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INTRODUCTION

The early events leading to b-cell failure during the pathogenesis of type 2 diabetes mellitus (T2DM)
remain poorly understood (1). Upon glucose stimulation, insulin is released from b-cells in a
biphasic manner with an initial first peak of insulin release (first phase), which – if the glucose
stimulus persists - is followed by a second prolonged phase of insulin release (2–5). Defective first-
phase insulin release is among the earliest markers that predict the development of T2DM (2–4).
This defect persists in patients with T2DM and is also found in first-degree relatives of patients with
T2DM (4). However, the molecular underpinnings of this particular defect have largely remained
elusive. A recent report by Odouri et al. (6) now provides important new insight that may help
understand the early stages in the development of b-cell dysfunction of T2DM. In this commentary
we place these important findings (6) in the broader context of incretin hormone signaling and the
early defects that occur in incretin action in b-cells during diabetes pathogenesis. We close by
outlining new avenues for scientific inquiry, which the findings by Oudori et al. have opened
with their observations.
STIMULUS-SECRETION COUPLING AND AMPLIFICATION
OF INSULIN RELEASE

Gas or Gaq Signaling-Dependent Mechanisms
Glucose-stimulated insulin secretion (GSIS) occurs through a cascade of precisely orchestrated
electro-physiologic events in pancreatic b-cells (7, 8). Glucose transport into b-cells and enhanced
glucose metabolism increase the cellular ATP/ADP ratio, leading to closing of ATP-sensitive K+

(KATP) channels. Restricted K+ exit through KATP channels depolarizes the b-cell plasma
membrane, which in turn is followed by activation and opening of voltage dependent Ca2+

channels (VDCC). Calcium influx and thus increased cytoplasmic Ca2+ concentration in the b-
cell, triggers insulin vesicle exocytosis (9–13).
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GSIS is amplified by hormones and neurotransmitters, of
which many function by activation of G-protein coupled
receptors via trimeric G-proteins containing Gas or Gaq,
which signal, respectively, via cAMP and phospholipase C
(PLC)-diacylglycerol (DAG)/-inositol 1, 4, 5-triposphate (IP3)
(9, 14). Although both Gas-cAMP and Gaq-PLC-DAG)/IP3 are
clearly recognized to amplify b-cell GSIS, the exact mechanisms
of their signaling pathways, how they differ and where they
overlap remain incompletely understood. Both Gas-cAMP (via
PKA-CREB activation) and Gaq-DAG-protein kinase C (PKC;
via ERK1/2) activation increase IRS2 levels in b-cells, which is a
central mediator in maintaining expression of PDX1 and other
transcription factors that form a gene-regulatory network to
maintain b-cell identity and maturity (15, 16). Gas-cAMP and
Gaq-PLC-dependent signaling pathways both regulate inositol
tri-phosphate (IP3) receptor activity to mobilize calcium stored
in the endoplasmic reticulum (ER) into the cytoplasm; and both
PKA and PKC phosphorylate select SNARE (=soluble N-
ethylmaleimide sensitive factor attachment protein receptor)
complex proteins (i.e. SNAP25, MUNC18) to promote insulin
vesicle exocytosis (17, 18). Thus, Gas-PKA and Gaq-DAG-PKC
signaling pathways converge on common targets that regulate
GSIS amplification. Nevertheless, these two signaling systems
fulfill distinct and non-redundant functions as b-cell-selective
ablation of either Gas (19) or Gaq (20) results in defective b-cell
function or survival.
THE CENTRAL ROLE FOR INCRETIN
HORMONES IN REGULATING
INSULIN SECRETION

Critical for preventing postprandial hyperglycemia are the
amplifying effects of the incretin hormones glucagon-like
peptide-1 (GLP-1) and glucose dependent insulinotropic
peptide (GIP). Under physiologic conditions, the actions of
these two incretin hormones are responsible for approximately
50% of insulin secretion after meal intake (21–23)

GLP-1 and GIP are released from enteroendocrine L- and K-
cells, respectively, upon nutrient stimulus in the intestine.
Through the circulation they reach the pancreatic b-cells,
where by activating their cognate G-protein coupled receptors,
they potentiate glucose stimulated insulin release (21). The
receptors for both GLP-1 (GLP-1R) and GIP (GIPR)—both
abundantly expressed in b-cells, belong to the class B (secretin
family) G-protein coupled receptors (GPCR); and both couple
primarily to the G-protein Gas (21). Consequently, in the case of
both hormones, binding and activation of their respective
receptors stimulates intracellular cAMP synthesis and
downstream signaling that is mediated by protein kinase A
(PKA) and by the guanyl nucleotide exchange factor exchange
protein activated by cAMP 2A (EPAC2A) (24). Cyclic AMP–
PKA activation, via phosphorylation of PKA targets, stimulates
multiple pathways within the b-cell that promote b-cell
proliferation, survival, changes in gene expression as well as
GSIS amplification. These are extensively reviewed elsewhere to
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which we refer the reader (21, 25) EPAC2A in b-cells, upon
activation by cAMP translocates to the cytoplasmic membrane
where it regulates exocytosis and mobilize intracellular calcium,
thereby also amplifying GSIS (24, 26).

In this context, is important to point out that in intestinal L-
cells GLP-1 is produced through differential processing of
proglucagon. More recently, there is increasing experimental
evidence that GLP-1 may not only be produced in intestinal L-
cells but also through differential posttranslational processing of
proglucagon in pancreatic endocrine a-cells, where proglucagon
is primarily processed to glucagon (27, 28). As such, GLP-1
produced in a-cells may also act on b-cells in a paracrine manner
(27, 28). In certain experimental conditions, paracrine a−to b
cell signaling of proglucagon products appears to be critical for
normal b-cell function Furthermore, glucagon—the principal
proglucagon-derived product in a-cells—binds to and activates
both the glucagon receptor (GCGR) and GLP-1R (albeit with
markedly reduced affinity as compared to GLP-1) on b-cells (29–
32). Like the incretin hormone receptors, GCGR belongs to the
class B secretin family of GPCRs, but couples to both Gas and
Gaq to stimulate, respectively cAMP- and DAG)/(IP3)-
dependent signaling (33–35). GCGR–dependent signaling has
been primarily described in hepatocytes (33–35) and - absent
clinching experimental data - it remains unclear whether GCGR
normally also signals via both Gas and Gaq in b-cells.

Importantly, the loss of incretin hormone action in
amplifying GSIS is an early characteristic of T2DM (23, 36–
38). In individuals with defective first-phase insulin release
and future risk of developing frank T2DM, pharmacologic
GLP-1 receptor agonist treatment restores first-phase insulin
secretion (39). However, quite early after the discovery of GLP-1
and GIP a remarkable difference was observed in their actions on
b-cells of individuals with T2DM (22, 38). While treatment with
GLP-1 potently amplifies GSIS in patients with T2DM, GIP
treatment fails to do so; despite the fact that receptors of both of
these hormones couple to Gas to stimulate intracellular cAMP-
dependent signaling. As a consequence of these observations,
GLP-1 receptor agonists have quickly become a focus of
scientific inquiry as well as of drug development for T2DM.
Although clearly a key characteristic of b-cell failure in T2DM,
the difference in action between GLP-1 and GIP in islets of
T2DM has at the molecular level remained thus far unexplained.
LINKING DEFECTIVE KATP CHANNEL
ACTIVITY AND DEFECTIVE INCRETIN
HORMONE ACTION IN b CELLS

The carefully conducted studies reported by Odouri et al. (6)
provide a potential molecular explanation for the differences in
GLP-1R and GIPR signaling in healthy b-cells versus those in
T2DM. The initial focus of Odouri et al. was on the role of KATP

channels in b-cells (6, 40, 41). Partial loss of KATP channels
increases electrical excitability and insulin secretion, resulting in
hyperinsulinemia in humans and in mice (42, 43). Complete loss
of KATP channels causes permanent depolarization and
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hussain et al. Incretin Signaling Switches During Diabetes
chronically elevated intracellular Ca2+ concentrations at all
glucose levels. However paradoxically and through unknown
mechanisms, the absence of KATP channels results in a down-
regulation of insulin secretion and defective GSIS (42, 43).

Mice generated by Odouri et al. lack the pore-forming Kir6.2
component of the KATP channel specifically in b-cells (b-
DKcnj11 mice), and confirming prior observations are actually
glucose intolerant (6, 42, 43). Importantly however, GLP-1
effects on amplifying GSIS was partially retained while the
effects of GIP were practically absent (6). These observations
are remarkably similar to findings in humans who develop
T2DM (see above).

Signaling Detour for GLP-1R but Not
for GIPR
A key observation by Odouri et al. is that in these “hyper-excited”
KATP channel-defective mouse islets, cAMP synthesis through
GLP-1R or GIPR activation is markedly diminished.
Importantly, while GIPR-dependent signaling is as a
consequence practically silenced, the GLP-1R switches
coupling from Gas to Gaq, thereby engaging an alternate
signaling pathway and allowing GLP-1 to potentiate GSIS in b-
cell (6). In contrast GIPR fails to switch its coupling from Gas to
Gaq. Importantly, Odouri et al. show that GLP-1R does not
couple through Gaq in healthy control islets, but only in those
with down-regulated KATP channel activity (6).

In additional studies Odouri et al. examined the KK-Ay
mouse, which spontaneously develops a human T2DM-like
phenotype. While b-cells from non-diabetic control KK mice
showed normal electro-physiologic activity and patterns of GSIS,
b-cells from KK-Ay mice were chronically depolarized and
lacked GSIS. Treatment with GLP-1 but not with GIP
amplified GSIS in KK-Ay islets. And GLP-1 effects were
inhibited with the Gaq antagonist YM-254890 (It would help
had the authors also examined the effects of the more specific
Gaq antagonist FR900359) (6). Thus, as in T2DM, in KK-Ay
mice, b-cell GLP-1R but not GIPR signals via Gaq while Gas-
dependent signaling becomes defective.

The potential importance of these findings to understand b-
cell failure in a broader context of T2DM comes with additional
studies, in which Odouri et al. (6) expose both mouse and human
islets to elevated glucose levels (as found in T2DM) for 3 to 5
days—a maneuver that causes chronic KATP channel closure (6,
44). Remarkably, when such treated islets were returned to lower
(i.e. normoglycemic) glucose levels, their KATP channels
remained suppressed and GSIS remained defective. However,
similar to the observations made in b-DKcnj11 mice, GLP-1–
induced GSIS potentiation was maintained, whereas GIP
treatment had no such effect (6). And again, GLP-1 receptor
signaling had switched from Gas to Gaq coupling, whereas
GIPR signaling had not made that switch.

These important observations by Odouri et al. provide a
molecular explanation for the long known “incretin bias” in
T2DM and link this particular phenomenon to a b-cell
autonomous change in KATP channel activity (6, 44)—for
Frontiers in Endocrinology | www.frontiersin.org 3
which the underlying pathogenic mechanisms remain
incompletely understood.

While the observations made by Odouri et al. provide
experimental evidence that chronic (3–5 days) exposure to
elevated glucose levels can lead to a down-regulation of KATP

channel activity, it remains unclear whether other influences to
which the b-cell is exposed in early T2DM pathogenesis (e.g.,
altered circulating lipid profiles, low level inflammation and
likely additional as yet unrecognized factors) that precede
hyperglycemia may also cause a down-regulation in KATP

channel activity.
DISCUSSION

As all good science, the studies reported by Oduori et al. (6) have
not only significantly advanced the field but also point in which
direction to look further. The remarkable finding that in b-cells
GLP-1R coupling switches during diabetes pathogenesis adds
impetus to understand in more detail the mechanism and
pathways of Gas- and Gaq-dependent signaling in b-cell.
Odouri et al. findings raise many questions related to incretin
biology and to b-cell (dys-)function in T2DM pathogenesis as
well as questions related to the treatment of b-cell dysfunction.
Among these will undoubtedly be the following:

1. Are there circumstances in which a switch in GLP-1R
coupling from Gas to Gaq is of physiologic importance (as
opposed to pathologic, i.e., diabetes mellitus). The larger
questions is whether the switch in GLP-1R coupling serves
a particular physiologic purpose in the b-cell or whether this
switch is a only manifestation of dysfunction and disease.

2. What are the intracellular mechanisms that underlie the
switch from for Gas to Gaq at the GLP-1R receptor?
Insight into the molecular underpinnings of the switch
f rom Ga s to Gaq would grea t l y enhance our
understanding of changes in b-cell function early in the
pathogenesis of diabetes mellitus.

3. How does Gaq-mediated signaling lead to improved b-cell
function, and how does it differ from Gas-mediated signaling
in modulating b-cell function? Gas- and Gaq-dependent
signaling pathways converge at multiple levels. But their
distinct roles remain poorly understood.

4. How do GLP-1R-Gas “uncoupling” and GLP-1R-Gaq
coupling modify b-cell proliferation survival, and
maintenance of b-cell maturity? This question is an
extension of the preceding question.

5. How does the glucagon receptor fare in the rochade from
Gas to Gaq coupling through GPCRs in b-cells? In T2DM,
does glucagon receptor-dependent signaling also switch
away from Gas and signal primarily via Gaq? Glucagon
uniquely activates both GLP-1R and GCGR (whereas GLP-
1 does not activate GCGR. GCGR thus functions akin to an
incretin hormone. Whether and how GCGR signaling
changes during diabetes is unknown. The role of
April 2021 | Volume 12 | Article 665345
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glucagon in b-cell (dys-) function remains to be fully
understood.

6. How do circulating lipids, circulating and local islet
cytokines, intracellular alterations such as organelle (ER,
mitochondria, Golgi apparatus) stress interplay with the
silencing of Gas-coupling of incretin receptors and switch
from Gas to Gaq signaling? Odouri et al. show that
hyperglycemia causes a switch in GLP-1R coupling.
Whether other participants in T2DM pathogenesis also
promote this switch remains unclear.

7. Which therapeutic maneuvers will allow GLP-1R signaling of
the failing b-cell to couple back with Gas and also reactivate
GIPR signaling in b-cells?

The following three questions pertain to therapeutic
approaches of b-cell dysfunction in light of the new findings
by Odouri et al.

1. Would GLP-1R agonists that bias coupling through Gaq
rather than Gas be more effective in treating b-cell failure?

2. Will pharmacologic targeting of primarily Gaq-coupled
GPCR, such as muscarinic M3 acetylcholine receptors
Frontiers in Endocrinology | www.frontiersin.org 4
(15, 45, 46) be more effective than GLP-1R agonists in
preventing or reversing b-cell failure?

3. Would simultaneous stimulation of Gas- and Gaq-
dependent signaling pathways in promoting b-cell function
and survival be superior to stimulation of either pathway
alone?

While this article was under peer-review, a newly published
study indicates a role for GIP-GIPR in amplifying amino-acid-
induced glucagon secretion from islet alpha-cells as an additional
mechanism of incretin hormone action (47).
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