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Abstract: Plasticizers are chemicals in high demand, used in a wide range of commercial products.
Human are exposed through multiple pathways, from numerous sources, to multiple plasticizers.
This is a matter of concern, as it may contribute to adverse health effects. The vascular system carries
plasticizers throughout the body and therefore can interact with the endothelium. The aim of the
study was to evaluate the in vitro toxicity on endothelial cells by considering the individual and
the mixture effects of bis-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP) or bis-(2-
ethylhexyl) terephthalate (DEHT). In this study, their cytotoxicity on HMEC-1 cells was evaluated
on cell function (viability, cell counting, total glutathione and intracellular adenosines) and mito-
chondrial function (mitochondrial respiration). Results showed cellular physiological perturbations
induced with all the condition tested, excepted for DEHT. Plasticizers induced a cytotoxicity by tar-
geting mitochondrial respiration, depleting mitochondrial ATP production and increasing glycolytic
metabolism. Additionally, delayed effects were observed between the cellular and the mitochondrial
parameters. These results suggest that endothelial cells could go through a metabolic adaptation to
face plasticizer-induced cellular stress, to effectively maintain their cellular processes. This study
provides additional information on the adverse effects of plasticizers on endothelial cells.

Keywords: DEHP; DEHT; DINP; mixture effects; human microvascular endothelial cells; in vitro;
mitochondrial dysfunction

1. Introduction

With global consumption reaching 7.5 million tons annually, plasticizers are chemicals
in high demand [1]. Plasticizers are chemical additives of low molecular weight. These
compounds are used to soften and to increase the flexibility of plastic materials [2]. Their
uses broaden over time to meet the growing industrial demand to the extent that plas-
ticizers are an ubiquitous part of contemporary lifestyle. They have been reported in a
wide range of commercial products, such as food packaging, toys, medical devices and
protective gloves [3–6]. Although plasticizer consumption is tremendous, their use is not
without risks.

Plasticizers can leach out during product use because they are not covalently bound.
Thus, plasticizer leaching from products is at risk of exposure, although this is uninten-
tional. Human exposure can occur through multiple pathways of exposure, including oral,
respiratory, dermal and parenteral routes [7–10]. This is a matter of particular concern
because human exposure to plasticizers has been related to adverse health effects. Many
epidemiological and experimental studies have focused on evaluating their reproductive
disorders [11–20]. Lately, studies have reported the association between exposure to plasti-
cizers and cardiovascular risk factors (e.g., high blood pressure, arrythmias, atherosclero-
sis) [21]. More recently, cardiovascular mortality was attributed to phthalate exposure [22].
However, investigation on the toxicological effects of plasticizers on the cardiovascular
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system remain limited, particularly considering that various medical devices containing a
high plasticizer content can expose the circulatory system [9,23,24].

Among the few studies conducted on the circulatory system, bis-(2-ethylhexyl) ph-
thalate (DEHP) is by far the most studied plasticizer, even though there is a diversity of
plasticizers on the market. DEHP was shown to induce vascular injury in orally exposed
C57/BL6 mice through alterations in vascular tone [25]. Moreover, DEHP contributed to
inflammation by increasing the serum level of pro-inflammatory cytokines in ApoE−/−

mice and in human umbilical vein endothelial cells [26,27]. Vascular damage induced
by plasticizers could also be mediated by oxidative stress on endothelial cells, as seen
with the increasing level of reactive oxygen species (ROS) in EA.hy926 cells exposed to
mono-2-ethylhexyl phthalate (MEHP), the main metabolite of DEHP [28,29]. Inflammation
and oxidative stress are two mechanisms that are plausible contributors of atherosclerosis.
DEHP-promoted atherosclerosis was reported in intraperitoneally exposed ApoE−/− mice
through LDL oxidation within the arterial wall and macrophage infiltrations along with the
disruption in lipid metabolism [26]. Altogether, the above-mentioned results lead to think
that exposure to plasticizers could mediate endothelial cell dysfunction. Indeed, DEHP
exposure modified the expression of adhesion molecules in ApoE−/− mice and in hu-
man umbilical vein endothelial cells [26,27]. Besides, endothelial cell injury was observed
in vitro following DEHP exposure with an imbalance in the antioxidant status [28,30].
Endothelial dysfunction could be related to mitochondrial alteration, as it is a well-known
target of oxidative stress [31]. The effects of plasticizers on the mitochondria were mostly
studied considering the mechanism of cell death with mitochondrial outer membrane per-
meabilization [28,30,32]. However, the mitochondrial energetic status following a cellular
stress induced by plasticizers remain limited despite its crucial role for cell functions.

Furthermore, most toxicological studies are not representative of real-life exposure.
On the one hand, plasticizers have mostly been evaluated individually although human
biomonitoring studies have emphasized that populations are exposed to a mixture of
plasticizers [33,34]. Hence, the effects of individual plasticizers is possibly modified when
in mixture because chemicals can interact with each other as revealed with the cumulative
effect of a mixture of five anti-androgenic phthalates on the reproductive tract development
in male rats [35]. Yet, the exposure to multiple plasticizers is rarely taken into account apart
from the reproductive system [36–38]. On the other hand, the REACH legislation frame-
work has initiated the replacement of classified phthalates (DEHP, benzyl butyl phthalate,
diisobutyl phthalate, dibutyl phthalate, dipropyl phthalate and dicyclohexyl phthalate) by
alternative plasticizers, such as long-chain phthalates (e.g., diisononyl phthalate (DINP))
and non-phthalate plasticizers (e.g., bis-(2-ethylhexyl) terephthalate (DEHT)) [34,39]. How-
ever, the substitution of plasticizers does not necessarily ensure absence of toxicity. For
example, DINP promoted hypertension in C57/BL6 mice following oral exposure by con-
tributing to vascular endothelial dysfunction through a decrease in both endothelial nitric
oxide synthase expression and nitric oxide production [40].

Experimental data on the effects of plasticizer mixture on the vascular system are
scarce even though it is a known target of the plasticizers. To our knowledge, only a recent
in vivo study was conducted to investigate the effects of plasticizer mixture on the vascular
system [41]. However, it investigated the blood–brain barrier, not the peripheral vasculature.
Thus, it is necessary to fill the remaining gaps because all the above-mentioned detrimental
effects of plasticizers on the vascular system encourage us to think that direct exposure
to plasticizers could result in endothelial dysfunction through an oxidative mechanism
or a mitochondrial impairment. To overcome this knowledge gap, this work aimed to
assess in vitro the toxicological effects of three representative plasticizers, alone and in a
mixture, on a human microvascular endothelial cell line (HMEC-1). The three plasticizers
were selected based on a previous work performed from gloves [6] and included DEHP
a well-known reproductive toxicant, along with two alternative plasticizers, DINP and
DEHT, as they constitute a representative group of the most used plasticizers while also
including traditional and alternative plasticizers [42–44]. We first compared cell viability,
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total intracellular glutathione and adenosines levels following continuous (24, 48 and 72 h)
or repeated (3 h per day for three consecutive days: J1, J2 and J3) exposure in order to
investigate the recovery capacity of cells after phthalate exposure. Then, we determined
whether phthalate exposure induces mitochondrial dysfunction. We discovered a strong
and early effect of DEHP on mitochondrial function, with a shift between mitochondrial
respiration and anaerobic glycolysis, while, overall, the ATP levels remained unaltered until
a decrease in cell viability was seen, suggesting a metabolic adaptation of endothelial cells.
DINP exposure induced a late effect and DEHT did not induce any alteration, whatever
the exposure time. These results provide new insights into the cellular effects underlying
phthalates endothelial toxicity.

2. Materials and Methods
2.1. Human Microvascular Endothelial Cell Line (HMEC-1) Culture

HMEC-1 cell line was provided by American Type Culture Collection (ATCC®, CRL-
3243TM). These cells are human microvascular endothelial cells that were immortalized
by transfection with simian virus 40. This cell line features a non-pathological phenotype
with applications for in vitro toxicological studies [45,46]. HMEC-1 cells were cultured in
MCDB 131 medium (Gibco, Fisher Scientific, Illkirch, France) supplemented with 10% fetal
bovine serum (FBS, Gibco), 10 mM L-glutamine (Gibco), 10 ng/mL recombinant human
epidermal growth factor (EGF, Gibco), 10 U/mL penicillin and 10 µg/mL streptomycin
(Gibco) and with 1 µg/mL hydrocortisone, obtained from Sigma-Aldrich (Merck, Saint-
Quentin-Fallavier, France). Cells were growth in culture flasks purchased from BD Falcon
(Corning, NY, USA) and were incubated with 5% CO2 at 37 ◦C. At confluency, cells were
rinsed with Dulbecco’s phosphate-buffered saline (D-PBS) and cell passage was operated
using 0.05% trypsin-EDTA (Gibco). Cells were counted after a dilution in 0.1% trypan
blue solution (Sigma-Aldrich). For the experiments, cells were seeded in either 96-well,
6-well microplates (BD Falcon) or 24-well microplates (Seahorse, Agilent Technologies,
Santa-Clara, CA, USA).

2.2. Studied Plasticizers

The three plasticizers were all purchased from Sigma-Aldrich and included DEHP
(CAS number 117-81-7), DEHT (CAS number 6422-86-2) and DINP (CAS number 28553-
12-0) (Figure 1). DEHP is a well-recognized regulated plasticizer due to its reproductive
toxicity (category 1 H360). DEHT and DINP are two alternative plasticizers to DEHP
because they are considered of lower toxicity. These three plasticizers were selected based
upon previous experiments carried out in our laboratory [6].
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2.3. Solution Preparations

For each plasticizer, a stock solution was prepared by gravimetry at a concentration
of 10 g/L in dimethyl sulfoxide (DMSO) obtained from Sigma-Aldrich. Intermediates
solutions were prepared at a targeted concentration of 1500 mg/L in DMSO for both
plasticizers individually and in mixture. All treatment solutions (DEHP, DEHT, DINP and
the mixture) were prepared extemporaneously by diluting intermediate solutions in MCDB
medium at a final concentration of 15 mg/L with 1% DMSO for each condition. For the
experiments, 1% DMSO was used as the solvent control.

2.4. Reagents and Standards

All reagents used were provided by Sigma-Aldrich except the following chemicals:
ethylenediaminetetraacetic acid (EDTA) was obtained from Prolabo (VWR, Fontenay-sous-
Bois, France), β-Nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium
salt hydrate (NADPH) was provided by Roche (Mannheim, Germany), sodium potas-
sium tartrate tetrahydrate was purchased from Carlo-Erba (Val-de-Reuil, France) and,
hydrochloric acid and sodium hydroxide were obtained from VWR (Fontenay-sous-Bois,
France). Bradford reagent was provided respectively by Bio-Rad (Hercules, CA, USA).
Ultrapure water was supplied by a water purification system from ELGA LabWater (Veolia,
Saint-Maurice, France).

2.5. Plasticizer Treatments and Exposure Procedures on HMEC-1 Cells

Cells were treated at a concentration of 15 mg/L for both plasticizers tested indi-
vidually and in mixture (DEHP, DEHT and DINP). The tested concentration of 15 mg/L
(equal to about 40 µM) was chosen regarding the adverse effects of plasticizers on the
cardiovascular system described by previous toxicological studies [30,47]. The cytotoxicity
of MEHP, the main metabolite of DEHP, was reported on endothelial cells in the same
range of concentrations. Indeed, oxidative stress and mitochondrial damage were noted for
tested concentrations between 12.5 and 100 µM [30]. Moreover, the implication of DEHP in
mitochondrial dysfunction was reported, as a metabolic reprogramming in cardiomyocytes
was described at a concentration of 50 mg/L [47]. Since DMSO and the culture medium
differ by their polarity, their solubility was checked beforehand in order to obtain homo-
geneous solutions. Cell treatments were practically feasible at the chosen concentration
because no precipitation occurred during the preparation of the treatment solutions. The
studied plasticizers were tested on cells following two distinctive exposure procedures to
evaluate respectively continuous and repeated exposures for the following toxicological
endpoints: cell viability, total intracellular glutathione (total glutathione) content and cel-
lular adenosine amounts. As for mitochondrial metabolism, it was determined following
continuous exposure solely. For continuously exposure, cells were constantly exposed with
each treatment solution during all the experiment, with exposure times ranging from 24 h
to 72 h. For repeated exposure, cells were intermittently exposed with an exposure time of
3 h a day with each condition (from J1 to J3). Exposures were then stopped by removing
the treatment solutions and by replacing it by fresh culture medium until the following
exposure.

2.6. Cell Viability

For the evaluation of the cell viability, HMEC-1 cells were seeded in 96-well mi-
croplates at a density of 2.0 × 104 cells/well (6 × 104 cells/cm2) in 100 µL of culture
medium. Cells were treated at confluency with 100 µL of each treatment solution after
removing the culture medium in each well. Cell viability was assessed by spectropho-
tometry using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. At the end of each exposure time, 10 µL of a MTT solution (5 mg/mL prepared
in D-PBS) was added to each well. After three hours of incubation away from light,
100 µL of a sodium dodecyl sulfate solution (10% prepared in 0.01 N hydrochloric acid)
were put in each well to dissolve reduced formazan crystals and microplates were then
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incubated overnight. The following day, absorbance measurements were performed at
570 nm using a microplate reader (SAFAS Xenius, SAFAS Monaco, Monaco). For each
treatment group, the mean of at least five independent cell culture preparations was
calculated. Cell viability is expressed as the relative percentage to the solvent control
(DMSO 1%), which was standardized at 100%.

2.7. Cell Counting

For cell counting, HMEC-1 cells were seeded in 6-well microplates at a density of
4.5 × 105 cells/well (5 × 104 cells/cm2) in 2 mL of culture medium. At confluency, the
culture medium was removed and cells were treated with 2 mL of each treatment solution.
Cell counting was based on the trypan blue exclusion method following 24, 48 and 72 h of
exposure. For each treatment group, cells were counted after a dilution in 0.1% trypan blue
solution, using Malassez cells. Cell counting results are expressed in percentage of viable
cells. The data are expressed as the mean ± SD of at least four independent cell culture
preparations, for each different experimental condition.

2.8. Total Intracellular Glutathione Content

For the evaluation of total intracellular glutathione content, HMEC-1 cells were seeded
in 6-well microplates at a density of 4.5 × 105 cells/well (5 × 104 cells/cm2) in 2 mL
of culture medium. Then, the culture medium was removed either at confluency (for
continuously exposures) or at sub-confluency (for repeated exposures) and cells were
treated with 2 mL of each treatment solution. A two-step extraction with perchloric acid
(PCA) obtained from Prolabo (VWR, Fontenay-sous-Bois, France) was conducted. Into
each well, 500 µL (an aqueous PCA solution 1 N) were added and cells extracts were
collected with a cell scraper. For each sample, the solution was collected in the microtube
and was centrifugated at 4 ◦C (13,500× g for 5 min). Cell protein pellets were collected and
resuspended in sodium hydroxide (an aqueous NaOH solution 1 N) for the protein assay.
The supernatant was neutralized with an equal volume of carbonate of potassium (an
aqueous K2CO3 solution 2 M) (Sigma-Aldrich) and was centrifugated at 4 ◦C (13,500× g for
5 min). The evaluation of total intracellular glutathione content in cells following plasticizer
exposures was performed using the enzymatic recycling method with 5,5′-dithiobis(2-
nitrobenzoic acid) (DTNB) reagent in a 96-well microplate. A volume of 10 µL of sample
was added along with 30 µL of a phosphate buffer solution of pH 7.4 (143 mM NaH2PO4
and 6.31 mM EDTA prepared in ultrapure water) and 200 µL of reactive buffer prepared in
a phosphate buffer solution (0.31 mg/mL DTNB and 0.23 mg/mL NADPH). A volume of
40 µL of 8.5 U/mL glutathione reductase was added briefly before evaluating enzymatic
kinetic by measuring TNB formation at 405 nm during 2 min 40 s with a microplate
reader (Tecan Spark®, Männedorf, Switzerland). For each treatment group, the content of
total intracellular glutathione was normalized to the protein amount of the corresponding
sample (Lowry protein assay) and it was standardized with the solvent control (DMSO
1%). The data are expressed as the mean ± SD of at least four independent cell culture
preparations, for each different experimental condition.

2.9. Intracellular Adenosine Amounts

Intracellular adenosine amounts (ATP, ADP and AMP respectively) were measured
on the supernatant of the cellular extract after PCA extraction, as described above.
The quantification of cellular adenosines was made using a high-performance liquid
chromatography coupled with diode array detector (HPLC-DAD) method previously
developed and validated in our laboratory for the simultaneous determination of ATP,
ADP and AMP in biological samples [48]. Analyses were performed using the 1260
Infinity II LC System (Agilent Technologies, Santa Clara, CA, USA). Chromatographic
separation was achieved on a Poroshell 120 EC-C18 column (150 mm × 3 mm, 2.7 µm
i.d.) with an EC-C18 guard (3 mm) both at 20 ◦C. One microliter of each sample was
injected. Adenosines were separated in isocratic elution consisting of 50 mM potassium
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hydrogen phosphate of pH 6.80. The flow rate was kept at 0.6 mL/min. Detection of all
three adenosines was performed at 254 nm. Data were processed using OpenLab CDS
LC ChemStation software (Agilent). The concentrations of intracellular adenosines in
samples were determined using calibration curve obtained with the standard solutions
(0.2–10 µM respectively for ATP, ADP and AMP). Each adenosine concentration was
normalized to the amount of protein of the corresponding sample and it was expressed
in nmol/mg of protein. For each treatment group, the ATP/ADP ratio was determined
and standardized with the solvent control (DMSO 1%). The data are expressed as the
mean ± SD of at least four independent cell culture preparations, for each different
experimental condition.

2.10. Cell Metabolism Assays

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were
measured using a Seahorse XF24 extracellular flux analyzer (Agilent technologies),
according to the manufacturer’s instructions. Cells were seeded in XF24 culture mi-
croplates for 96 h before the measurements in order to allow the cells to be exposed to the
plasticizers as a function of time (3 h, 24 h or 48 h). The optimum number of cells/well
was determined to be 25,000 cells/well. After the different exposures, the cells were
then washed free of the plasticizers or solvent (DMSO 1%) and incubated with a phenol
red-free DMEM-based medium supplemented with 10 mM Glucose, 1 mM pyruvate
and 2 mM glutamine in a CO2-free incubator for 60 min before the Seahorse assay. A
stress test was performed with addition of oligomycin (8 µg/mL) after the measurement
of the baseline OCR (3 cycles, 24 min), to inhibit the ATP synthase and estimate basal
respiration coupled to ATP synthesis (3 cycles, 24 min). To determine the maximal
OCR, 1 µM carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) was injected
(3 cycles, 24 min). Finally, a combination of antimycin A (AA, 2 µg/mL) and rotenone
(ROT, 5 µM) was injected to inhibit electron flux (3 cycles, 24 min). Data analysis was
conducted using Wave Software (Version 2.6.3.5; Agilent Technologies). The data are
expressed as the mean ± SD of at least three independent cell culture preparations, for
each different experimental condition.

2.11. Statistical Analyses

Statistical analyses were performed using GraphPad Prism software version 9.3.0 for
Windows (GraphPad Software, La Jolla, CA, USA). A non-parametric Mann–Whitney U-test
was performed and differences with a p-value less than 0.05 were considered statistically
significant (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

3. Results
3.1. Modification of the HMEC-1 Cell Viability Following Individual and Combined
Plasticizer Exposures

Cell viability was evaluated in human microvascular endothelial cells (HMEC-
1) using an MTT-spectrophotometric assay following exposure to DEHP, DEHT and
DINP individually and combined (MIX), either continuously (Figure 2a) or repeatedly
(Figure 2b).

Continuous exposure was conducted on confluent endothelial cells from 24 h to 72 h, at
a concentration of 15 mg/L for each plasticizer for both individual and combined exposures.
In Figure 2a, the results show significant modifications of the cell viability in continuously
exposed cells compared with the control group. First, an increase was observed at 24 h
of exposure for DEHP (121 ± 7%), DINP (115 ± 7%) and the mixture (120 ± 7%). It was
followed by a decreasing cell viability, which was observed in a time-dependent manner
for all the treatment groups, starting from 48 h of exposure for DEHP (85 ± 3%) and DINP
(91 ± 5%), and from 72 h of exposure for the mixture (60 ± 7%). Cell viability was less
affected by continuous exposure to DEHT.
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Figure 2. Comparison of cell viability in HMEC-1 cells following exposures to DEHP, DEHT and
DINP (individual and combined): (a) for continuous exposures, HMEC-1 cells were incubated from
24 h to 72 h with DEHP, DEHT, DINP and the mixture (MIX); (b) for repeated exposures, HMEC-1
cells were incubated three hours per day between one and three days (J1, J2 and J3) with DEHP,
DEHT, DINP and the mixture (MIX). Cell viability was measured by using MTT assay. For their
comparison, results were normalized to the amount of proteins of the corresponding sample and
were standardized with the solvent control. Results are expressed as the mean % ± SD (n ≥ 5),
* p < 0.05 vs. DMSO, ** p < 0.01 vs. DMSO, # p < 0.05 vs. MIX.

For repeated exposure (Figure 2b), cells were treated 3 h per day during one (J1),
two (J2) and three days (J3). Cells were exposed to a concentration of 15 mg/L for each
plasticizer, for both individual and combined exposures. Between each treatment, plasti-
cizer solutions were removed and replaced with fresh culture medium. For each repeated
application, no significant changes in the cell viability were noticed in cells exposed either
to DEHT or DINP compared to the control group. On the contrary, DEHP and the mixture
displayed significant changes in comparison to the control group. Indeed, an increasing
cell viability was reported with DEHP (mean values between 121± 7% and 128± 17%) like
with the mixture (mean values of 115 ± 10%, except for J3 with a mean value of 107 ± 16%
at the limit of the significance level).
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3.2. Effects of Individual and Combined Plasticizer Exposures on HMEC-1 Cell Counting

Cell counting is used to determine the number of living cells. Cell counting was
performed using the trypan blue exclusion method following exposures to DEHP, DEHT,
DINP and MIX during 24 h, 48 h and 72 h (Figure 3).

Figure 3. Comparison of the number of living HMEC-1 cells following exposures to DEHP, DEHT
and DINP (individual and combined). HMEC-1 cells were incubated from 24 h to 72 h with DEHP,
DEHT, DINP and the mixture. Results are expressed as the mean %± SD (n = 4); * p < 0.05 vs. DMSO.

In Figure 3, the results show that the cell viability was not impaired following both
24 h and 48 h of exposure to the plasticizers for all the treatment groups compared to
the solvent control. Cell viability differences were observed starting 72 h of exposure.
A reduced number of living cells was observed with exposure to DEHP, DINP and the
mixture, compared to the control group. On the contrary, DEHT did not significantly impair
the number of living cells, regardless of the time of exposure.

3.3. Effects of Individual and Combined Plasticizer Exposure on the Total Intracellular Glutathione
in HMEC-1 Cells

Glutathione has a protective function against reactive species. The level of total glu-
tathione is a marker of cellular oxidative stress due to its antioxidant capacity. The content
of total glutathione was quantified in HMEC-1 cellular extracts with a spectrophotometric
assay based on the reaction between GSH and the DTNB reagent following exposure to
DEHP, DEHT and DINP individually and combined, either continuously (Figure 4a) or
repeatedly (Figure 4b).

DEHT was the only plasticizer that did not show modifications in the content of total
glutathione in cells for all treatment times (versus control group), as shown in Figure 4a.
For the other treatment groups, no significant differences were observed at the first tested
time of 24 h. The rise in antioxidant capacity in HMEC-1 cells was induced later following
48 h of exposure to DEHP, DINP and the mixture in comparison with the control group.
The increasing content of total glutathione in cells was still observed following 72 h of
exposure to the mixture (mean ratio of 1.54 ± 0.38) compared with the control group but it
was reversed for cells exposed individually to both DEHP and DINP. Moreover, the effects
of DEHP, DINP and the mixture on cells were all distinctives from DEHT at both 48 h and
72 h of exposure.

Considering the results of the content of total glutathione in cells repeatedly exposed
to plasticizer(s), as shown in Figure 4b, no modifications were observed with any of the
tested treatment groups, both individually and in mixture. It shows that the number of
treatment repetitions had no effect on the content of total glutathione in cells exposed to
the studied plasticizers regardless of the condition considered.
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Figure 4. Comparison of total glutathione content in HMEC-1 cells following exposures to DEHP,
DEHT and DINP (individual and combined): (a) for continuous exposures, HMEC-1 cells were
incubated from 24 h to 72 h with DEHP, DEHT, DINP and the mixture; (b) for repeated exposures,
HMEC-1 cells were incubated three hours per day between one and three days (J1, J2 and J3) with
DEHP, DEHT, DINP and the mixture. For their comparison, results were normalized to the amount
of proteins of the corresponding sample and were standardized with the solvent control. Results are
expressed as the mean % ± SD (n ≥ 6), * p < 0.05 vs. DMSO.

3.4. Effects of Individual and Combined Plasticizer Exposure on the Amount of Intracellular
Adenosines in HMEC-1 Cells

ATP is an important source of cellular energy. ATP is the core of physiological functions
because it generates energy to cells through the cleavage of its phosphodiester bounds in
ADP and AMP. The amounts of cellular adenosines were measured on HMEC-1 cellular
extracts with HPLC-DAD following exposures to DEHP, DEHT and DINP individually
and combined, either continuously (Figure 5a) or repeatedly (Figure 5b).

AMP was the only cellular adenosine that was not detected in the solvent control nor in
the treatment groups, for both continuous and repeated exposure procedures (Figure 5a,b).
The results for the cellular adenosines are presented as the ratio of ATP/ADP of the
treatment group standardized with the ratio of the solvent control at the same exposure
time. For the results of continuously exposed cells to plasticizers, as shown in Figure 5a, no
effect was observed on the ratio of cellular adenosines at both 24 h and 48 h of exposure
for all treatment groups. At 72 h of exposure, the cellular adenosines amounts were not
modified in cells exposed to DINP and DEHT individually compared to the control group,
contrary to the mixture. Indeed, the relative ratio of cellular adenosines dropped by half
at 72 h. Similarly, cells exposed individually to DEHP showed a significant difference in
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comparison with the control group; its relative ratio of cellular adenosines lowered (0.63 ±
0.29) after 72 h of exposure compared to control DMSO.
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DEHT and DINP (individual and combined): (a) for continuous exposures, HMEC-1 cells were
incubated from 24 h to 72 h with DEHP, DEHT, DINP and the mixture; (b) for repeated exposures,
HMEC-1 cells were incubated three hours per day between one and three days (J1, J2 and J3) with
DEHP, DEHT, DINP and the mixture. For their comparisons, the relative ratio was standardized with
the one of the solvent control for each sample of all treatment groups. Results are expressed as the
mean % ± SD (n ≥ 4); * p < 0.05 vs. DMSO, ** p < 0.01 vs. DMSO, # p < 0.05 vs. MIX, ## p < 0.01
vs. MIX.

Considering cells repeatedly exposed to the plasticizer(s) individually or in mixture,
no modification of the relative ratio of ATP/ADP were observed with any of the tested treat-
ment groups, as depicted in Figure 5b. It showed that the number of treatment repetitions
had no effect on the adenosine amounts in cells exposed to the studied plasticizers.

3.5. Measurements of Mitochondrial Function in HMEC-1 Cells

To obtain a measurable OCR (a key parameter of oxidative phosphorylation, OXPHOS)
and ECAR (an indicator of glycolysis) after plasticizer exposure, we first determined the
optimal number of cells, as shown in Figure 6. OCR increased with a cell number between
15,000 and 25,000 and remained roughly stable at densities of 25,000 to 30,000 cells.
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Figure 6. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as a
function of cell seeding number. HMEC-1 were seeded into Seahorse plates 96 h before the measurements
of (a) basal OCR and (b) ECAR. Data are the mean± SD; n = 3–4 independent measurements.

For subsequent experiments, the seeding of 25,000 cells per well was selected. OCR
for 25,000 cells was then measured under the basal condition followed by the sequential
addition of oligomycin, FCCP and the combination of AA and ROT, as described in the
Materials and Methods. The AA and ROT-independent OCR allows to estimate the non-
mitochondrial respiration and is subtracted from the other values (Figure 7a). Oligomycin
inhibits ATP synthase and allows the measurement of OCR linked to ATP synthesis. In these
cells, ATP-linked oxygen consumption represents about 70% of the mitochondrial respiration.
The maximal OCR was obtained after the addition of the ionophore FCCP to uncouple
mitochondria and allow calculating the spare respiratory capacity, after subtracting the basal
OCR. This parameter represents an assessment of the supplemental ATP that can be generated
by oxidative phosphorylation under stressful conditions. These measurements indicate that
the cells are normally functioning in these experimental conditions (Figure 7b).
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Figure 7. Oxygen consumption rate (OCR) for 25,000 cells seeded 96 h before the measurement of
OCR and injection of inhibitors: (a) a representative diagram of the time course for measurement of
OCR in HMEC-1 cells and the functional significance of the area under the curve; (b) the contribution
of each of these parameters were calculated after normalization to protein amounts and the means ±
SD from three independent measurements are plotted.
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3.6. Effects of Plasticizers on Mitochondrial Function

Importantly, since 72 h induced cell mortality (except for the DEHT condition) and cell
detachment during the runs, we performed mitochondrial evaluations after 24 h and 48 h
of exposure. HMEC-1 cells were exposed 24 h or 48 h with the plasticizers before injection
of oligomycin, FCCP and AA/ROT, as described above. After 24 h, only the DEHP-treated
cells exhibited a change in energy metabolism, with a drastic decrease in basal OCR, a
decreased maximal respiration and declined reserve capacity, and reduced ATP production
(Table 1).

These observations were similar in mix-treated cells. After 48 h, these changes were ex-
acerbated following DEHP exposure. Decreased basal OCR, reserve capacity and ATP pro-
duction were also observed after DINP exposure, although the decreasing magnitudes were
smaller than those observed with DEHP. We also observed a decrease in non-mitochondrial
OCR after 48 h of exposure to DINP. The combination of plasticizers did not amplify the
observed response with DEHP alone.

The alteration in energy metabolism observed after 24 h and 48 h of DEHP exposure
was observed as early as 3 h of incubation (Figure 8a) and was associated with an increase
in acidification, whatever the time of exposure (Figure 8b).
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Table 1. Effects of plasticizers on mitochondrial function.

Control DEHP DEHT DINP Mix

Basal
24 h 8.4 ± 0.9 4.8 ± 0.5 * 9.8 ± 1.0 6.8 ± 1.1 5.4 ± 0.6 *
48 h 7.5 ± 1.6 3.5 ± 0.7 **# 8.8 ± 2.6 5.2 ± 0.6 **$ 3.8 ± 1.2 *

Proton
leak.

24 h 2.3 ± 0.5 1.9 ± 0.2 2.5 ± 0.3 1.9 ± 0.4 1.9 ± 0.4
48 h 2.0 ± 0.5 1.7 ± 0.4 2.3 ± 0.7 1.7 ± 0.3 1.4 ± 0.4

Maximal
24 h 13.3 ± 1.9 6.8 ± 0.9 * 15.2 ± 1.1 10.6 ± 1.7 7.8 ± 0.7 *
48 h 12.6 ± 3.2 4.8 ± 0.7 **# 12.4 ± 1.6 7.8 ± 0.8 ** 5.1 ± 1.5 *

Reserve
capacity

24 h 5.0 ± 1.1 2.1 ± 0.7 * 5.4 ± 0.7 3.8 ± 1.2 2.4 ± 0.4 *
48 h 5.1 ± 1.6 1.3 ± 0.2 ** 5.6 ± 2.2 2.6 ± 0.6 **$$ 1.3 ± 0.3 *



Toxics 2022, 10, 373 13 of 18

Table 1. Cont.

Control DEHP DEHT DINP Mix

Non-mito.
24 h 2.0 ± 0.5 1.4 ± 0.6 2.0 ± 1.0 1.6 ± 0.8 1.6 ± 0.8
48 h 1.6 ± 0.4 1.4 ± 1.1 1.6 ± 0.4 0.9 ± 0.2 ** 0.9 ± 0.2 *

ATP prod.
24 h 6.1 ± 0.8 2.6 ± 0.9 * 7.3 ± 1.0 4.9 ± 1.1 3.5 ± 0.8 *
48 h 5.5 ± 1.2 1.8 ± 0.6 ** 6.6 ± 2.0 3.5 ± 0.6 **$ 2.4 ± 0.8 *

Bis-(2-ethylhexyl) phthalate (DEHP), bis-(2-ethylhexyl) terephthalate (DEHT) and diisononyl phthalate (DINP).
The values represent the means ± SD of four independent measurements. * p < 0.05 vs. DMSO; ** p < 0.01 vs.
DMSO; # p < 0.05 24 h vs. 48 h; $ p < 0.05 DEHP vs. DINP; $$ p < 0.01 DEHP vs. DINP.

4. Discussion

Exposure to DEHP has been documented to be a risk factor for cardiovascular dis-
eases [25,26,49]. Although endothelial cells are directly exposed to circulating plasticizers,
few studies have evaluated the endothelial toxicity of plasticizers, and to a lesser extent,
mixture effects [28,30,32,41,50]. Considering that DEHP regulation paved the way to its
substitution by other plasticizers, such as DINP and DEHT, it is necessary to evaluate
their effects on the vascular system owing to the lack of data. Therefore, the aim of this
study was to evaluate the in vitro endothelial toxicity of DEHP, DINP and DEHT, both
individually and all mixed together. Each plasticizer was at a concentration of 15 mg/L
in all the solution tested, which corresponds to about 40 µM per plasticizer. These three
plasticizers were selected based upon previous experiments carried out in our laboratory
from gloves [6]. We performed intermittent episodes of 3 h of exposure separated by
recovery periods to investigate the recovery capacity of endothelial cells after phthalate
exposure. Phthalates are ubiquitous molecules and human exposure can occur through
multiple pathways of exposure, so although these molecules have a short half time, humans
can be continually exposed, so we have also carried out continuous exposure. The studied
plasticizers were tested on cells following these two distinctive exposure procedures to
evaluate respectively continuous (24, 48 and 72 h) and repeated exposures (J1, J2 and J3)
for the following toxicological endpoints: cell viability, total intracellular glutathione (total
glutathione) content and cellular adenosine amounts.

In this study, the more pronounced effects of plasticizers were observed with continu-
ous exposure, as shown in the cell viability measurements. Unexpectedly, an increase in
cell viability for DEHP, DINP and the mixture of plasticizers was observed following 24 h
of exposure, which preceded a subsequent decrease in a time-dependent manner. In the
literature, comparable conditions of time and concentration resulted in a diminishing cell
viability, as reported for vascular endothelial cells exposed to MEHP, the main metabolite
of DEHP, in HUVEC (from 12.5 µM) and in EA.hy926 (from 100 µM MEHP) [28,30,32]. On
the other hand, it is of interest to note that an increasing cell viability trend was reported on
a non-endothelial cellular model for DEHP (250 µM) and DINP (62.5 µM), tested separately
on a hepatocarcinoma cell line at an exposure time of 24 h [51]. Overall, the time-dependent
decrease observed in our study for DEHP and DINP was in line with this study, with
more marked effects at 72 h comparatively to 48 h of exposure [51]. Cell viability could be
explained by cell proliferation as its decrease was reported for DEHP on human corneal
endothelial cells, with tested concentrations higher than those in the current study (from
100 µM) [52]. Based on our results, it is not possible to determine whether viability al-
terations are a consequence of cell division capacity. However, an MTT assay does not
necessarily reflect cell viability; it could also be related to a metabolic and mitochondrial
reprogramming induced by a stress, as it has been described to contribute to MTT cellular
reduction [53]. Among the two DEHP substitutes, only DEHT showed no alteration on
cell viability, which is in agreement with a study conducted on a fibroblast cell line testing
higher concentrations (0.01–0.1 mg/mL) [54]. The results obtained with repeated exposure
surprisingly did not worsen the cell viability as expected. Quite comparable results were
obtained, regardless of the number of repeated exposures. One plausible hypothesis is that
intermittent incubation of cells with the plasticizers, and with the renewal of the culture
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medium, interrupts cell exposure between each treatment period and therefore may enable
cells to recover.

By comparing cell counting and cell viability, the results did not show corresponding
effects between these parameters. The increasing cell viability measured with the MTT
assay following 24 h of exposure was not observed during cell counting. As the results
are inconsistent, it supports the hypothesis that plasticizers induced a metabolic and
mitochondrial reprogramming in HMEC-1 cells rather than a cellular proliferation. By
taking this into consideration, it could be presumed that renewal of the culture medium
does not result in cellular metabolic perturbations due to the absence of effects seen from
the MTT assay with the repeated exposures.

It is of interest to note that cell viability indirectly reflects plasticizer-induced cytotox-
icity, and so our results could be explained by cellular physiological perturbations, as a
redox imbalance has been reported in plasticizer-induced cardiovascular pathogenesis [21].
Glutathione is an endogenous antioxidant that plays a role in cytoprotection. In the present
study, for repeated exposures, there was no distinction between the tested conditions nor
between the number of exposures on the total glutathione content. Impairments were
noted in the present study with continuous exposure. While a transient increase in the total
glutathione content occurred at 48 h of exposure for DEHP and DINP (both individually), a
steady rise was observed up to 72 h of exposure when all three plasticizers are in mixture. It
demonstrates that the plasticizers displayed different cytotoxicity when they were mixed by
inducing modifications of the glutathione content. Altogether, these results reflect a cellular
stress caused by plasticizers which could result from the production of reactive species. In
this regard, it would be interesting to distinguish which glutathione form contributes to
the elevation of the total glutathione content; so, determining the ratio of the reduced form
(GSH) to oxidized form (GSSG) can be a useful indicator. Previous experimental studies
described, for instance, GSH depletion in HUVEC along with increased ROS production
following 24 h of exposure to MEHP (about 20 µM) [30,55].

The implications of ROS in vascular diseases have been previously stated and the
results underlined that endothelial mitochondria are a target of the deleterious effects of
ROS. The loss of the potential mitochondrial membrane was depicted by several in vitro
studies, which showed plasticizer-induced ROS production in endothelial cells [28,30,32].
Despite this, data on the effects of plasticizers on mitochondrial respiration are scarce. That
is why mitochondrial respiration was assessed in the current study to further understand
how plasticizers could impair this function, using a Seahorse metabolic flux assay to
evaluate oxygen consumption rates and extracellular acidification rates. It was decided
to focus on continuously exposed endothelial cells owing to the noticeable cytotoxicity
compared to the repeated exposure. As far as we know, we demonstrate for the first
time that DEHP or DINP induced an OXPHOS defect on vascular endothelial cells. The
absence of mitochondrial dysfunction after DEHT exposure supports its non-cytotoxicity
to endothelial cells. The mixture and DEHP present comparable effects on mitochondrial
respiration, which led us to think it is the main contributor to the mixture effects, or at
least more so than DINP. Overall, plasticizer exposure represents a stressful condition for
mitochondria, with the disruption of both basal and reserve capacity. As seen with the
decrease in mitochondrial ATP production, mitochondria seem not to be able to face energy
demand when exposed to DEHP, DINP and the mixture. The mitochondrial respiration
decreased as early as 3 h for the DEHP and lowered between 24 h and 48 h respectively
for the mixture and for DINP. Beyond 48 h, these effects were not assessed due to the
observation of cell detachment at 72 h of exposure, which is in line with the drop of the cell
viability previously described. The early mitochondrial ATP depletion for the DEHP and
the mixture was not consistent with the effects observed for the adenosines levels, which
declined on a later stage at 72 h of exposure. These results strengthen the hypothesis of a
plasticizer-induced metabolic reprogramming because mitochondrial ATP production and
the ATP/ADP ratio declined in a time-delayed manner. This hypothesis is strengthened
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by the increase in acidification rate, which reflects a shift towards an anaerobic glycolytic
metabolism.

Impairment of the oxidative phosphorylation was previously described on skeletal
muscle cells exposed to MEHP; the authors reported a degradation of complex I, which
was triggered by ROS production [56]. In the present study, the redox imbalance was found
subsequently to the mitochondrial respiration alteration, but it is not excluded that early
mitochondrial ROS production occurs. The short-term effect of DEHP on mitochondrial
respiration has not yet been evaluated to our knowledge. In the present study, results of
short-term exposure provide additional information. Indeed, the sudden decrease in mito-
chondrial synthesis of ATP occurred as early as 3 h of exposure with DEHP. Interestingly,
it did not directly affect cellular physiological functions when comparing the first 3 h of
the repeated exposure, as no modifications were noted. Considering these kinetic effects,
it reinforces the idea that endothelial cells are not only capable to adapt to cellular stress
induced by plasticizers but also are quickly responsive. It is likely to believe that this adap-
tation goes through metabolic pathways, leading to rapid changes to effectively maintain
the cellular processes. By gathering data from the literature on endothelial cell metabolism
in vascular diseases (angiogenesis and atherosclerosis), the studies revealed adaptable cell
metabolism [57,58]. Physiologically, glycolysis and mitochondrial respiration are necessary
for HUVEC proliferation [59]. However, a metabolic shift in endothelial cells in favor of
fatty acid oxidation and/or glycolysis occurred during cardiovascular pathogenesis in
response to endogenous signals, oxidized LDL and angiogenic factors [57,58].

By analogy, an endothelial metabolic shift caused by circulating plasticizers in blood
could be presumed because the dysfunctional mitochondrial respiration was combined with
an increased acidification, supporting a possible shift to anaerobic metabolism, resulting
in lactate production. In the metabolic shift observed during angiogenesis and atheroscle-
rosis, the implications of PPAR and oxidative stress were proposed [58,60]. Considering
that plasticizers are known as PPAR ligands as well as oxidative stress inductors, their
implication in the metabolic shift might be plausible in endothelial cytotoxicity [30,47,61].
However, based on our results, it is not possible to determine the cause of the mitochondrial
dysfunction because it was not investigated. Hence, further experiments are needed to
confront these hypotheses.

5. Conclusions

In summary, the present study showed that plasticizers induced an endothelial dys-
function by targeting the mitochondrial respiration with a depletion of ATP production,
which occurred earlier for DEHP compared to DINP and the mixture. On the contrary,
DEHT did not show any cytotoxicity. According to the delayed effects between the cellular
and the mitochondrial parameters, these results suggest that a mechanism of adapta-
tion takes place in endothelial cells to face plasticizer-induced cellular stress, leading to
metabolic reprogramming to effectively maintain their cellular processes. To conclude,
this study provides new insights into the adverse effects of plasticizers on endothelial
cells and underlines the importance of mitochondrial evaluation in the safety screening of
plasticizers.
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