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Abstract

Functional connectivity and effective connectivity of the human brain, representing

statistical dependence and directed information flow between cortical regions, signif-

icantly contribute to the study of the intrinsic brain network and its functional mech-

anism. Many recent studies on electroencephalography (EEG) have been focusing on

modeling and estimating brain connectivity due to increasing evidence that it can

help better understand various brain neurological conditions. However, there is a lack

of a comprehensive updated review on studies of EEG-based brain connectivity, par-

ticularly on visualization options and associated machine learning applications, aiming

to translate those techniques into useful clinical tools. This article reviews EEG-based

functional and effective connectivity studies undertaken over the last few years, in

terms of estimation, visualization, and applications associated with machine learning

classifiers. Methods are explored and discussed from various dimensions, such as

either linear or nonlinear, parametric or nonparametric, time-based, and frequency-

based or time-frequency-based. Then it is followed by a novel review of brain con-

nectivity visualization methods, grouped by Heat Map, data statistics, and Head Map,

aiming to explore the variation of connectivity across different brain regions. Finally,

the current challenges of related research and a roadmap for future related research

are presented.
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1 | INTRODUCTION

In the past decades, plenty of prior researchers showed their interest

in understanding brain activities through analyzing noninvasive brain

signals. Scalp electroencephalography (EEG), has been yearly increas-

ingly attractive resulting in a growing number of publications (Van

Diessen et al., 2015). On one hand, to extract hidden information from

EEG recordings, various traditional digital signal processing methods

were employed, such as independent component analysis (ICA; van

Mierlo et al., 2014b; Tafreshi, Daliri, & Ghodousi, 2019; van Mierlo

et al., 2014a; Vecchio, Miraglia, Bramanti, & Rossini, 2014), power

spectral density (PSD; Erra, Velazquez, & Rosenblum, 2017; Ko,
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Yang, & Sim, 2009; Lias, Sulaiman, Murat, & Taib, 2010), discrete

wavelet transform (DWT; Amin, Yusoff, & Ahmad, 2020; Cvetkovic,

Derya, & Cosic, 2008; Dhiman & Saini, 2014; Ibrahim, Djemal, &

Alsuwailem, 2018; Vijay Anand & Shantha Selvakumari, 2019), and so

on. They usually focus on either a single EEG channel, which are uni-

variate methods essentially, or blind signal separation. Those methods

may not consider the intercommunications between different EEG

signals. On the other hand, growing attention was paid to brain con-

nectivity. There is increasing evidence that brain connectivity can

reveal the function of different brain regions and complex cortical

intercommunications among them (Babiloni et al., 2005;

Sakkalis, 2011; Tafreshi et al., 2019; van Mierlo et al., 2014a), which

helps better understand many neurological conditions including disor-

ders and emotions. As shown in Figure 1, the number of publications

relevant to “EEG and brain connectivity” grew sustainably in recent

years, especially after 2012.

Brain connectivity can be subdivided into neuroanatomical

(or structural), functional, and effective connectivity. Neuroanatomical

connectivity refers to structural links such as synapses or fiber path-

ways at the microscopic scale of neurons (Sakkalis, 2011). Magnetic

resonance imaging (MRI) and diffusion tensor imaging (DTI) are well-

accepted techniques to reveal the brain structural connectivity with a

relatively high spatial resolution (Clayden, 2013; Fan et al., 2016;

Mohanty, Sethares, Nair, & Prabhakaran, 2020), while EEG cannot

directly reveal structural connections and it is applied to estimate

functional and effective connectivity. Compared with MRI, EEG offers

higher temporal resolution, thus connectivity can be estimated at

shorter time scales. Meanwhile, EEG has the capacity to enable early

detection of anomalies in pathophysiological processes affecting brain

networks at a lower cost before clinical symptoms emerge and before

structural alterations are visible in MRI (Marzetti et al., 2019;

Sadaghiani, Brookes, & Baillet, 2021). Functional connectivity is

defined as statistical interdependence among spatially distant neuro-

physiological regions (Friston, 2011), usually measured by correlation,

coherence and information theory (Cao et al., 2021; Colclough

et al., 2016; Marzetti et al., 2019; Sarrigiannis et al., 2015; Shan

et al., 2021; Wang et al., 2014; Zhao et al., 2018). In terms of effective

connectivity, it indicates the causal influence of one neural region

over others (Astolfi et al., 2004; Tafreshi et al., 2019) by combining

imaging techniques like EEG and magnetoencephalography (MEG)

with mathematical models of interconnected brain regions

(Friston, 2001; Ponten, Daffertshofer, Hillebrand, & Stam, 2010). Dif-

ferent from the functional connectivity that only addresses statistical

relationships, effective connectivity tends to reveal underlying mecha-

nisms of interaction among neural regions and it is dynamic (event-

dependent) and depends on a model of connections (Friston, 2011;

He, Billings, Wei, Sarrigiannis, & Zhao, 2013; Seth, Barrett, &

Barnett, 2015). It is believed that brain connectivity contains enor-

mous potentials, which could aid our understanding of brain networks.

There are debates if the volume conduction effect can be avoided

from sensor-level estimates of brain connectivity, due to the transmis-

sion from neural excitation to the surface measurement (He

et al., 2019). Some researchers prefer to calculate the connectivity in

source-space after solving the inverse problem (Moezzi &

Goldsworthy, 2018; Palva et al., 2018; Supp, Schlögl, Trujillo-Barreto,

Müller, & Gruber, 2007).

Moreover, based on a variety of features and biomarkers

extracted from signal processing and brain connectivity analysis,

recent years have witnessed a considerable increase of published arti-

cles using machine learning (ML) methods for EEG classification

(Figure 1), such as support vector machine (SVM), random forest (RF),

and K-Nearest Neighbor (KNN) (Akbarian & Erfanian, 2020; Blinowska

et al., 2017; Lehmann et al., 2007; Rajendra Acharya, Vinitha Sree,

Alvin, & Suri, 2012), as well as deep learning approaches (Ball

et al., 2016; Chen, Song, & Xiaoli, 2019; Saeedi, Saeedi, Maghsoudi, &

Shalbaf, 2020).

Visualization is indispensable in brain connectivity analysis and

highly promoting to interpret brain activity and intercommunications.

Zhao et al. (2020) suggest that the imaging and study of brain func-

tional connectivity can effectively revolutionize our understanding of

brain degradation or dysfunction in a user friendly and systematic

way. Besides, some researchers believe that connectivity results are

supposed to be presented using appropriate visualizations that would

in reality be interpreted by neurophysiologists (Haufe, Nikulin,

Müller, & Nolte, 2013). On the other hand, the visualization of brain

connectivity generates novel and promising input images for some

deep learning methods. Literature shows that the convolution neural

network (CNN) has the ability to identify the complexity present in

EEG signals using advanced visualizing techniques of brain connectiv-

ity (Gao et al., 2019; Mammone, Ieracitano, & Morabito, 2020; Wang,

El-Fiqi, Hu, & Abbass, 2019).

Although over recent years an incessant flurry of numerous prom-

ising approaches related to brain functional and effective connectivity

has contributed to neural research in understanding brain network

function and some reviews tried to summarize the methods and dis-

cuss the limitations (Bastos & Schoffelen, 2016; Sakkalis, 2011; Van

Diessen et al., 2015; van Mierlo et al., 2014a), there is a lack of com-

prehensive review in the last few years in terms of estimation,

F IGURE 1 Number of publications per year from PubMed search
using keywords “EEG and Machine learning” or “EEG and AI”
(Trend1) and “brain connectivity and EEG” (Trend2) in the period
2005–2020
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applications, and particularly their associated ML approaches. More-

over, there is no review available on a variety of visualization methods

to represent the variation of functional and effective connectivity.

Section 2 of this article systematically reviews brain functional

and effective connectivity estimation and analysis methods in accor-

dance with their properties and applied areas. Those popular methods

to quantify brain connectivity are grouped as parametric and nonpara-

metric techniques and their conceptual and mathematical details are

represented in the Appendix. Various distinct approaches of connec-

tivity visualization, grouped into three categories, are reviewed in Sec-

tion 3. Section 4 provides a summary and critical evaluation of brain

connectivity methods and their applications in the fields of neural dis-

ease and brain activity research. We then discuss the role of visualiza-

tion for brain connectivity analysis in detail. Besides, a discussion on

the significance of ML and its various effective combination with brain

connectivity estimations are represented in Section 4. This

section closes with the identified research gaps and future direction.

The conclusions are given in Section 5.

2 | ESTIMATION

A review of high-frequently used methods to estimate brain connec-

tivity based on EEG is given in Table 1 associated with their

properties. These methods are either linear or nonlinear, parametric,

or nonparametric, belong to functional or effective connectivity, in

time, frequency or time-frequency domain. The conceptual and math-

ematical details of these approaches are represented individually in

the Appendix. It can be observed from this table that the functional

connectivity is usually estimated by nonparametric methods while the

effective connectivity estimates are based on parametric techniques.

In this review, parametric and nonparametric methods are grouped

separately.

2.1 | Nonparametric methods

2.1.1 | Linear methods

Linear intercommunication of the brain has been studied for several

decades and is relatively straightforward in terms of computation and

interpretation (Van Diessen et al., 2015). Correlation measures are

well-accepted to represent linear connections. Pearson correlation

coefficient (PCC) and cross-correlation were applied in the time

domain to estimate functional connectivity from multi-channel EEG

recordings (Fagerholm, Moran, Violante, Leech, & Friston, 2020;

Handojoseno et al., 2013; Ibrahim et al., 2018; Lee & Hsieh, 2014;

Tarokh, Carskadon, & Achermann, 2010; Vortmann, Kroll, &

TABLE 1 Comparison of methods for quantifying brain connectivity using EEG

Linearity Signal processing Brain connectivity Domain

Linear Nonlinear Parametric Nonparametric FC EC Time Frequency Time-frequency

DCM √ √ √ √

MSC √ √ √ √

STFC √ √ √ √

WC √ √ √ √

PLV √ √ √ √

GS √ √ √ √

GC √ √ √ √

PDC √ √ √ √

Corr √ √ √ √

SL √ √ √ √

TE √ √ √ √ √

MI √ √ √ √

DTF √ √ √ √

PS √ √ √ √

SEM √ √ √

IPC √ √ √ √

PLI √ √ √ √

ERR √ √ √ √

Abbreviations: Corr, correlation; DCM, dynamic causal modeling; DTF, directed transfer function; EC, effective connectivity; ERR, error reduction ratio; FC,

functional connectivity; GC, granger causality; GS, generalized synchronization; IPC, imaginary part of coherency; MI, mutual information; MSC, magnitude

squared coherence; PDC, partial directed coherence; PLI, phase lag index; PLV, phase locking value; PS, phase synchronization; SEM, structural equation

modeling; SL, synchronization likelihood; STFC, short-time Fourier coherence; TE, transfer entropy; WC, wavelet coherence.
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Putze, 2019). It should be noted that PCC is the cross-correlation

value at the zero time lag. In other words, if there is any time delay

between the two EEG signals, PCC cannot accurately represent the

strength of linear correlation. The counterpart of the cross-correlation

in the frequency domain is the coherence. Coherence is sensitive to

both changes in power and phase relationships between EEG signals

(Sakkalis, 2011). The magnitude squared coherence (MSC; Battaglia &

Brovelli, 2019) and the imaginary part of coherency (Ewald, Marzetti,

Zappasodi, Meinecke, & Nolte, 2012; Haufe & Ewald, 2019; Nolte

et al., 2004; Stam, Nolte, & Daffertshofer, 2007) were widely utilized

and the latter one is less sensitive to volume conduction (Nentwich

et al., 2020; Nolte et al., 2004). The limitation of coherence and corre-

lation is that only either spectral components or temporal information

can be observed while no information about brain dynamics is pro-

vided. Time-frequency analysis methods are popular to study the

changes in cortical connectivity, simultaneously extracting spectral

and temporal information (Sankari, Adeli, & Adeli, 2012). The short-

time Fourier coherence (STFC) (Chen, Ros, & Gruzelier, 2013;

Wendling, Ansari-asl, Bartolomei, & Senhadji, 2009) and wavelet

coherence (WC) (Ieracitano, Duun-Henriksen, Mammone, La Fore-

sta, & Morabito, 2017; Lachaux et al., 2002; Qassim, Cutmore, &

Rowlands, 2017; Sankari et al., 2012; Sankari & Adeli, 2011) are uti-

lized by several studies to produce EEG functional connectivity in the

time-frequency domain. STFC employs a fixed sliding window to

achieve spectral analysis within the time window, while WC optimizes

and adjusts the wavelet base for different signal frequencies to char-

acterize time-varying coherence (Sakkalis, 2011).

2.1.2 | Nonlinear methods

Phase synchronization is a category that focuses on the phase cou-

pling of oscillation systems. The phase locking value (PLV; Bajo

et al., 2015; Bedo, Ribary, & Ward, 2020; Delgado-Restituto,

Romaine, & Rodríguez-Vázquez, 2019; Mheich, Hassan, Khalil,

Berrou, & Wendling, 2015; Sadaghiani & Kleinschmidt, 2016) and the

phase lag index (PLI; Chaturvedi et al., 2019; Fraga González

et al., 2018; Liao, Zhou, & Luo, 2019; Stam et al., 2007) are high-

frequently used to obtain the strength of phase synchronization.

Information theory is regarded as another efficient method in the case

of extracting nonlinear interactions among EEG signals. To be more

specific, mutual information (MI; Melia et al., 2015; Meng, Yao, Sheng,

Zhang, & Zhu, 2015; Piho & Tjahjadi, 2020; Rajendra Acharya

et al., 2012; Yin et al., 2017) and synchronization likelihood (SL; Alten-

burg, Vermeulen, Strijers, Fetter, & Stam, 2003; Chriskos, Frantzidis,

Gkivogkli, Bamidis, & Kourtidou-Papadeli, 2018; Mumtaz, Ali, Yasin, &

Malik, 2018; Pijnenburg et al., 2004; Yu et al., 2017) are used to esti-

mate the undirected functional connectivity from EEG recordings,

while the directed transfer of information can be quantified by trans-

fer entropy (TE). Choosing SL as a connectivity measure might lead to

biased results since SL is sensitive to volume conduction effects

(Boersma et al., 2013). In contrast, TE has demonstrated its robustness

against volume conduction. (Harmah et al., 2020; Huang, Pal,

Chuang, & Lin, 2015; McBride et al., 2015; Yang, Le Bouquin Jeannes,

Bellanger, & Shu, 2013; Yao & Wang, 2017). It should be noticed that

information-based approaches are fully model-free. That is to say, rel-

atively fewer assumptions tend to be imposed on the data, but it

trades in the need for larger data sets (Seth et al., 2015; Zhao

et al., 2020).

2.2 | Parametric methods

The parametric methods refer to a framework or procedure where

there is a specification of a model that requires a set of fixed parame-

ters to be fitted to the observed signals (Sakkalis, 2011; Salman,

Grover, & Shankar, 2018; Zhao, Billings, Wei, & Sarrigiannis, 2012).

Compared with model-free techniques, parametric-model-based

methods are more commonly accepted to estimate the effective con-

nectivity of multi-channel EEGs. In this case, parametric effective con-

nectivity is based on theoretical models that describe how brain areas

interact and influence each other (Sakkalis, 2011). Dynamic causal

modeling (DCM; Brown & Friston, 2012; Herz et al., 2012; Lee,

Yoon, & Lee, 2020; Van de Steen, Almgren, Razi, Friston, &

Marinazzo, 2019) applies a Bayesian framework to assess model per-

formance, and structural equation modeling (SEM; Astolfi et al., 2004;

Babiloni et al., 2003; Sartori, Bertoldo, Zavaglia, Ursino, &

Toffolo, 2012)is a generalized linear modeling framework combining

factor analysis with path modeling (Kaur et al., 2019). DCM and SEM

treat the brain as a deterministic nonlinear and linear system, respec-

tively (Astolfi et al., 2004; David et al., 2006; Friston, Harrison, &

Penny, 2003).

Unlike DCM and SEM that require a certain amount of a priori

knowledge about connectivity, many researchers have developed var-

ious data-driven methods for quantifying effective connectivity based

on Granger causality (Salman et al., 2018). Granger causality-related

methods occupy a useful middle ground between fully model-free and

highly model-dependent approaches (Seth et al., 2015). Most of the

Granger causality measures are constructed based on autoregressive

models, in which the present samples of the signals are predicted

using a linear or nonlinear combination of the past samples

(Omidvarnia, Mesbah, Khlif, et al., 2011; Omidvarnia, Mesbah,

O'Toole, et al., 2011; van Mierlo et al., 2014a; Zhao et al., 2020; Zhao,

Billings, Wei, He, et al., 2013; Zhao, Billings, Wei, &

Sarrigiannis, 2013). According to the considered coefficients of the

autoregressive models, partial directed coherence (PDC; Ghumare,

Schrooten, Vandenberghe, & Dupont, 2018; He, Billings, Wei, &

Sarrigiannis, 2014; Mazher, Abd Aziz, Malik, & Ullah Amin, 2017;

Silfverhuth, Hintsala, Kortelainen, & Seppänen, 2012; Varotto

et al., 2012; Varotto et al., 2014) and directed transfer function (DTF;

Haufe, Nikulin, & Nolte, 2011; Omidvarnia, Mesbah, Khlif,

et al., 2011; Omidvarnia, Mesbah, O'Toole, et al., 2011) were applied

in the field of EEG-based neuroscience. PDC is computationally more

efficient and more robust than DTF since it does not involve any

matrix inversion (He, Billings, et al., 2014). Granger causality was origi-

nally developed in the context of linear autoregressive with

CAO ET AL. 863



F IGURE 2 Legend on next page.
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exogenous (ARX) input models (Geweke, 1982), while some

researchers focused on nonlinear causality, which is generated by

nonlinear ARX model in time and frequency domains (Chen

et al., 2019; He et al., 2013; He, Wei, Billings, & Sarrigiannis, 2014;

Zhao, Billings, Wei, He, et al., 2013; Zhao, Billings, Wei, &

Sarrigiannis, 2013). Besides the traditional Granger method, the error

reduction ratio-causality (ERR-causality) test was proposed to esti-

mate the time-varying direction and strength of linear or nonlinear

causality between two signals as well as their relative time shift

(Sarrigiannis et al., 2014; Zhao et al., 2012, 2020).

3 | VISUALISATION OF BRAIN
CONNECTIVITY

To effectively interpret results obtained from EEG recordings, many

researchers have developed or employed various distinguished visuali-

zation approaches. This section aims to review the typical visualiza-

tion methods for functional and effective connectivity and provide

corresponding critical comparisons. The visualization methods can be

categorized into three groups: heat map, data statistics, and

head map.

Heat map generally employs an adjacency matrix to represent

the quantification of brain connectivity, which performs well in

showing the overall relationship between all pairs of available EEG

channels. Chu et al. (2015) found a significant similarity between

functional and structural networks within dysplasia patients.

Regions of Interests (ROIs) for structural network analysis were

selected to overlap with ROIs used for constructing the functional

networks. The functional connectivity was quantified by cross-

correlation and coherence and visualized by a heat map, as shown

in Figure 2a. This visualization method was also used in pediatric

epilepsy studies (Sargolzaei et al., 2015) and the analysis of sponta-

neous blood oxygen level-dependent signals (Chang, Liu, Chen,

Liu, & Duyn, 2013).

The data statistic method tends to quantitatively compare

targeted pairs and visualize significant ones by setting a threshold.

Blinowska et al. (2017) demonstrated a statistical difference among a

series of directed pairs in the contribution of Nonnormalized directed

transfer function pairs values (Figure 2b), indicating the most impor-

tant connections for the discrimination between healthy elderly and

Alzheimer's disease individuals (Blinowska et al., 2017). Similarly, PLI

was estimated and visualized by a statistic method for patients with

Fragile X Syndrome (FXS; Van Der Molen, Stam, & Van Der

Molen, 2014), where the healthy control group shows the brain con-

nectivity difference in typical frequency ranges.

With a combination of brain connectivity and a head map,

researchers were able to represent the distinction between health and

disease and responses to external stimuli while demonstrating the

importance of specific brain regions. Figures 2c,d visualize brain func-

tional connectivity for epilepsy diagnosis (Sargolzaei et al., 2015) and

effective connectivity for human emotional responses to various

types of music (Shahabi & Moghimi, 2016) respectively. Besides, Zhao

et al. (2020) proposed a revised circular graph to visualize the func-

tional connectivity quantification for the classification of Alzheimer's

disease (Figure 2e), which demonstrates the potential contribution of

specific regions to disease diagnosis.

Both heat map and head map methods can represent connectivity

distributions reflecting an extent involvement of specific brain

regions. The heat map employs an adjacency matrix to show intercon-

nections between each electrode pair, while the head map helps iso-

late and visualize brain areas of interest that can be used in

developing specific applications, such as the representation of con-

nectivity differences for diagnostic purposes (i.e., brain network func-

tion in health and various neurological disorders). It is worth noting

that the determination of an appropriated threshold is important for

the implementation of an appropriate head map method, since too

much or too little information may limit connectivity interpretation.

Moreover, a heat map is usually used for visualizing functional con-

nectivity but not effective connectivity while the head map can reveal

both types of connectivity. Another advantage of heat map is that it

can generate appropriate inputs for deep learning models. For

instance, Chen et al. (2019) used MI to build the heat map, which is

then used as the inputs to the CNNs. The data statistics approach,

compared with the other two methods, focuses more on quantifica-

tion. To be more specific, this method tends to provide numerical

comparison and select the most valuable connections by setting

thresholds. Therefore, it is more suitable for studies that aim to reflect

on data difference among a limited number of electrode pairs. How-

ever, the overall topological connectivity characteristics cannot be

represented, which limits the ability to infer the contribution of struc-

tural connectivity to the findings.

F IGURE 2 Examples of the visualization of brain connectivity. (a) Structural and functional networks are topologically similar. Examples of
structural and functional adjacency matrices from one patient. Similarity between structural network architecture and cross-correlation and
coherence functional networks is visually evident (Chu et al., 2015). (b) Contribution of non-normalized directed transfer function (NDTF) pairs

variables to PC1 in terms of Principal component analysis (PCA) loadings. Only these NDTF pairs which showed statistical differences between
Nold and AD groups on the level p <0.0005 contributed. It provides information about the importance of a particular parameter in the
classification procedures (Blinowska et al., 2017). (c) Constructed functional connectivity map (The threshold of is applied as the connection
strength) for subject diagnosed with left frontal region epilepsy and subject diagnosed with generalized epilepsy (Sargolzaei, Cabrerizo,
Goryawala, Salah, & Adjouadi, 2015). (d) Effective brain networks (averaged over all participants) for responses to different emotional music
(Shahabi & Moghimi, 2016). (e) A revised circular graph plot overlaid with EEG electrode locations to highlight the real electrode locations and
their corresponding locations in the plot (Zhao et al., 2020)
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4 | APPLICATIONS AND ML

4.1 | Practical application

Increasing evidence exists that brain connectivity analysis, quantified

by statistical dependence (e.g., correlation and coherence), informa-

tion theory, and parametric and nonparametric causality analysis, can

reveal the changes of the brain signal behavior or patterns of neuro-

logical patients. Over the past few years, there was substantial devel-

opments and emergences of a great number of promising results for

analyzing and understanding different types of neurological disorders

such as Alzheimer's disease (Bajo et al., 2015; delEtoile & Adeli, 2017;

Engels et al., 2015; Sankari & Adeli, 2011), epilepsy (Clemens

et al., 2013; Douw et al., 2010; Visani et al., 2010; Xie &

Krishnan, 2013) and Parkinson's disease (Chaturvedi et al., 2019;

Evangelisti et al., 2019; Handojoseno et al., 2013; Yuvaraj

et al., 2016). In addition to neurological and neurophysiological studies

and associated clinical applications, there is a wide range of applica-

tions where the research objectives are to assist human in under-

standing brain behavior, for example, emotion recognition

(Khosrowabadi, Heijnen, Wahab, & Quek, 2010; Lee & Hsieh, 2014;

Shahabi & Moghimi, 2016), object recognition (Kaur et al., 2019; Supp

et al., 2007; Tafreshi et al., 2019), mental assessment (Al-Shargie

et al., 2019; Cattai et al., 2018; Rathee, Cecotti, & Prasad, 2017), and

biometric identification (Fraschini, Pani, Didaci, & Marcialis, 2019; La

Rocca et al., 2014; Wang et al., 2019).

In the meantime, the rapid progression of ML technology, applied

in the field of brain connectivity has led to very significant develop-

ments, aiming to achieve a deeper and better understanding of brain

network behaviors for the health group and patients with various neu-

rological conditions. Table 2 shows a depiction of some recent appli-

cations of brain connectivity estimations supported by ML methods.

4.2 | Hand-crafted versus imaging features

On one hand, state-of-the-art methods for EEG-based applications

mostly apply a procedure that comprises hand-crafted features and

traditional ML classifiers. For example, “PCC, WC, MSC, PS, and MI

+ SVM” is applied to object recognition (Tafreshi et al., 2019), “WC

+ LDA” is used for the diagnosis of Parkinson's disease-related

dementia and Alzheimer's disease (Jeong et al., 2016), “DTF + SVM”
is used for the detection of brain responses to emotional music

(Shahabi & Moghimi, 2016) and “SL + SVM, LR, and NB” is used for

TABLE 2 Recent applications combining brain connectivity estimations with machine learning methods

Applications Estimation + ML method

Object recognition (Tafreshi et al., 2019) PCC, WC, MSC, PS, and MI + SVM

Diagnosis of Parkinson's disease-related dementia and Alzheimer's disease

(Jeong, Do Kim, Song, Chung, & Jeong, 2016)

WC + linear discriminant analysis (LDA)

Prediction of freezing of gait in Parkinson's disease patients (Handojoseno

et al., 2013)

PCC + multilayer perceptron neural network and k-nearest neighbor

classifier

Emotion recognition (Piho & Tjahjadi, 2020) MI + SVM, naive Bayes (NB) classifier, and K-nearest neighbors (KNN)

Detection of brain responses to emotional music (Shahabi &

Moghimi, 2016)

DTF + SVM

Discrimination between Alzheimer's patients and healthy individuals

(Blinowska et al., 2017)

DTF + artificial neural networks (ANNs)

Depression diagnosis (Saeedi et al., 2020) PDC and DTF + long short-term memory and convolutional neural

networks (CNN)

Attention-deficit/hyperactivity disorder identification (Chen et al., 2019) MI + CNN

Diagnosis of Alzheimer's disease (Zhao et al., 2020) ERR + KNN

Diagnosis of major depressive disorder (Mumtaz et al., 2018) SL + SVM, logistic regression (LR) and NB

Classification of autism spectrum disorder (Jamal et al., 2014) PS + LDA and SVM

Speech categorization decisions (Al-Fahad, Yeasin, & Bidelman, 2019) PCC and graph network + SVM and LDA

Transcranial magnetic stimulation monitoring (Gupta, Du, Hong, &

Choa, 2019)

Coherence + principal component analysis (PCA) along sparse

nonnegative matrix factorization (NMF)

Detecting disorders of consciousness (Wang, Tian, Zhang, & Hu, 2020) Ensemble of SVMs + power spectral density difference (PSDD)

incorporating with a recursive cosine function

Sedation scale estimation (Sanz-García et al., 2019) PS + SVM

Detecting psycho-physiological insomnia (Aydın, Tunga, & Yetkin, 2015) MI, PCC and MSC + NB, random forest, regression methods and

nearest neighbor based methods

Investigation of the effect of Clozapine therapy (Ravan, Hasey, Reilly,

MacCrimmon, & Khodayari-Rostamabad, 2015)

Cross-power spectral density (CPSD) + fuzzy c-mean

Face perception tasks (Jamal, Das, Maharatna, Pan, & Kuyucu, 2015) PLV + LDA and KNN
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the diagnosis of major depressive disorder (Mumtaz et al., 2018). On

the other hand, various visualization methods provide robust features

for deep learning in recent years. For instance, Saeedi et al. (2020)

reconstructed a connectivity image using two connectivity measures

(PDC and DTF) and eight frequency bands for the input of deep learn-

ing networks. The proposed achieved an accuracy of 99.24% in the

case of major depressive disorder diagnosis.

5 | DISCUSSION

5.1 | Connectivity estimation

Brain connectivity has shown significant potential in assessing brain

function in patients with different neurological disorders and tracking

various cognitive and emotional brain states for healthy participants.

It is crucial to select the most appropriate connectivity measure, as

widely distributed complex brain networks generate diverse topologi-

cal signal processing and intercommunications in distinct conditions.

Therefore, many novel methods have been developed from manifold

aspects. This includes consideration of linear or nonlinear behaviors,

the information in time, frequency or time-frequency domain, para-

metric or nonparametric measures, directed or undirected

information.

5.1.1 | Functional connectivity versus effective
connectivity

In the studies of effective connectivity, parametric methods have

been extensively used to quantify directional interconnections

among separated brain regions. The main advantage of parametric

modeling of effective analysis is that the model structure is usually

transparent and compact, with lagged signals being the model vari-

ables. The estimation of parametric models usually does not need a

large number of samples, therefore parametric modeling allows to

perform a transient or time-dependent connectivity analysis (Li, Lei,

Cui, Guo, & Wei, 2019; Zhao et al., 2012). On the other hand, func-

tional connectivity captures statistical independence between dis-

tributed and spatially separated neuronal areas, using for example, a

bi-variate measure (Wang et al., 2019). Functional connectivity is

generally model-free, which decreases the need of setting strict

assumptions on signals. However, the amount of data needs to be

increased to meet the calculation demand of functional connectivity

estimation.

5.1.2 | Phase-based connectivity versus amplitude-
based connectivity

Brain connectivity can also be divided into phase-based connectivity

and amplitude-based connectivity. Connectivity of the amplitude is

usually estimated with correlation (Brookes et al., 2011; Chang

et al., 2013; Hipp & Siegel, 2015; Wang et al., 2020), while phase cou-

pling is generally estimated with coherence-based methods and phase

synchronization (Bastos & Schoffelen, 2016; Chaturvedi et al., 2019;

Fagerholm et al., 2020; Nolte et al., 2004; Stam et al., 2007). These

aspects further capture different neural processes (He et al., 2019;

Siems & Siegel, 2020). As a result, the phase- and amplitude-based

approaches give partially overlapping, partially differing results. At the

same time, it has been shown that in noisy signals, phase and ampli-

tude dynamics influence each other and the reliability of phase esti-

mation inherently depends on the signal-to-noise ratio (SNR) and may

generally be more accurate in the presence of higher signal amplitudes

(He et al., 2019).

5.1.3 | Precautions during analysis

Volume conduction, an important issue when analyzing EEG record-

ings, has been shown to influence sensor-space connectivity analyses

(Haufe et al., 2013), for example, phase coupling (Palva et al., 2018),

Granger causality (Haufe et al., 2013), and correlation methods

(Hipp & Siegel, 2015). To avoid the effect of volume conduction, some

methodshave been proposed, such as imaginary part of the coherency

(van Mierlo et al., 2014a), DTF (Kamifiski & Bfinowska, 1991) and

PDC (Baccalá & Sameshima, 2001). Besides, calculating source-level

connectivity from sensor-level EEGs could get rid of the influence

caused by volume conduction or field propagation (He et al., 2019).

This process is the so-called inverse problem (Van Diessen

et al., 2015). In the meantime, some researchers suggest the interpre-

tation of connectivity measures from sensor-level EEG recordings is

not straightforward. Instead, source-level EEG is believed to be a reli-

able tool for measuring connectivity and it can be reconstructed from

the scalp EEG (Moezzi & Goldsworthy, 2018).

5.2 | Role of visualization

Visualization plays a crucial role in the research of EEG brain connec-

tivity. Specifically, it establishes the base for further practical and clini-

cal uses of novel methods. It could not only improve the efficiency for

other researchers to understand and evaluate the proposed

approaches and produced results, but also benefit experts in pre-

senting and explaining the finding obtained from various advanced

methods to people without basic knowledge of EEG signals and brain

connectivity. The heat map, data statistics and head map generally

conclude various popular visualization methods and meet the distinct

requirements and aims of researchers.

Besides, EEG study could be combined with appropriate visualiza-

tion methods to study potential functions, oscillations and intercom-

munications within a dynamic architecture of the human brain (Chen

et al., 2013). The current medical instrument related to EEG focuses

on oscillations and biomarkers within a signal channel (Ratti,

Waninger, Berka, Ruffini, & Verma, 2017). Therefore, from the

authors' point of view, development and innovations of visualization
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have the potential to promote the upgrading of EEG-related equip-

ment, as well as explore more secrets within the human brain.

Another opportunity for brain connectivity visualization is the

combination with deep learning methods, which has attracted increas-

ing investigation for brain study. There is a significant amount of

works to use a variety of deep learning methods in the understanding

of EEG recording, but most of them use the raw data directly. The lim-

itation of such approaches is the lack of transparency because they

usually cannot reveal which brain region has the anomaly and how it

leads to neurological disorders. There is increasing evidence that CNN

has superior performance to classify images by learning the spatial

pattern of raw images automatically, instead of using handcrafted fea-

tures. Therefore, it is promising to use the brain connectivity visualiza-

tion, in a form of images, to be fed into CNN in the classification.

Essentially, in this approach, brain connectivity acts as handcrafted

features, but in an image format instead of singular values. Chen et al.

proposed a general framework for the attention-deficit/hyperactivity

disorder (ADHD) identification problem by combining an EEG-based

brain network, estimated by MI, with CNN techniques (2019). The

proposed framework achieved a convincing performance with an

accuracy of 94.67% with the heat map visualization. Besides func-

tional connectivity, effective connectivity visualization can also pro-

vide valuable inputs for CNN. For example, Saeedi et al. (2020)

constructed a connectivity image with two connectivity measures

(PDC and DTF) and eight frequency bands as the input of deep learn-

ing networks. The experiments show that the CNN applied on the

constructed image of effective connectivity achieves the best results

with an accuracy of 99.24% in the case of major depressive disorder

diagnosis.

5.3 | Research gaps and future direction

Although significant outcomes in this area have been achieved, limita-

tions and significant challenges remain. First, brain network interac-

tions are dynamic and may be time-varying (the associated signals are

nonstationary), as phase synchronization and phase scattering occur

within the millisecond range (Varela, Lachaux, Rodriguez, &

Martinerie, 2001). Transient associations, usually highly nonlinear,

among different brain regions have been observed (Sarrigiannis

et al., 2014, 2018). Even though recent years witnessed the develop-

ment of brain connectivity techniques, there are limited methods that

can analyze nonstationary and nonlinear behaviors of brain networks.

Exploring the hidden information within EEG signals is far beyond the

capabilities of commonly available methods. Second, simplifying the

interpretation of data-driven methods is a challenge. While traditional

parametric models extended from AR models, for example, auto-

regressive moving average with exogenous input (ARMAX) and

nonlinear autoregressive moving average with exogenous input

(NARMAX) models (Gu et al., 2021) and dynamic causal model (David

et al., 2006) are parsimonious and transparent, whose individual

model terms have a clear explanation and can be linked back to the

original neural system, other types of parametric models for example,

nonlinear kernel models (Shen, Baingana, & Giannakis, 2016) tend to

be complicated and it becomes difficult to relate the models back to

the underlying system due to the lack of transparency. Interpretation

of the outcomes of nonparametric methods for example, neural net-

works (Abbasvandi & Nasrabadi, 2019; Saeedi et al., 2020) require

sufficient mathematical knowledge and probably some specific and

professional modeling skills. Therefore, the overall performance of

such methods heavily depends on the experience and knowledge of

the end-users, typically clinicians or doctors if the tools are developed

for clinical applications. Third, there is no real-time feedback of brain

functional connectivity during data acquisition in current EEG sys-

tems. As a result, scientists (e.g., neurologists or neurophysiologists)

cannot flexibly focus on the examination of specific network areas in

real-time or determine where the most significant abnormalities state

or behavior takes place. Some researchers have started to integrate

EEG with augmented reality (Mercier-Ganady, Lotte, Loup-Escande,

Marchal, & Lecuyer, 2014; Vortmann et al., 2019), but they only

focused on the information obtained from a single channel. There is a

lack of applications to track and visualize time-varying brain connec-

tivity in real-time. Fourthly, from the authors' point of view, there are

a lot of visualization and imaging techniques in neuroscience and

some of them used for other imaging modalities also have the poten-

tial to visualize EEG brain connectivity. For instance, BioImage Suite

provides an attractive and interpretative visualization for fMRI func-

tional connectivity (Finn et al., 2015; Shen et al., 2018).

TABLE 3 The potential directions of EEG brain connectivity
research

Future
direction Purpose or strategy

Novel

estimation

Extract more valuable information from EEG signals

by robust brain connectivity methods, especially

nonstationary and nonlinear

intercommunications.

Interpretability Design appropriate visualization methods to reduce

the difficulty of understanding the actual

implication of brain connectivity estimation and

its outcomes, such as disease diagnosis and brain

activity analysis.

Universality Build a large dataset covering people with different

ages, genders and diseases conditions to develop

and evaluate universal brain connectivity

methods.

Real-time

research

Establish a real-time sensor and monitoring system

based on advanced brain connectivity estimation

and visualization approaches, capturing dynamic

neuro-connectivity and assisting observation.

Improved

diagnosis

Using the visualization of estimated brain

functional or effective connectivity as the input

of deep learning method to maintain the

transparency and improve the classification

accuracy.

Application

extension

Pursue a deeper understanding of the brain

network and explore potential fields where EEG

brain connectivity can be used.
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Therefore, even though brain connectivity techniques have been sig-

nificantly developed over the past years, more validation and improve-

ments/developments are still required. Table 3 suggests potential

directions and possible strategies, which will help deepen our understand-

ing of brain functional and effective connectivity from a variety of novel

perspectives, as well as how to enhance their availability and reliability.

6 | CONCLUSIONS

This article reviewed recent studies in estimating brain functional and

effective connectivity using EEG with associated visualization as well as

their applications. It is observed that functional connectivity is usually

measured using nonparametric methods while effective connectivity is

measured by parametric methods. In comparison to parametric

methods, nonparametric methods require relatively fewer assumptions,

but they trade in the need for larger data sets. Nonlinear dynamics and

the spatiotemporal characteristics of brain networks hidden within EEG

recordings have the potential to be identified using appropriate func-

tional and effective connectivity methods. Although progress has been

made the potential of those methods is far from being fully explored. It

is expected that future research in this area will focus on better inte-

grating different methods in particular ML approaches to improve the

accuracy of disease diagnosis meanwhile increasing transparency. Real-

time visualization of brain connectivity during the data acquisition stage

can be introduced to improve the data quality, and help scientists better

identify which areas of the brain exhibit connectivity deficits under vari-

ous neurological conditions.
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APPENDIX: THE CONCEPTUAL AND MATHEMATICAL DETAILS

FOR CALCULATING BRAIN CONNECTIVITY

Functional connectivity

Correlation

PCC is able to evaluate the linear interdependency between two sig-

nals in the time domain and it ranges from �1 to +1. The correlation

coefficient between signal X and Y can be defined as follows (van

Mierlo et al., 2014a):

ρxy ¼
E x�μxð Þ y�μy

� �� �
σxσy

ð1Þ

where E is the expected value, μx and μy are the mean values and σx

and σy are the standard deviations of X and Y time series.

Cross-correlation differs from PCC since it is a function with

respect to time lag τ, which can be expressed as (Ibrahim et al., 2018;

van Mierlo et al., 2014a).

ρxy τð Þ¼E xn�μxð Þ ynþτ�μy
� �� �

σxσy
ð2Þ

Magnitude squared coherence

MSC is a linear method to estimate the interconnections between

two signals in the frequency domain calculated by PSD. The MSC of

signal X and Y can be written as (van Mierlo et al., 2014a, 2014b;

Wendling et al., 2009)

MSCxy fð Þ¼C2
xy ¼

Sxy fð Þ2
Sxx fð Þj j� Syy fð Þj j ð3Þ

where Sxx fð Þ and Syy fð ) are the PSD of signal X and Y respectively, and

Sxy fð Þ is the cross PSD at frequency f.

To avoid the volume conduction effects, the imaginary part of the

coherency is employed by a few studies instead of looking at the mag-

nitude and phase of the coherency (Ewald et al., 2012; Van Diessen

et al., 2015; van Mierlo et al., 2014a).

Cxy ¼RCxyþ ICxy ð4Þ

Wavelet coherence

WC is generally acknowledged as a qualitative estimator that can

represent the time-varying relations in the time-frequency

domain between signals with a specifically determined scale

(Labat, 2005; Tafreshi et al., 2019). To be more specific, the

wavelet transforms of a signal x is a function of both time and

frequency, which is defined as the convolution of the input with a

Wavelet family θ uð Þ:

Wx t, fð Þ¼
ðþ∞

�∞

x uð Þ �θ�t,f uð Þdu ð5Þ

Wavelet cross-spectrum around time t and frequency f, given

input signals x and y, can be derived by the Wavelet transforms of x

and y:

CWxy t, fð Þ¼
ðtþδ=2

t�δ=2

Wx τ, fð Þ �W�
y τ, fð Þdτ ð6Þ

where * defines the complex conjugate and δ is assumed as a

frequency-depending scalar.

WC at the time t and frequency f is derived as:

WCoxy t, fð Þ¼ CWxy t, fð Þj j
CWxx t, fð Þ�CWyy t, fð Þj j1=2

ð7Þ

Short-time Fourier coherence

Short-time Fourier transform (STFT) is also implemented in the time-

frequency domain instead of the classical fast Fourier transform

approach to calculate coherence, and coherence may be calculated

around a number of time instants. This technique produces the so-called

“coherogram,” which forms a three-dimensional matrix of time and fre-

quency against coherence. However, stationarity is still required within

each time interval for which coherence is calculated, meaning that in

practice one should carefully decide on the optimal section length over

which each coherence estimate is measured. Window length and over-

lapping within each coherence estimate affect the resolution of the

measure (Delgado-Restituto et al., 2019; Sakkalis, 2011).

Phase synchronization

Phase synchronization (PS) assumes two oscillation systems without

amplitude synchronization can have phase synchronization. The PLV

and the PLI are high-frequently used to obtain the strength of phase

synchronization (van Mierlo et al., 2014a). The instantaneous phase of

a signal x is given by:

;x tð Þ¼ arctan
ex tð Þ
x tð Þ ð8Þ

where ex tð Þ is the Hilbert transform of x tð Þ which is defined as:

ex tð Þ¼1
π
PV
ðþ∞

�∞

x τð Þ
t� τ

dτ ð9Þ
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where PV refers to the Cauchy principal value. The PLV for two sig-

nals is defined as:

PLV¼ 1
N

XN�1

j¼0

ej ;x jΔtð Þ�;y jΔtð Þð Þ
�����

����� ð10Þ

where Δt defines the sampling period and N indicates the sample

number of each signal (Mormann, Lehnertz, David, & Elger, 2000). The

range of PLV is from 0 to 1, where 0 shows a lack of synchronization

and 1 indicates strict phase synchronization.

The PLI captures the asymmetry of the distribution of phase dif-

ferences between two signals and is calculated based on the relative

phase difference between the two signals(Borrego-Salcido, Juárez-

Del-Toro, & Cruz.Aké, 2019; Wendling et al., 2009).

PLI¼ E sign Δ; tð Þð Þ½ �j j ð11Þ

The resulting value lies in the interval 0,1½ �, where a higher value

indicates more phase synchrony.

Synchronization likelihood

SL is a measure of multivariate synchronization to investigate the

interactions between nonlinear dynamical systems without any

knowledge about the governing equations (Stam & van Dijk, 2002).

For an M-channel time series xk,n (k denotes channel number [k = 1,…,

M]), embedded vectors Xk,n are reconstructed with time-delay

embedding:

Xk,n ¼ xk,n , xk,nþτ , … xk,nþ m�1ð Þτ
� � ð12Þ

where m is the embedding dimension and τ denotes time lag. The

estimated probability that embedded vectors Xn are closer to each

other than a distance ε is (Wendling et al., 2009):

Pεk,n ¼
1

2 w2�w1ð Þ
XN
j¼1

w1 < i� jj j<w2

θ ε� Xk,i�Xk,j

�� ��� � ð13Þ

where �j j is the Euclidean distance; θ stands for the Heaviside step

function, w1 is the Theiler correction and w2 determines the length of

the sliding window. Letting Pεx,n ¼Pref, where Pref �1, the number of

channels Hi,j where the embedded vectors Xk,i and Xk,j will be closer

together than this critical distance εk,i:

Hi,j ¼
XM
k¼1

θ εk,i� Xk,i�Xk,j

�� ��� � ð14Þ

SL at time n can be obtained by averaging over all values of j

SLn ¼ 1
2Pref w2�w1ð Þ

XN
j¼1

w1 < i� jj j<w2

Hi,j�1
M�1

� �
ð15Þ

All aforementioned measures are normalized between 0 and 1; the

0 value means that the two signals are completely independent. On

the opposite, the 1 value means that the two signals are completely

synchronized (Wendling et al., 2009).

Mutual information

According to information theory, MI of two random variables X and Y

shows how a random variable is informative for the other one. Let,

P xð Þ and P yð Þ be the probability distributions of random variables X

and Y , respectively. The entropy of X and Y is defined as (Tafreshi

et al., 2019):

H Xð Þ¼�
XN
j¼1

P xj
� �

logb P xj
� �� � ð16Þ

H Yð Þ¼�
XN
j¼1

P yj
� �

logb P yj
� �� � ð17Þ

where n defines window length.

H Y Xj Þð and H X,Yð Þ are conditional entropy and joint entropy

between X and Y, defined respectively as:

H X,Yð Þ¼�EX EY logbP X,Yð Þ½ �½ � ð18Þ

H Y Xj Þ ¼�EX EY logbP Y Xj Þð �½ �½ð ð19Þ

where E is the expected value function.

MI of two random variables X and Y is computed as follows

(Khosrowabadi et al., 2010):

MI X,Yð Þ¼H Xð ÞþH Yð Þ�H X,Yð Þ¼H Yð Þ�H Y Xj Þð ð20Þ

MI X,Yð Þ¼0 if and only if random variables X and Y are statistically

independent.

Effective connectivity

Granger causality

Granger causality can estimate effective interactions from time-series

data Granger causality implements a statistical, predictive notion of

causality whereby causes precede and help predict their effects (Seth

et al., 2015). It is defined in both the time and frequency domains, and

it allows for the conditioning out of common causal influences. One
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time series is said to Granger cause a second one if the inclusion of

the past values of the first into the modeling of the second signifi-

cantly reduces the variance of the modeling error. According to

Granger causality, if the past values of X contain information that

helps to predict Y above and beyond the information contained in

past values of Y alone then signal X “Granger-causes” signal Y. The

Granger causality from signal X to Y and the one from signal Y to X

can be investigated separately. (van Mierlo et al., 2014a).

Partial directed coherence

PDC is a method that quantifies the relation between two among

N signals, avoiding volume conduction by estimating influences of all

other signals (Tafreshi et al., 2019). PDC improves the concept of Par-

tial Coherence by estimating causal influences. This method is esti-

mated on multivariate autoregressive (MVAR).

X tð Þ is a set of estimated signals from N recording channels:

X¼ x1 tð Þ, x2 tð Þ, … xN tð Þ½ �T ð21Þ

The MVAR process is an expressive description of the data set X:

XP
r¼0

A rð ÞX t� rð Þ¼ E tð Þ ð22Þ

In this model E tð Þ is a zero-mean multivariate uncorrelated white

noise vector. A rð Þ is the autoregressive coefficients matrix and its ele-

ments aij rð Þ indicates the influence of Xj t� rð Þ on Xi tð Þ and p repre-

sents the border of the model.

PDC from the ith channel to the jth channel at frequency f is

defined as follows:

εij fð Þ¼ Aij fð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1

Amj fð ÞA�
mj fð Þ

s ð23Þ

where Aij fð Þ is a frequency-domain description of aij rð Þ (Baccalá &

Sameshima, 2001; Granger & Aug, 2007)

Aij fð Þ¼
1�PP

r¼1
aij rð Þe�j2πfr , if i¼ j

�PP
r¼1

aij rð Þe�j2πfr , otherwise

8>>><>>>: ð24Þ

Directed transfer function

The directed transfer function (DTF) is also based on the concept of

Granger causality estimated on MVAR, which models all signals simul-

taneously (Kamifiski & Bfinowska, 1991). X tð Þ is a set of estimated sig-

nals from N recording channels:

X¼ x1 tð Þ,x2 tð Þ, … xN tð Þ½ �T ð25Þ

The MVAR process is an expressive description of the data set X:

XP
r¼0

A rð ÞX t� rð Þ¼ E tð Þ ð26Þ

In this model E tð Þ is a zero-mean multivariate uncorrelated white

noise vector with A 0ð Þ¼1. A 1ð Þ, A 2ð Þ,…, A pð Þ is coefficients matrix

and p represent the border of the model. Equation (20) can be trans-

formed into the frequency domain, which is defined as:

A fð ÞX fð Þ¼ E fð Þ ð27Þ

where

A fð Þ¼
Xp
r¼0

A rð Þe�j2πfΔtr ð28Þ

So, X fð Þ can be obtained by

X fð Þ¼A�1 fð ÞE fð Þ¼H fð ÞE fð Þ ð29Þ

H fð Þ is the transfer function of the system and its elements Hij fð Þ
indicate the causal influence from the jth input to the ith output at

frequency f.

The DTF is defined as:

β2ij ¼ Hij fð Þ�� ��2 ð30Þ

Normalized DTF is defined as:

γ2ij fð Þ¼ Hij fð Þ�� ��2PN
m¼1

Him fð Þj j2
ð31Þ

where γ2ij fð Þ describes the influence ratio of the jth channel-related

cortical area on the ith channel-related cortical area with respect to the

influence of all estimated cortical signals (Babiloni et al., 2005). This is an

important difference between DTF and PDC since DTF is normalized for

the structure that receives the signal, whereas PDC is normalized for the

structure that sends the signal (Baccalá & Sameshima, 2001).

Structural equation modeling

A set of linear structural equations are employed by the structural

equation modeling (SEM), exploring causal intercommunications

among the observed variables and parameters. In terms of neural sys-

tems, a measure of covariance represents the degree to which the

activities of two or more regions are related. The SEM technique esti-

mates the parameters by minimizing the difference between the

observed covariances and those implied by a structural or path model

(Astolfi et al., 2004; Babiloni et al., 2003).
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Dynamic causal modeling

The aim of DCM (Friston et al., 2003) is to make inferences about the

coupling among brain regions or sources and how that coupling is

influenced by experimental factors. DCM uses the notion of effective

connectivity, defined as the influence one neuronal system exerts

over another. The central idea behind DCM is to treat the brain as a

deterministic nonlinear dynamical system that is subject to inputs and

produces outputs. In neuroimaging, DCM starts with a reasonably

realistic neuronal model of interacting cortical regions. This model is

then supplemented with a forward model of how neuronal activity is

transformed into measured responses. This enables effective connec-

tivity of the neuronal model to be estimated from observed data

(David et al., 2006; Yvert, Perrone-Bertolotti, Baciu, & David, 2012).

Transfer entropy

TE is an alternative measure of effective connectivity based on infor-

mation theory. TE does not require a model of the interaction and is

inherently nonlinear (Vicente, Wibral, & Lindner, 2011). TE for two

observed time series xt and yt can be written as

TE X!Yð Þ¼
X

ytþu ,y
dy
t ,xdxt

p ytþu,y
dy
t ,xdxt


 �
log p

ytþu ydyt ,xdxt

��� �
p ytþu ydyt

��� �

0B@ ð32Þ

where t is a discrete-valued time-index and u denotes the prediction

time, a discrete-valued time-interval. ydyt and xdxt are dy� and dx�
dimensional delay vectors (Vicente et al., 2011).

Error reduction ratio

Error reduction ratio (ERR) is a parametric method in the time domain,

which indicates how much of the change in the system response, in

percentage, can be accounted for by including the relevant model

terms. This capability allows the computing of the contribution of lin-

ear and nonlinear terms independently without fitting the full

nonlinear model, where parameter estimation and model validation

are required. Consider a linear regression

Y¼PΘ ð33Þ

where

Y¼

y 1ð Þ
y 2ð Þ
..
.

y Mð Þ

2666664

3777775,P¼
PT 1ð Þ
PT 2ð Þ

..

.

PT Mð Þ

2666664

3777775,Θ¼

θ 1ð Þ
θ 2ð Þ
..
.

θ Mð Þ

2666664

3777775 ð34Þ

and PT kð Þ¼ p1 kð Þ,p2 kð Þ,…,pN kð Þð Þ. p1,p2,…,pN are the model terms

selected from the candidate term set. Matrix P can be decomposed as

P¼W�A where

W¼

w1 1ð Þ w2 1ð Þ … wN 1ð Þ
w1 2ð Þ w2 2ð Þ … wN 2ð Þ

..

. . .
. . .

. ..
.

w1 Mð Þ w2 Mð Þ … wN Mð Þ

266664
377775 ð35Þ

and A¼ aij
� 


is an upper triangular matrix with unity diagonal

elements.

Equation (33) is then rewritten as

Y¼WG, ð36Þ

where G¼AΘ¼ g1 g2 … gN½ �T . Equation (36) is now ready to repre-

sent the relation between Y and G.

The importance of each model term to the variation of the system

output is then estimated. Initially, set values aij ¼0 for i≠ j (A then

becomes an identity matrix), so w1 kð Þ¼ p1 kð Þ, and calculate g1 as

g1 ¼
PM

k¼1w1 kð Þy kð ÞPM
k¼1w1

2 kð Þ
: ð37Þ

For j¼2,3,…,M, set ajj ¼1 and then calculate

aij ¼
PM

k¼1wi kð Þpj kð ÞPM
k¼1wi

2 kð Þ , ð38Þ

where i¼1,2,…, j�1. Next, the algorithm calculates

wj kð Þ¼ pj kð Þ�
Xj�1

i¼1

aijwi kð Þ ð39Þ

and

g1 ¼
PM

k¼1wj kð Þy kð ÞPM
k¼1wj

2 kð Þ : ð40Þ

The ERR value for each term pi is finally defined as

ERRi ¼
bgi2PH

k¼1xi
2 kð ÞPH

k¼1
y2 kð Þ

: ð41Þ

Values of ERR range from 0 to 100%. The larger the value of ERR, the

higher the dependence between this term and the output. To stop the

search procedure and determine the number of significant terms N, a

criterion called Penalised Error-to-Signal Ratio (PESR) is used (Zhao

et al., 2012). It can be written as
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PESRm ¼ 1

1� λm
H

� �2 1�
Xm
i¼1

ERRi

 !
ð42Þ

This criterion is introduced to monitor the search procedure, where m

denotes the index of the selected terms. The search procedure stops

when PESRm achieves a local minimum. In this article, the value of λ

was chosen as 8.

To calculate the contribution of the input to the output, the sum

of ERR of all selected terms, denoted by SERR, is calculated by

SERR¼
XN
i¼1

ERRi: ð43Þ

Note N is the number of the selected terms, not the number of total

candidate terms. The value of SERR (0≤ SERR≤1) describes the

percentage explained by the identified model to the system output. If

the considered inputs can fully explain the variation of the system

output, the value of SERR is equal to 100%.

The linearity of connectivity is represented by the sum of ERR of

the linear terms, and it can be computed by

ERRL y,uð Þ¼

PN
b¼1

ERRbÞjpb �C1ð Þ
SERR

: ð44Þ

The nonlinearity of connectivity is represented by the sum of ERR of

the nonlinear terms, and it can be computed by

ERRN y,uð Þ¼

PN
b¼1

ERRbjpb =2C1ð Þ
SERR

: ð45Þ
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