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ABSTRACT

The comprehensive multiplatform genomics data
generated by The Cancer Genome Atlas (TCGA) Re-
search Network is an enabling resource for cancer
research. It includes an unprecedented amount of mi-
croRNA sequence data: ∼11 000 libraries across 33
cancer types. Combined with initiatives like the Na-
tional Cancer Institute Genomics Cloud Pilots, such
data resources will make intensive analysis of large-
scale cancer genomics data widely accessible. To
support such initiatives, and to enable comparison of
TCGA microRNA data to data from other projects, we
describe the process that we developed and used to
generate the microRNA sequence data, from library
construction through to submission of data to repos-
itories. In the context of this process, we describe the
computational pipeline that we used to characterize
microRNA expression across large patient cohorts.

INTRODUCTION

MicroRNAs (miRNAs) play roles in post-transcriptional
regulation, but the specific roles of many miRNAs in partic-
ular genetic contexts remain poorly understood (1,2). Pro-
filing miRNA expression using short read sequencing offers
a large dynamic range and high spatial resolution, which
can help generate insights into the roles of miRNAs and
their regulatory targets in cancer biology. While miRNAs
can now be routinely characterized on a whole transcrip-
tome level, clarifying the functional significance of miR-
NAs in tumorigenesis may benefit from comparisons across
subtypes within large cohorts and across tumor types. The
Cancer Genome Atlas (TCGA) Research Network has gen-
erated and made publicly available comprehensive genomic
data for more than 11 000 tumor samples representing 33
cancer types. The TCGA miRNA sequencing (miRNAseq)
data were generated by Canada’s Michael Smith Genome

Sciences Centre (GSC) at the BC Cancer Agency between
2010 and 2015. This resource includes data for both tu-
mor and adjacent normal samples, and is the largest of its
type worldwide. Going forward, data from large consor-
tia like TCGA, along with enabling initiatives like the Na-
tional Cancer Institute Genomics Cloud Pilots, will create
unprecedented research opportunities. Researchers will be
able to interpret miRNA data from cancer cohorts in a pan-
cancer context, and teams with extensive experience in the
biology of particular cancers will be able to use TCGA data
to complement clinical and genomics data that they gener-
ate from their own patient cohorts.

To support such opportunities, here we describe the pro-
cesses that we developed and used to generate the TCGA
miRNAseq data. We expand on key details and in gen-
eral provide more information than was previously avail-
able in the method descriptions in TCGA Research Net-
work publications, thus providing a comprehensive refer-
ence document for those who wish to understand and use
the miRNAseq data that we generated, or the computa-
tional pipeline. We describe the high-throughput transcrip-
tome library construction protocol, the sequencing, and the
data analysis pipelines that we developed for TCGA. We
show that expression profiling results from our computa-
tional pipeline are similar to those from miRDeep2 (3) and
ShortStack (4). However, unlike these and other miRNA
analytical tools, our profiling software provides the process-
ing method that was used to generate TCGA data, and so
provides a mechanism for comparing miRNA sequencing
data from other projects with this large dataset in a rigor-
ous and consistent manner.

MATERIALS AND METHODS

Overview

Briefly, library construction was strand-specific and en-
riched for ∼22-bp miRNA mature strands. Libraries were
pooled and then sequenced using Illumina technology.
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Library-specific indices added during library construction
allowed assigning reads from a sequenced pool to individ-
ual samples. During analysis, the computational pipeline
demultiplexed the pools and aligned the reads to a ref-
erence genome. We classified reads as miRNAs or other
small RNAs (snoRNAs, tRNAs or rRNAs) by compar-
ing read alignments to sequence feature annotations from
miRBase (5) and UCSC (6); resources like Ensembl (7)
can also be used. For consistency across the five years of
our involvement in TCGA projects, we used miRBase v16
annotations with GRCh37/hg19 alignments and v13 an-
notations with GRCh36/hg18 for the earlier cancer stud-
ies. We designed the profiling pipeline to be highly spe-
cific; it reports expression only for exact-match read align-
ments to miRBase miRNAs and considers neither align-
ments with mismatches nor novel miRNAs. The raw data
are isomiR sequences. We reported expression in two forms:
as raw read counts and as counts normalized to reads
per million mapped reads (RPM), and we submitted both
forms as isomiR and stem-loop expression data archives to
the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm). Given this, archive downloads in-
clude four files per library: read counts and RPM, for
stem-loops and isomiRs. Expression data for miRNA ma-
ture strands can be generated from the downloaded isomiR
archives. The pipeline software includes scripts to collate
sets of downloaded per-library files into a miRNAs-by-
samples expression matrix for stem-loops, mature strands
or isomiRs. For those who wish to apply other profiling
pipelines, to identify novel miRNAs, or to do analyses that
address sequence variants and untemplated additions, we
also submitted to cgHub (https://cghub.ucsc.edu) BAM (8)
files that contain exact-match, mismatch and unaligned se-
quence reads.

Library construction and sequencing

miRNA-seq libraries were constructed using a strand-
specific, plate-based protocol developed at the GSC (Fig-
ure 1). Approximately 1 �g of either total RNA or mes-
senger RNA-depleted RNA, containing small RNA species
was used. A 3′ adapter was ligated to the RNA tem-
plate using a truncated T4 RNA ligase2 (NEB Canada,
cat. M0242L) with an incubation of 1 h at 22◦C. This
adapter was an adenylated, single-strand DNA with
the sequence 5′ /5rApp/ ATCTCGTATGCCGTCTTCT-
GCTTGT /3ddC/, which selectively ligated miRNAs. An
RNA 5′ adapter was then added, using a T4 RNA lig-
ase (Ambion USA, cat. AM2141) and ATP, and was in-
cubated at 37◦C for 1 h. The sequence of the single strand
RNA adapter is 5′GUUCAGAGUUCUACAGUCCGAC
GAUCUGGUCAA3′.

When ligation was completed, first strand cDNA was
synthesized using Superscript II Reverse Transcriptase
(Invitrogen, cat. 18064 014) and an RT primer (5′-
CAAGCAGAAGACGGCATACGAGAT-3′). This was
the template for the final library polymerase chain reaction
(PCR), into which we introduced 6-nt index sequences
that enabled libraries to be identified (i.e. demultiplexed)
from a sequenced pool that contained multiple libraries.
Briefly, a PCR brew mix was made with the 3′ PCR

primer (5′-CAAGCAGAAGACGGCATACGAGAT-3′),
Phusion Hot Start High Fidelity DNA polymerase (NEB
Canada, cat. F-540L), buffer, dNTPs and dimethyl sulfox-
ide (DMSO). The mix was distributed evenly into a new
96-well plate. A Biomek FX (Beckman Coulter, USA) was
used to transfer the PCR template (first strand cDNA)
and indexed 5′ PCR primers into the brew mix plate. Each
5′ PCR primer, 5′-AATGATACGGCGACCACCGA
CAGNNNNNNGTTCAGAGTTCTACAGTCCGA-3′,
contained a unique, fault-tolerant, 6-nt ‘index’ (shown here
as N’s), and was added to each well of the 96-well PCR
brew plate. The hexamer index sequences enabled pooling
samples for sequencing by supporting ‘demultiplexing’ the
sequence data into separate sets of read sequences for each
library. For TCGA, we sequenced a pool of 16 miRNA
libraries in each HiSeq 2500 lane. PCR was run at 98◦C for
30 s, followed by 15 cycles of 98◦C for 15 s, 62◦C for 30 s
and 72◦C for 15 s, and finally a 5 min incubation at 72◦C.
Quality was then checked across the whole plate using a
Caliper LabChipGX DNA chip. Negative controls were
added at three stages: elution buffer was added to one well
when the total RNA was loaded onto the plate, water to
another well just before ligating the 3′ adapter, and PCR
brew mix to a final well just before PCR.

PCR products were pooled, then were size selected to re-
move larger cDNA fragments and smaller adapter contam-
inants, and to enrich constructs with ∼22-bp insert lengths
(Figure 1), using an automated, 96-channel size selection
robot that was developed at the GSC. After size selection,
each pool was ethanol precipitated, quality checked using
an Agilent Bioanalyzer DNA1000 chip and quantified using
a Qubit fluorometer (Invitrogen, cat. Q32854). Each pool
was then diluted to a target concentration for cluster gener-
ation and loaded into a single lane of an Illumina flow cell.
Clusters were generated and lanes were then sequenced us-
ing a 30-bp read to capture the miRNA sequence and a 6-bp
read to capture the index sequence.

Preprocessing and aligning reads
While the size-selected miRNAs varied in length, they were
typically ∼22 bp long, so were shorter than the 30-bp read
length (Figure 1). Given this, each read sequence typically
extended some distance into the 3′ sequencing adapter.
Because this non-biological sequence could interfere with
aligning reads to the reference genome, we identified and
removed any 3′ adapter sequence from each read.

Our adapter-trimming algorithm identified as long an
adapter sequence as possible, allowing a number of mis-
matches that depended on the adapter length found. The
algorithm first determined whether a read sequence should
be discarded as an adapter dimer that had no cDNA insert
by checking whether the 3′ adapter sequence occurred at the
start of the read. For reads passing this stage, the algorithm
then tried to identify an exact 15-bp match to the 3′ adapter
sequence anywhere within the read sequence. If it could not,
it tried again, starting from the 3′ end of the read sequence
and allowing up to two mismatches. If the full 15 bp was not
found, decreasing lengths of adapter were checked, down
to the first eight bases, allowing one mismatch. If a match
was still not found, from seven bases down to one base were

https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://cghub.ucsc.edu
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Figure 1. Process used to generate TCGA miRNA sequence data. Strand-specific library construction was performed in parallel in 96-well plates. The
example reference read pileup and stemloop are hsa-mir-21 from miRBase v21.
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Table 1. Annotation priorities (Pr) that are used to resolve multiple annotation type matches for a single alignment location or for multiple alignment
locations for a read. See ‘Profiling small RNA abundance’

Pr Annotation type Database

1 mature strand miRBase
2 star strand
3 precursor miRNA
4 stemloop, from 1 to 6 bases outside the mature strand, between the

mature and star strands
5 ‘unannotated’, any region other than the mature strand in miRNAs

where no star strand is annotated
6 snoRNA UCSC small RNAs and RepeatMasker
7 tRNA
8 rRNA
9 snRNA
10 scRNA
11 srpRNA
12 Other RNA repeats
13 coding exons with zero annotated CDS region length UCSC genes
14 3′ UTR
15 5′ UTR
16 coding exon
17 intron
18 LINE UCSC RepeatMasker
19 SINE
20 LTR
21 Satellite
22 RepeatMasker DNA
23 RepeatMasker low complexity
24 RepeatMasker simple repeat
25 RepeatMasker other
26 RepeatMasker unknown

checked, with an exact match required. Finally, the algo-
rithm would trim one base off the 3′ end of a read if this
base matched the first base of the adapter. This step was
based on two considerations. First, since we only used exact
match alignments for expression quantification, a trimmed
sequence that gave one or more exact-match alignments was
preferable to a sequence that we did not use due to a one-
base mismatch. Second, if only one base of the adapter was
found in the 30-nt read sequence, the read was likely too
long to be from a miRNA mature strand, and the effect of
the trimming on its alignment should not affect the overall
miRNA profiling result for the sample from which the read
was derived.

Because the shortest mature miRNA in miRBase v16 is
15 bp, we discarded any trimmed read that was shorter than
15 bp. We used BWA-MEM with parameters samse -n 10 (9)
to align the remaining reads to a reference genome, which,
for most TCGA cancers, was GRCh37 (http://www.ncbi.
nlm.nih.gov/projects/genome/assembly/grc/). This gener-
ated a SAM file (8) in which multiple alignments for a read
were recorded in a single line using BWA’s custom XA tag.

Profiling small RNA abundance

The pipeline assigned aligned reads to sequence features us-
ing reference databases specified by the user (Table 1), or by
corresponding flat annotation files that can represent, for
example, novel miRNAs that a user wishes to profile. The
output was an updated SAM file in which annotations for
each alignment were stored in new XC, XD and XI tags, in
the order reported by the aligner in the XA tag. The advan-
tages of writing the intermediate results into the SAM file,

rather than a separate file, derive from each library having a
single text file that contains both alignment and feature an-
notation information, has a well-documented format, and
can be readily queried by scripts or from the command line.
For TCGA datasets we used a 3-bp minimum overlap be-
tween an aligned read sequence and a genomic feature an-
notation; this minimum can be adjusted when running the
profiler. For a read that had a single mapping location, but
overlapped multiple types of genomic features at that loca-
tion, we reduced the set of feature types to the single highest
priority type, using the heuristically determined priorities in
Table 1. For a multi-mapped read, we first resolved the an-
notation types for each alignment as we did for a uniquely
mapped read, then used the priority list again to resolve the
set of annotations across the multiple alignment locations
into a single annotation type for that read.

We dealt with a read that had multiple exact-match align-
ments to different miRNAs in one of two ways, depending
on whether the read multi-mapped to mature sequences that
had the same miRBase accession. A read could map to func-
tionally identical mature miRNA strands that have identi-
cal sequences and can be expressed from different locations
in the genome. For example, hsa-miR-181a-5p, whose se-
quence has miRBase accession ID: MIMAT0000256, oc-
curs in both hsa-mir-181a-1 at 1q32.1 and in hsa-mir-181a-
2 at 9q33.3. When we assigned a read to miR-181a-5p, we
incremented the read count for this mature strand by one,
while incrementing the read count by one for a random
choice of one of the stem-loops hsa-mir-181a-1 or hsa-mir-
181a-2. Alternatively, a read could map exactly to differ-
ent miRNAs that have sequences that are similar but not
identical, when the read sequence did not capture the bases

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
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Figure 2. Example library quality graphs generated by the GSC miRNA annotation profiling pipeline for thyroid carcinoma tumor libraries (1). For an
individual library: (A and B) Percentage of small RNA annotations as a function of read length for two libraries. (C and D) Distribution of read lengths after
adapter trimming with (C) a preferred narrower and (D) a wider insert length distribution. (E) For 496 thyroid tumor libraries, the relationship of miRNA
species identified with at least 1 or 10 aligned reads versus all post-filtered (PF) reads aligned to miRNAs. The vertical red line shows the TCGA-specific
threshold of 1 M reads.

that differ between these miRNAs. For such a case, we re-
ported the read as cross-mapped (10). Supplementary Ta-
ble S1 shows an example from a TCGA head-and-neck tu-
mor library in which a 17-nt isomiR read had exact-match
alignments to 22-nt 3p mature strands of both hsa-mir-30a
at 6q13 and hsa-mir-30e at 1p34.2, whose sequences differ
only at position 18. When a read cross-mapped, we incre-
mented the read count by one for each miRNA to which it
cross-mapped. We preserved all of its miRNA annotations
and discarded all of its non-miRNA annotations, which en-

sured that the SAM file retained all annotation information
about ambiguously mapped miRNAs, allowing the ambi-
guity to be addressed in downstream analysis.

For each library, after aligned reads had been assigned
to genomic feature annotations, the read counts for each
retained annotation were summed to generate expression
profiles. Reads with alignments to multiple miRNA genes
were flagged as cross-mapped, and the pipeline then wrote a
crossmapping report to support downstream filtering, pro-
duced graphs illustrating library content (Figure 2A and B),
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and generated an expression profile. When counting read
annotations, reads were filtered by a set of adjustable thresh-
olds. By default we retained reads that failed the Illumina
base-calling chastity filter and excluded from expression
quantification those with more than three alignments, and
with mismatches or soft-clipped CIGAR strings (8); how-
ever, we retained all reads in the BAM files that we submit-
ted to cgHub.

Quality control in computational processing

The pipeline includes quality control steps before and after
read alignment. After adapter trimming, a size distribution
report was generated for the distribution of read lengths,
which was assessed manually to ensure that size selection
was successful (Figures 1, 2C and D). A narrow size dis-
tribution centered at 22 bp was typical of a good quality
library, and skewed or wide distributions indicated a poor
quality library or problems with size selection of library
constructs. When profiling was completed, a summary re-
port was generated that gave quality metrics that included
the total number of reads aligned to miRNAs, the number
of miRNA species covered by 1 and 10 reads, and a count
of the total reads classified as each annotation type. To en-
sure that a minimum number of reads were obtained for
each sample, we set a project-specific threshold from the
relationship between the total number of reads that align
to miRNAs and the number of miRNA species annotated.
For example, for HiSeq TCGA datasets, we used a thresh-
old of 1 M miRNA-aligned reads (Figure 2E). Finally, we
used an in-house tool based on iterative principal compo-
nents analysis to screen samples for lane-wise batch effects
(http://www.bcgsc.ca/platform/bioinfo/software/bliss).

Consensus clustering of miRNA expression profiles
We identified potential subtypes using unsupervised Non-
negative Matrix Factorization (NMF) consensus clustering,
using the CRAN R package (11). First, we removed records
for miRs that had been retired by miRBase (MIRNA.dead).
We ranked mature strands by variance of expression across
tumor samples, then created the NMF input by selecting
records for the most-variant 25% of 5p and 3p strands, cor-
responding to 303 v16 miRBase strands. We processed this
data subset with NMF’s default Brunet algorithm, survey-
ing a range of candidate clustering solutions. We selected
a preferred result by considering the profiles of the cophe-
netic coefficient and average silhouette widths of consen-
sus membership matrices (12), and associations with clini-
cal and molecular covariates, and with survival, seeking the
most informative solution for the overall analysis.

We generated a miR abundance heatmap for the selected
clustering solution by identifying miRs that were differ-
entially abundant between the unsupervised clusters with
a SAMseq multiclass analysis in R, using the samr v2.0
R package, with a read-count input matrix and an FDR
threshold of 0.05 (13). We used the pheatmap v0.7.7 R pack-
age to display the row-scaled log10(RPM + 1) abundance
matrix of the 40–60 miRs that had the largest SAMseq
scores and a mean tumor expression greater than 25 RPM.
RPM filtering addresses potential sponge effects from com-
petitive endogeneous RNAs (ceRNAs), which can result in

weakly abundant miRs being less influential (14). Leaving
samples (i.e. columns) in NMF order, we row-scaled the
data matrix and clustered rows with a Euclidean distance
metric. While we used (v13 or v16) miRBase MIMAT ac-
cession IDs in the isomiR data that we submitted to data
repositories, for heatmaps we translated MIMATs into 5
and 3p mature strand names using a current version of miR-
Base. Finally, we used R to characterize associations be-
tween clusters and categorical clinical and molecular co-
variates by Fisher exact or Chi-square tests, and between
clusters and real-valued covariates (e.g. tumor purity) by
Kruskal–Wallis tests.

Comparing pipeline outputs to miRDeep2 and ShortStack

To demonstrate that results from our miRNA profiling
pipeline are comparable to those from alternative pipelines,
we processed FASTQ files for aligned reads for five TCGA
bladder cancer miRNA-seq libraries (15) with miRDeep2
(3) and ShortStack (4). miRDeep2 and ShortStack anno-
tate and quantify reference-aligned small RNA-seq data,
and can also report putative novel miRNAs. Because we de-
signed the TCGA pipeline to report only known miRNAs,
we included only known miRNAs in the pipeline compar-
isons. We ran both miRDeep2 and ShortStack using default
settings (Supplementary Tables S2 and S3).

RESULTS

Comparison with miRDeep2 and ShortStack
Working with FASTQ files for aligned reads for five TCGA
bladder cancer datasets, we first assessed run times. Because
we were quantifying only known miRNA, we constrained
ShortStack to use only miRBase annotations, which re-
duced its run times. miRDeep2 ran in the shortest time,
while ShortStack had comparable runtimes to the our
TCGA pipeline (Table 2). Averaging over these five libraries,
85% of the GSC’s total processing time involved BWA-
MEM read alignments; post-alignment processing time was
15% of the total, with four of the five libraries requiring
<0.5 h for this stage. All three tools had run times that were
practical for large scale profiling, given the compute cluster
resources that would typically be available to a group doing
such work.

No pipeline consistently gave the smallest or largest per-
centage of sequence reads mapped to miRNA annotations
in all libraries; our TCGA datasets reported the largest per-
centage in two of the libraries and miRDeep2 in three (Ta-
ble 3). The miR expression profiles produced by our pipeline
were highly correlated with the profiles produced by miRD-
eep2 (Pearson r = 0.996) and ShortStack (r = 0.988) (Ta-
ble 4).

Our miRNA species were highly concordant with those
from the other two pipelines (Figure 3, Table 5); across
the five test libraries, an average of 99.5% of the miRs
that our profiler annotated as having nonzero read sup-
port were concordant with miRs annotated by the other
two pipelines. Corresponding averages for ShortStack and
miRDeep2 were 98.1 and 95.6%. We noted that the miRs
detected by only one or two of the methods were largely
those with low abundance (Tables 6 and 7), which are less

http://www.bcgsc.ca/platform/bioinfo/software/bliss
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Table 2. Average run times (h:min:s) for the five TCGA bladder cancer libraries

TCGA barcode GSC miRDeep2 ShortStack

TCGA-G2-A2EL-01A-12R-A18B-13 3:00:38 (23) 0:49:44 2:59:49
TCGA-G2-A2EK-01A-22R-A18B-13 3:44:41 (63) 0:39:24 2:57:15
TCGA-FD-A3B3–01A-12R-A205–13 3:07:41 (27) 0:29:57 2:58:43
TCGA-CF-A3MI-01A-11R-A20E-13 2:49:32 (15) 0:35:44 3:00:05
TCGA-DK-A3IS-01A-21R-A21E-13 3:16:38 (25) 0:49:45 2:59:06

The GSC and miRDeep2 pipelines were run with default settings. ShortStack was run with defaults but was constrained to miRBase v16 annotations.
For GSC, numbers in parentheses are annotation times, i.e. processing time following read alignment, in minutes.

Table 3. Percentage of reads annotated as miRNA in the five TCGA libraries

TCGA barcode GSC miRDeep2 ShortStack

TCGA-G2-A2EL-01A-12R-A18B-13 31.0 37.8 29.5
TCGA-G2-A2EK-01A-22R-A18B-13 32.6 48.8 44.3
TCGA-FD-A3B3–01A-12R-A205–13 52.5 60.4 56.2
TCGA-CF-A3MI-01A-11R-A20E-13 40.0 35.7 32.0
TCGA-DK-A3IS-01A-21R-A21E-13 58.2 54.6 46.3

Bold text marks the maximum percentage for the three methods for a library.

Table 4. Pearson correlation coefficients for normalized miR abundance profiles generated by the three annotation methods for five TCGA libraries

All miRs miRs with ≥10 reads

GSC GSC MD GSC GSC MD
TCGA barcode MD SS SS MD SSS SS

TCGA-G2-A2EL-01A-12R-A18B-13 0.998 0.975 0.981 0.998 0.975 0.981
TCGA-G2-A2EK-01A-22R-A18B-13 0.998 0.997 1.000 0.998 0.997 1.000
TCGA-FD-A3B3–01A-12R-A205–13 0.998 0.997 1.000 0.998 0.997 1.000
TCGA-CF-A3MI-01A-11R-A20E-13 0.998 0.996 0.999 0.998 0.996 0.999
TCGA-DK-A3IS-01A-21R-A21E-13 0.990 0.976 0.994 0.989 0.975 0.994

Per-sample miR profiles were normalized to reads per 1 M miR-annotated reads (RPM). MD: miRDeep2. SS: ShortStack

Table 5. Number of miRNA species to which reads were mapped using miRBase v16 (of 1222 possible mature miRs)

GSC miRDeep2 ShortStack

TCGA barcode Total
>10
reads Total

>10
reads Total

>10
reads

TCGA-G2-A2EL-01A-12R-A18B-13 648 429 719 485 687 461
TCGA-G2-A2EK-01A-22R-A18B-13 638 421 699 466 680 437
TCGA-FD-A3B3–01A-12R-A205–13 612 365 676 404 658 385
TCGA-CF-A3MI-01A-11R-A20E-13 575 323 629 363 614 348
TCGA-DK-A3IS-01A-21R-A21E-13 650 426 697 473 689 445

In a library with 1 M miR-aligned reads, 10 reads corresponds to 1e-5 RPM.

Table 6. The number and normalized abundance (RPM) for miRNA species reported by the GSC, MiRDeep2 and Shortstack profiling pipelines, using
default settings

GSC RPM MiRDeep2 RPM Shortstack RPM

Venn
Membership Total miRs Median (mean) Max Median (mean) Max Median (mean) Max

All pipelines 785 3.0 (1045) 223 316 2.1 (1044) 345 035 3.18 (1274) 378 133
GSC and MD 12 0.05 (0.09) 0.38 0.02 (0.03) 0.14
GSC and SS 18 0.14 (0.57) 7.1 0.17 (0.62) 7.4
MD and SS 49 0.17 (3.96) 113.9 0.07 (0.77) 13.7
Only SS 19 0.04 (3.01) 42.4
Only MD 30 0.06 (0.16) 1.1
Only GSC 4 0.04 (0.04) 0.08
Grand Total 917

See Figure 3, compare to Table 7. MD: miRDeep2. SS: ShortStack
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Table 7. The number and normalized abundance (RPM) for miRNA species reported by GSC, MiRDeep2 and Shortstack profiling pipelines, relaxing
settings for GSC to allow up to one base mismatch and any number of mapping locations

GSC RPM MiRDeep2 RPM ShortStack RPM

Venn
membership Total miRs Median (mean) Max Median (mean) Max Median (mean) Max

All pipelines 833 2.85 (1201) 273 827 3.44 (1201) 354 265 2.91 (1201) 378 133
GSC and MD 25 0.17 (0.27) 1.90 0.17 (0.42) 3.07
GSC and SS 25 0.17 (0.40) 4.60 0.32 (0.62) 7.4
MD and SS 1 0.79 (0.79) 0.79 0.22 (0.22) 0.22
Only SS 12 0.21 (4.85) 42.4
Only MD 17 0.28 (0.35) 1.1
Only GSC 38 0.14 (0.15) 0.34
Grand Total 951

Table 8. Average RPM of miRs found by both miRDeep and Shortstack in all five samples and were not counted as annotated by the GSC

MIMAT miR name miRBase sequence
miRDeep2
Mean RPM

Shortstack
Mean RPM

MIMAT0005911 miR-1260 AUCCCACCUCUGCCACCA 17.34 1.86
MIMAT0005927 miR-1274a GUCCCUGUUCAGGCGCCA 0.27 0.09
MIMAT0005946 miR-1280 UCCCACCGCUGCCACCC 0.61 0.14
MIMAT0005450 miR-518e-5p CUCUAGAGGGAAGCGCUUUCUG 0.43 0.06
MIMAT0002831 miR-519c-5p CUCUAGAGGGAAGCGCUUUCUG 0.43 0.06
MIMAT0004984 miR-941 CACCCGGCUGUGUGCACAUGUGC 0.92 0.09

Figure 3. Venn diagram of miRNAs detected at any level of read coverage, in at least one of the five bladder cancer libraries, by the GSC, miRDeep2 (MD)
and ShortStack (SS). (A) All methods were run with default settings. (B) The GSC pipeline was run with lowered quality settings that allowed multimapping
and one mismatch. miRs detected by only one or two methods had low RPMs. See Tables 6 and 7.

likely to be biologically influential than more abundant
miRs (14). Only six miRs, and all with relatively low abun-
dance, were identified by both miRDeep2 and ShortStack in
all of the five samples that were not reported as expressed
in our TCGA results (Table 8). While our profiler annotated
reads for all of these miRs, we did not retain them for the
archives submitted to the TCGA repositories because the
alignments did not pass our filters, which required an ex-
act read alignment to a known miRNA, with three or fewer
multiple mappings to the reference genome. When we re-
laxed these filters to allow any number of ambiguous map-
pings with up to one base mismatch, our profiler mapped
reads to each of these miRs in at least one sample.

DISCUSSION

To support resource-intensive analysis of comprehensive
cancer genomics data, and to enable the comparison of
microRNA sequencing data from other projects to TCGA
data, we have described the process that we developed and
used to generate miRNA sequencing datasets for TCGA,
and the computational pipeline with which we character-
ized miRNA expression. In order that readers have ac-
cess to a more detailed description of the nature of the
TCGA miRNA data, which emphasizes mature strands and
isomiRs, we have expanded on material that has been pub-
lished in Methods sections in TCGA marker papers, and
describe the pipeline in the context of the overall data gener-
ation process. We designed the process for high-throughput
processing across large cohorts, specificity for known miR-
NAs, and for stability and comparability across a multi-
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year project. Since we initially implemented the pipeline in
2009, we have developed library and computational pro-
cesses, and automation, increasing our processing capacity
by 10-fold, from several hundred samples per year to several
thousand per year. We have used the production system to
analyze human and mouse sequence data in projects involv-
ing as few as three samples, to projects as large as TCGA,
for which, to date, we processed 11 506 miRNA samples and
submitted sequence data for 11 259 samples across 33 can-
cer types. We have also analyzed 4049 miRNA sequencing
libraries in other projects. The TCGA data that we gener-
ated have contributed to a number of publications (15–25),
and are contributing to over ten TCGA projects that are
underway at the time of writing. While we focus here on ap-
plying the pipeline to large-scale cancer datasets in the con-
text of TCGA, the modular pipeline can run on any SAM-
format read alignment file generated for any species that has
a reference genome and annotated miRNAs, accessing an-
notations from a database or from user-created text files.
The profiling software is freely available to enable rigorous
and consistent comparisons to TCGA data.

AVAILABILITY

The profiling pipeline runs on Linux and Unix-like sys-
tems and is available at: http://www.bcgsc.ca/platform/
bioinfo/software/mirna-profiling, and the adapter trim-
ming software at: http://www.bcgsc.ca/platform/bioinfo/
software/adapter-trimming-for-small-rna-sequencing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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