attacking the isolated individuals. We model the prey and predator numerical
responses by assuming the two species structured by states with different birth and
death rates. The results at the population level are consistent with the individual level
reactions and show that at low predator densities an Allee effect is likely to appear.

The method presented here is not the most general method possible. For example,
wedid not consider interactions among the prey themselves or the predators themselves
like the exchange of information about the presence of prey or predators leading to
a change in the motivational state or the state of alertness. Neither did we include
states involving more than one individual, such as two predators fighting over a kill,

123



Interactions between different predator–prey states: a… 2453

or several prey seeking protection in numbers, or a predator stalking or fighting a
prey. It is not difficult to extend the method to include these cases (e.g. see Geritz
and Gyllenberg (2013) where prey groups of different sizes are modelled as different
prey states), but it becomes more difficult to prove the existence and, in particular, the
uniqueness of an equilibrium of the fast dynamics of the state transitions.

In order to apply slow-fast time scale separation, it is necessary that the fast dynam-
ics is settled on a unique and hyperbolically stable steady state. We are not able to give
a general result. In particular, the uniqueness of the equilibrium corresponding to the
fast dynamics remains an open question. However, by relaxing the conditions on the
parameter values, we have built an example in which the fast time steady state is not
unique: this may set a limit to the assumptions that we can make on the coefficients
of the matrices which model the interactions in order to get a unique hyperbolically
stable equilibrium.

In our approach only individuals in some specific discrete states are able to repro-
duce. The proportion of time that an individual spends in these states is equal to the
proportion of individuals in such states at the fast time equilibrium. In this way birth
is limited by a time-budget. Another (and possibly more realistic) approach would be
to model births as energy limited, like in the dynamic energy budget models (see, for
example, Kooijman and Kooijman 2010, Geritz and Gyllenberg 2014).

A possible disadvantage of the approach is that to use it in a practical way, one
must make assumptions about the transitions between microstates and the model may
become parameter heavy. However, as a theoretical tool, the method has potential.
One of the key questions in ecology today, raised by Durrett and Levin (1994) among
others, is how to scale up from the level of individual behaviours in a population to
functional responses and dynamics equations at the population level. Deriving func-
tional and numerical responses from the behaviour of the individual prey and predator
is important if one wants to go beyond a mere description of the population dynamics
to an understanding in terms of the underlying individual level processes. Also the
other way around, that is, if one wants to know the effect of certain changes in the
behaviour of the individual prey or predator, the derivation of the population model
from first principles in terms of individual behaviour is a necessity.
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Appendix A

Proposition A1 Let A, (Bk
i, j )i, j∈{1,...,m} ∈ Mm(R) and (Ck

i, j )i, j∈{1,...,n}, D ∈ Mn(R)

be matrices with non-negative off-diagonal coefficients. Suppose that A and D are
transition matrices such that the linear system in (12) has a unique stable equilibrium
and (Bk

i, j )i, j∈{1,...,m}, (Ck
i, j )i, j∈{1,...,n} are irreducible matrices respectively for all

y > 0, y ∈ R
n and for all x > 0, x ∈ R

m. Assume, moreover, that all these matrices
are transition matrices and that the conservation laws on the total population density∑m

i=1 xi = X and
∑n

i=1 yi = Y hold, with X and Y constant.
Then, the system in (11) has at least one equilibrium point.

Proof Consider the steady state equations

{
(A + B(y))x = 0
(C(x) + D)y = 0

(62)

In the first set of equations, A + B(y) ∈ Mm(R) is an irreducible nonnegative off-
diagonal matrix for all y > 0, y ∈ R

n and by the Perron-Frobenius Theorem it has
a simple dominant nonnegative eigenvalue, that is 0. Let ψ(y) be the corresponding
eigenvector satisfying

∑m
i=1 ψ(y)i = X .

In the same way, for the second set of equations we have that C(x) + D ∈ Mn(R)

is an irreducible nonnegative off-diagonal matrix for all x > 0, x ∈ R
m and by the

Perron-Frobenius Theorem it has a simple dominant nonnegative eigenvalue, that is
0. Let φ(x) be the corresponding eigenvector satisfying

∑n
i=1 φ(x)i = Y .

The continuous map 
 from the compact convex set {x ∈ R
m : ∑m

i=1 xi = X} in
itself, 
 = ψ ◦ φ has at least one fixed point by the Shauder’s Fixed Point Theorem.
This shows that the fast dynamics has at least one steady state. 
�

Appendix B

Wegivehere the time scale separation for the system inSect. 3 in details. Thedynamical
system of the interactions modelled in Sect. 3 is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxk
dτ

= Ãk,k−1xk−1 − Ãkk xk + Ãk,k+1xk+1 + λk xk − μk xk − c̃k xk S̃, k = 1, . . . ,m

dS̃
dτ

= − (∑m
k=1 c̃k xk

)
S̃ + d̃ H̃ + Γ H̃ − δ S̃

d H̃
dτ

= + (∑m
k=1 c̃k xk

)
S̃ − d̃ H̃ − δ H̃

dX
dτ

= g(X , Y )X − (∑m
k=1 c̃k xk

)
S̃

dỸ
dτ

= Γ H̃ − δỸ

(63)

where λk and μk are respectively the per capita birth and natural mortality rate for the
prey in state k as given in (9), Γ is the conversion rate of prey into predators such that
Γ H = γ (X ,Y ) f (X ,Y )Y and δ is the per capita mortality rate of the predators.

Let ε > 0 be a small and dimensionless scaling parameter. In order to separate the
fast and slow dynamics, we define the following scalings for the parameters of the fast
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time interactions and the predator population that is assumed to be much smaller than
the prey population: Ãk,k−1 = ε−1Ak,k−1, Ãkk = ε−1Akk , Ãk,k+1 = ε−1Ak,k+1,
c̃k = ε−1ck , d̃ = ε−1d, Ỹ = εY , H̃ = εH , S̃ = εS. We now give the slow-fast
equations corresponding to the system in (63) using the scaled parameters:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dxk
dτ

= Ak,k−1
ε

xk−1 − Akk
ε
xk + Ak,k+1

ε
xk+1 + λk xk − μk xk − ck xk S, k = 1, . . . ,m

dS
dτ

= − (∑m
k=1

ck
ε
xk

)
S + d

ε
H + Γ H − δS

dH
dτ

= + (∑m
k=1

ck
ε
xk

)
S − d

ε
H − δH

dX
dτ

= g(X , Y )X − (∑m
k=1 ck xk

)
S

dY
dτ

= Γ H − δY

(64)

We introduce the scaled short time t = ε−1τ and let ε → 0. We give the equations
for the dynamics on the fast time scale:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dxk
dt = Ak,k−1xk−1 − Akkxk + Ak,k+1xk+1, k = 1, . . . ,m
dS
dt = − (∑m

k=1 ckxk
)
S + dH

dH
dt = + (∑m

k=1 ckxk
)
S − dH

dX
dt = 0
dY
dt = 0

(65)

The variables X and Y are constants on the fast time scale and from the equations in
(65) for the fast variables xk , S and H we can now derive the fast dynamics equilibria
given in (20), (21), (23) and (24).

The time scale separations for the models in Sects. 4 and 5 follow the passages and
the scalings given above for the system in Sect. 3.

Fig. 5 Different phase portraits for the system in Sect. 6.1. The parameter values are chosen arbitrarily. a
a = 0.1, b = 0.3, c = 0.1, d = 0.3; b a = 0.7, b = 0.1,c = 0.2, d = 0.2; c a = 0.2, b = 0.3, c = 0.6,
d = 0.1. The total prey and predator densities are both set at 1
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We consider now the dynamical system for the interactions modelled in Sect. 6:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE
dt = −ãE + b̃PS − c̃E S + λP − μ1E
dP
dt = +ãE − b̃PS − μ2P

dS̃
dτ

= −c̃E S̃ + d̃ H̃ + Γ H̃ − δ1 S̃

d H̃
dτ

= +c̃E S̃ − d̃ H̃ − δ2 H̃
dX
dτ

= g(X ,Y )X − c̃E S̃

dỸ
dτ

= Γ H̃ − δ(X ,Y )Ỹ

(66)

In this case, as in Geritz and Gyllenberg (2012), we additionally assume that b̃ is large
in comparison to the other parameters. In this way, the term −bPS in the short time
scale equations for the exposed and the protected prey is not negligible, but part of
the fast dynamics. We introduce the scaled parameter b̃ = ε−2b. For an alternative
scaling, we could assume that the parameters c̃ and d̃ are small in comparison to the
other parameters (see also Geritz and Gyllenberg 2012). In this case, we would not
need to assume that the total predator size is much smaller than the total prey size, but
we would separate the dynamics in (66) into three separate time scales.

Appendix C

We compute the solutions for the system of equations in Sect. 6.1, for different values
of the parameters a, b, c, d and different initial conditions. The numerical simulations
in Fig. 5 show that the uniqueness and hyperbolic stability of the fast dynamics steady
state is verified for the chosen values of the parameters.

Appendix D

D.1 A counterexample to the uniqueness of the fast dynamics steady state

Consider the system in (3). Suppose A, (Bk
i, j )i, j∈{1,...,n}, (Ck

i, j )i, j∈{1,...,n},D ∈
Mn(R).

Consider weaker assumptions on (Bk
i, j )i, j∈{1,...,n} and (Ck

i, j )i, j∈{1,...,n}, such that
they are not non-negative off-diagonal matrices, but verify for every i, j ∈ {1, . . . , n}

n∑
k=1

Bk
i, j = 0,

n∑
k=1

Ck
i, j = 0. (67)

In this particular case, we are able to give numerically a counterexample to the unique-
ness of the steady state of the system.

123



Interactions between different predator–prey states: a… 2457

We consider the following symmetric system, whereA ≡ D and (Bk
i, j )i, j∈{1,...,n} ≡

(Ck
i, j )i, j∈{1,...,n}:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1
dt (t) = ( 3

16 − 1
)
x1 + 3

16 x2 + y1x1
dx2
dt (t) = − ( 3

16 − 1
)
x1 − 3

16 x2 − y1x1
dy1
dt (t) = ( 3

16 − 1
)
y1 + 3

16 y2 + x1y1
dy2
dt (t) = − ( 3

16 − 1
)
y1 − 3

16 y2 − x1y1

(68)

Thismodel satisfies the relations necessary for the conservation ofmass: one can check
that d(x1+x2)

dt (t) = d(y1+y2)
dt (t) = 0 (for any (x1(t), x2(t), y1(t), y2(t))). Moreover, the

system has two steady states, namely

(x1, x2, y1, y2) =
(
1

4
,
3

4
,
1

4
,
3

4

)
(69)

and

(x1, x2, y1, y2) =
(
3

4
,
1

4
,
3

4
,
1

4

)
(70)

One may check that, thanks to the Implicit Function Theorem, perturbations of the
steady states still exist if we make all the coefficients non zero, but close to the coef-
ficients chosen above.

Under the stronger assumptions of non-negative off-diagonalmatrices (Bk
i, j )i∈{1,...,n}

and (Ck
i, j )i∈{1,...,n}, we are also able to build a counterexample to the uniqueness of the

steady state corresponding to the fast dynamics in (3). In particular, we still assume a
symmetric situation where the matrices describing the dynamics for the first set and
the second set of equations are equivalent. Moreover, we impose that the matrices
corresponding to the linear part of the system of equations are transition matrices such
that state 1 and state n are absorbing states, in a stochastic sense.

We construct a counterexample based on the following cross-diffusion system:

{
Δ(a(m)n) = 0,
Δ(a(n)m) = 0,

(71)

with n,m ∈ C2([0, 1)) and Neumann boundary conditions. To show that this system
may have several solutions, one may consider a satisfying

a(λ + cos(πx)) = 1

λ + cos(π(1 − x))
. (72)

Then n = λ + cos(πx), m = λ + cos(π(1 − x)) is a solution and the symmetry of
the system makes it non unique. We have developed a discrete version of this idea and
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we give in the following section the corresponding numerical example. We proceed
in three steps:
Step 1: Defining x, y,Tx,Ty such that Tyx = 0 and Txy = 0.
Definition of x and y. We consider x, y ∈ R

n defined by

xi = λ + cos

(
π
i − 1

n − 1

)
, yi = λ + cos

(
π
n − i

n − 1

)
(73)

for every i ∈ {1, . . . , n}. Note that x is different from y.
Definition of Ty. Let Ty ∈ Mn(R) a tridiagonal matrix: for any i ∈ {1, . . . , n},

T y
i−1,i = t yi

2
, T y

i,i = −t yi , T y
i+1,i = t yi

2
, (74)

except for the two terms T y
1,1 = − t y1

2 , T
y
2,1 = tY1

2 , T
y
n,n = − t yn

2 , T
y
n−1,n = t yn

2 and all the
other coefficients are 0. In these expressions, we have denoted

t yi =: 1

λ + cos
(
π i−1

n−1

) . (75)

Thanks to the definitions (74) and (73), for i ∈ {2, . . . , n − 1}

(T yx)i = t yi−1

2
xi−1 − t yi xi + t yi+1

2
xi+1 = 0, (76)

while for i = 1 (a similar computation can be made for i = n),

(T yx)1 = − t y1
2
x1 + t y2

2
x2 = 0. (77)

We have then shown that

Tyx = 0. (78)

Definition of Tx. Let Tx ∈ Mn(R) a tridiagonal matrix: for any i ∈ {1, . . . , n},

T x
i−1,i = t xi

2
, T x

i,i = −t xi , T x
i+1,i = t xi

2
, (79)

except for the two terms T x
1,1 = − t x1

2 , T
x
2,1 = t x1

2 , T
x
n,n = − t xn

2 , T
x
n−1,n = t xn

2 and all the
other coefficients are 0. In these expressions, we have denoted

t xi =: 1

λ + cos
(
π n−i

n−1

) . (80)
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Then,

Txy = 0. (81)

Step 2: Defining a linear interpolation between Ty and Tx. We want to define αi ,
βi such that

αi + βi yμ(i) = t yi , αi + βi xμ(i) = t xi , (82)

where μ(i) = 1 if i ≤ n
2 and μ(i) = n otherwise.

Case where i ≤ n
2 .

αi + βi (λ − 1) = t yi , αi + βi (λ + 1) = t xi , (83)

Taking the difference of those two equations leads to

− 2βi = 1

λ + cos
(
π i−1

n−1

) − 1

λ + cos
(
π n−i

n−1

)

=
cos

(
π n−i

n−1

)
− cos

(
π i−1

n−1

)
(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) (84)

which shows that βi is positive:

βi =
cos

(
π i−1

n−1

)
− cos

(
π n−i

n−1

)
2

(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) > 0. (85)

Next, we add up the two equations appearing in (83). Thanks to (73), we have xi +yi =
2λ and thanks to the definition (75), (80) of t yi and t xi ,

2αi + 2λβi = t yi + t xi

= 1

λ + cos
(
π i−1

n−1

) + 1

λ + cos
(
π n−i

n−1

)

=
2λ + cos

(
π i−1

n−1

)
+ cos

(
π n−i

n−1

)
(
λ + cos

(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

))
= 2λ(

λ + cos
(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

)) . (86)
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The value of βi is given by (85), then

2αi = 2λ(
λ + cos

(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

)) − λ
cos

(
π i−1

n−1

)
− cos

(
π n−i

n−1

)
(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) .

Therefore

αi > 0, (87)

for i ≤ n
2 and i �= 1.

Case where i > n
2 .

αi + βi (λ + 1) = t yi , αi + βi (λ − 1) = t xi , (88)

Taking the difference of those two equations leads to

2βi = 1

λ + cos
(
π i−1

n−1

) − 1

λ + cos
(
π n−i

n−1

)

=
cos

(
π n−i

n−1

)
− cos

(
π i−1

n−1

)
(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) (89)

which shows that βi is positive:

βi =
cos

(
π n−i

n−1

)
− cos

(
π i−1

n−1

)
2

(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) > 0. (90)

Next, we add up the two equations appearing in (88). Thanks to (73), we have xi +yi =
2λ and from the definitions in (75) and (80) of t yi and t xi we obtain

2αi + 2λβi = t yi + t xi

= 1

λ + cos
(
π i−1

n−1

) + 1

λ + cos
(
π n−i

n−1

)

=
2λ + cos

(
π i−1

n−1

)
+ cos

(
π n−i

n−1

)
(
λ + cos

(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

))
= 2λ(

λ + cos
(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

)) . (91)
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The value of βi is given by (90), then

2αi = 2λ(
λ + cos

(
π i−1

n−1

)) (
λ + cos

(
π n−i

n−1

)) − λ
cos

(
π n−i

n−1

)
− cos

(
π i−1

n−1

)
(
λ + cos

(
π i−1

n

)) (
λ + cos

(
π n−i

n−1

)) .

Therefore

αi > 0, (92)

for i > n
2 and i �= n.

Step 3: Conclusion.
Definition of A,B,C,D.

Let A,B,C,D ∈ Mn(R) tridiagonal matrices. We define the matrix A as follows,
using the coefficients αi defined by (87) or (92) for i ∈ {1, . . . , n}:

Ai−1,i = αi

2
, Ai,i = −αi , Ai+1,i = αi

2
. (93)

Moreover we denote An,1 = α1
2 , A1,n = αn

2 , while the other coefficients are 0. Thanks
to (87), A is then an off-diagonal non-negative matrix, and

n∑
k=1

Ak,i = Ak−1,k + Ak,k + Ak+1,k = 0. (94)

We define next the matrix B̃, using the coefficients βi defined by (85) or (90) for
i ∈ {1, . . . , n}:

B̃i−1,i = βi

2
, B̃i,i = −βi , B̃i+1,i = βi

2
, (95)

Moreover we obtain B̃n,1 = β1
2 , B̃1,n = βn

2 , while the other coefficients are 0. Thanks
to (85), B̃ is an off-diagonal non-negative matrix. We define the family of matrices
(Bk

i, j )k by

Bk
i, j = B̃k,i if j = μ(i),

Bk
i, j = 0, otherwise. (96)

For any i ∈ {1, . . . , n}, (Bk
i, j )k, j is then an off-diagonal non-negative matrix, and it

satisfies for i ∈ {1, . . . , n}
n∑

k=1

Bk
i, j =

n∑
k=1

B̃k,i = B̃i−1,i + B̃i,i + B̃i+1,i = 0 if μ(i) = j,
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n∑
k=1

Bk
i, j = 0, otherwise. (97)

Finally, we define

C := B, D := A. (98)

Note that the matrices A, (Bk)k, (Ck)k, D that we have constructed satisfy the
assumptions given at the beginning of this section.
Showing that (x, y) and (y, x) are two steady states.

For all k ∈ {1, . . . , n}, we use the definition of A and B to obtain

n∑
i=1

Ak,i xi +
n∑

i=1

⎛
⎝ n∑

j=1

Bk
i, j y j

⎞
⎠ xi =

=
n∑

i=1

Ak,i xi +
n∑

i=1

(
Bk,i yμ(i)

)
xi =

k+1∑
i=k−1

(
Ak,i + Bk,i yμ(i)

)
xi =

(
Ak,k−1 + Bk,k−1yμ(k−1)

)
xk−1 + (

Ak,k + Bk,k yμ(k)
)
xk

+ (
Ak,k+1 + Bk,k+1yμ(k+1)

)
xk+1 =

1

2

(
αk−1 + βk−1yμ(k−1)

)
xk−1 − (

αk − βk yμ(k)
)
xk

+1

2

(
αk+1 + βk+1yμ(k+1)

)
xk+1 =

1

2
t yk−1xk−1 − t yk xk + 1

2
t yk+1xk+1 = (

T yx
)
k = 0. (99)

Similarly,

n∑
i=1

Ak,i yi +
n∑

i=1

⎛
⎝ n∑

j=1

Bk
i, j x j

⎞
⎠ yi =

=
n∑

i=1

Ak,i yi +
n∑

i=1

(
Bk,i xμ(i)

)
yi =

k+1∑
i=k−1

(
Ak,i + Bk,i xμ(i)

)
yi =

(
Ak,k−1 + Bk,k−1xμ(k−1)

)
yk−1 + (

Ak,k + Bk,k xμ(k)
)
yk

+ (
Ak,k+1 + Bk,k+1xμ(k+1)

)
yk+1 =

1

2

(
αk−1 + βk−1xμ(k−1)

)
yk−1 − (

αk − βk xμ(k)
)
yk

+1

2

(
αk+1 + βk+1xμ(k+1)

)
yk+1 =

1

2
t xk−1yk−1 − t xk yk + 1

2
t xk+1yk+1 = (

T x y
)
k = 0. (100)
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Thanks to the symmetry of the coefficients (see (98)), we also obtain

n∑
i=1

⎛
⎝ n∑

j=1

Ck
i, j x j

⎞
⎠ yi +

n∑
i=1

Dk,i yi =
n∑

i=1

Ak,i yi +
n∑

i=1

⎛
⎝ n∑

j=1

Bk
i, j x j

⎞
⎠ yi = 0,

(101)
n∑

i=1

⎛
⎝ n∑

j=1

Ck
i, j y j

⎞
⎠ xi +

n∑
i=1

Dk,i xi =
n∑

i=1

Ak,i xi +
n∑

i=1

⎛
⎝ n∑

j=1

Bk
i, j y j

⎞
⎠ xi = 0.

(102)

Finally, we have constructed two steady-states (x, y) and (y, x) for the system of
differential equations that we consider:

⎧⎨
⎩
0 = ∑n

i=1 Ak,i xi + ∑n
i=1

(∑n
j=1 B

k
i, j y j

)
xi ,

0 = ∑n
i=1

(∑n
j=1 C

k
i, j x j

)
yi + ∑n

i=1 Dk,i yi ,
(103)

and ⎧⎨
⎩
0 = ∑n

i=1 Ak,i yi + ∑n
i=1

(∑n
j=1 B

k
i, j x j

)
yi ,

0 = ∑n
i=1

(∑n
j=1 C

k
i, j y j

)
xi + ∑n

i=1 Dk,i xi .
(104)

D.2 Numerical example

We construct a numerical example where we consider the prey and the predators
structured into three states. The individual level reactions correspond to the following
network and reaction rates

x1 x2 x3

y1 y2 y3

1
6 y1

1
4+√

2

1
4+√

2

1
6 y3

1
6 x1

1
4+√

2

1
4+√

2

1
6 x3

(105)

Note that x1 and x3, y1 and y3 are absorbing states for the transition matrices A
and D, respectively. A possible biological interpretation of the interactions in (105) is
given by assuming the prey population in two different locations, in particular the prey
individuals in state x1 are in the first location, while the prey individuals in state x3 are
in the second location. The searching predators are also divided into those individuals
in state y1, which are searching for a prey in the first location, and those in state y3,
which are hunting in the second location. When a prey in state x1 meets a predator
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in state y1 (and similarly for a prey in state x3 meeting a predator in state y3), it goes
hiding with rate 1

6 and with rate 1
4+√

2
it goes back either to state x1 or to state x3.

After an encounter with a prey individual in state x1, with probability per unit of time
1
6 the predator in state y1 starts handling the prey. The same interactions occur for the
predators in the second location when they meet a prey in state x3.

Define xi and yi , with i = 1, 2, 3 and n = 3 as follows

x1 = λ + cos

(
π
i − 1

n − 1

) ∣∣
i=1 = λ + 1

x2 = λ + cos

(
π
i − 1

n + 1

) ∣∣
i=2 = λ +

√
2

2

x3 = λ + cos

(
π
i − 1

n − 1

) ∣∣
i=3 = λ − 1 (106)

y1 = λ + cos

(
π
n − i

n − 1

) ∣∣
i=1 = λ − 1

y2 = λ + cos

(
π
i − 1

n + 1

) ∣∣
i=2 = λ +

√
2

2

y3 = λ + cos

(
π
n − i

n − 1

) ∣∣
i=1 = λ + 1 (107)

Note that x is different from y.
Define the matrices Ty and Tx such that Tyx = 0 and Txy = 0 are as follows

t y1 = 1

x1
= 1

λ + 1

t y2 = 1

x2
= 1

λ +
√
2
2

t y3 = 1

x3
= 1

λ − 1
(108)

t x1 = 1

y1
= 1

λ − 1

t x2 = 1

y2
= 1

λ +
√
2
2

t x3 = 1

y3
= 1

λ + 1
(109)

Then

Ty =

⎡
⎢⎢⎣

− t y1
2

t y2
2 0

t y1
2 −t y2

t y3
2

0
t y2
2 − t y3

2

⎤
⎥⎥⎦ (110)
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and

(T yx)i = t yi−1

2
xi−1 − t yi xi + t yi+1

2
xi+1 = 0. (111)

We can define Tx in the same way and show that

(T x y)i = t xi−1

2
yi−1 − t xi yi + t xi+1

2
yi+1 = 0. (112)

Then we define a linear interpolation between Ty and Tx. In particular, we define αi ,
βi such that

αi + βi yμ(i) = t yi , αi + βi xμ(i) = t xi , (113)

where μ(i) = 1 if i ≤ n
2 and μ(i) = n otherwise.

From now on, all the numerical values are obtained by taking λ = 2. This choice
of the parameter values does not have any particular biological justification. Then, by
solving the above system of equations for αi and βi , we get

α1 = 0 β1 = 1

3

α2 = 2

4 + √
2

β2 = 0

α3 = 0 β3 = 1

3
(114)

Then, we can define the following system of ordinary differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt (t) = α2

2 x2 − β1
2 y1x1 = 1

4+√
2
x2 − 1

6 y1x1

dx2
dt (t) = −α2x2 + β1

2 y1x1 + β3
2 y3x3 = − 2

4+√
2
x2 + 1

6 y1x1 + 1
6 y3x3

dx3
dt (t) = α2

2 x2 − β3
2 y3x3 = 1

4+√
2
x2 − 1

6 y3x3

dy1
dt (t) = α2

2 y2 − β1
2 x1y1 = 1

4+√
2
y2 − 1

6 x1y1

dy2
dt (t) = −α2y2 + β1

2 x1y1 + β3
2 x3y3 = − 2

4+√
2
y2 + 1

6 x1y1 + 1
6 x3y3

dy3
dt (t) = α2

2 y2 − β3
2 x3y3 = 1

4+√
2
y2 − 1

6 x3y3

(115)

The system in (115) has at least two steady-states. Thanks to the symme-
try of the coefficients, (x1, x2, x3, y1, y2, y3) = (3, 2 + 1√

2
, 1, 1, 2 + 1√

2
, 3) and
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(x1, x2, x3, y1, y2, y3) = (1, 2 + 1√
2
, 3, 3, 2 + 1√

2
, 1) are both equilibrium points.

Furthermore, the positive solutions of the steady states equations are given by

x2 = 1

6
(4x1y1 + √

2x1y1), y2 = 1

6
(4x1y1 + √

2x1y1), y3 = x1y1
x3

or

y2 = 1

6
(4x1y1 + √

2x1y1), x2 = 1

6
(4x1y1 + √

2x1y1), x3 = x1y1
y3

By imposing the conservation law on the sums of the xi and yi , i.e.
∑3

i=1 xi =
X = 6 + 1√

2
and

∑3
i=1 yi = Y = 6 + 1√

2
, we get either

x2 = (6.70711 − x1)x1
1.10819 + x1

, x3 = 7.43278 − 1.10819x1
1.10819 + x1

,

y1 = 7.43278 − 1.10819x1
1.10819 + x1

, y2 = (6.70711 − x1)x1
1.10819 + x1

,

y3 = 1.863291̇0−15 + 1.10819x1 + x21
1.10819 + x1

or the following formulation

x1 = 7.43278 − 1.10819y1
1.10819 + y1

, x2 = (6.70711 − y1)y1
1.10819 + y1

,

x3 = 1.863291̇0−15 + 1.10819y1 + y21
1.10819 + y1

,

y2 = (6.70711 − y1)y1
1.10819 + y1

, y3 = 7.43278 − 1.10819y1
1.10819 + y1

The Jacobian matrix of the system (not evaluated yet at the equilibrium and not
considering the conservation law on the xi and yi ) is given by

J(x1, x3, y1, y3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− y1
6

1√
2+4

0 − x1
6 0 0

y1
6 − 2√

2+4
y3
6

x1
6 0 x3

6

0 1√
2+4

− y3
6 0 0 − x3

6

− y1
6 0 0 − x1

6
1√
2+4

0
y1
6 0 y3

6
x1
6 − 2√

2+4
x3
6

0 0 − y3
6 0 1√

2+4
− x3

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(116)

We get always three eigenvalues with negative real part λ1, λ5, λ6 and three null
eigenvalues λ2, λ3, λ4.

The eigenvalues zero determine a space with dimension at most three in the six
dimensional one. As for the other three eigenvalues, they take negative values for
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every positive value of x1 and y1 smaller then X and Y . The dynamics of the system
converges to the manifold generated by the eigenvectors corresponding to the zero
value eigenvalues. It is not clear what is the behaviour on the stable manifold, but
one could check, by numerically simulating the solutions of the system above for
many initial conditions, that each point in the space generated by the eigenvectors
corresponding to the null eigenvalues is an equilibrium point of the system. Therefore,
we could conclude that on this space we have infinite non-isolated fixed points, which
are stable, but not asymptotically stable.
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