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Simple Summary: Pre-treatment (TX) prediction of the risk of locoregional failure (LRF) will allow for
TX individualization in patients with nasopharyngeal carcinoma (NPC). The aim of the present study
was to identify whether the quantitative metrics from pre-TX non-Gaussian intravoxel incoherent
motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast
enhanced can predict patients with LRF in NPC. Cumulative incidence (CI) analysis and Fine-Gray
(FG) proportional subhazards modeling were conducted in a sample of 29 NPC patients considering
death as a competing risk. NGIVIM and FXR derived quantitative metric values from primary
tumors classified the patients with and without LRF in NPC. The CI analysis and FG modeling results
suggest that the quantitative metrics obtained from DW- and DCE-MRI may improve LRF patients’
prediction in NPC.

Abstract: The aim of the present study was to identify whether the quantitative metrics from pre-
treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-)
and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with
locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients under-
went pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were
fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve,
and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray
(FG) modeling were performed considering death as a competing risk. Mean ve values were signifi-
cantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend
towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor
heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of
ADC ≤ 0.68 × 10−3 (mm2/s), D ≤ 0.74 × 10−3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff
value showed borderline significance (p = 0.098). FG’s modeling showed a significant difference for
the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR
DCE-MRI-derived metrics for predicting LRF in NPC than alone.

Keywords: diffusion weighted; gaussian and non-gaussian; kurtosis; dynamic contrast-enhanced;
fast exchange regime; permeability; metabolic activity
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1. Introduction

Nasopharyngeal carcinoma (NPC) arises from the mucosal lining of the nasopharynx
and is associated with the Epstein-Barr virus (EBV) [1]. The current standard of care for
locally advanced NPC is definitive chemoradiation with either neoadjuvant or adjuvant
chemotherapy [2,3]. The role of chemotherapy regimens, proton therapy, and EBV-directed
adjuvant therapy is still being evaluated [4–6]. Intensity-modulated radiotherapy (RT)
has allowed precise targeting as well as a reduction in toxicity through sparing of normal
tissue [7–10]. Due to the deep anatomic location and proximity to critical structures,
treatment (TX) is still associated with toxicities [11]. Noninvasive imaging modalities,
such as MR imaging, computed tomography (CT), and positron emission tomography
(PET/CT), have shown potential for the management of NPC [12]. The imaging biomarkers
that can predict early TX response and local recurrence are needed to personalize therapy.

Quantitative diffusion-weighted magnetic resonance imaging (DW-MRI) measures
the random translational motion of water molecules in tissue [13]. The pre-TX appar-
ent diffusion coefficient (ADC) has been shown to have promise for tumor staging and
predicting TX response in NPC [14,15]. Chen et al. reported that the pre-TX mean ADC
values of primary tumors were not significantly different between the responder group
(RG) and non-responder group (NRG) in NPC [15]. Law et al. found that the pre-TX
skewness ADC value of the primary tumors was a predictor of locoregional failure (LRF)
in NPC [16]. The quantitative imaging (QI) metrics derived from the intravoxel incoherent
motion (IVIM) model [13] demonstrated their ability to capture the chemo-RT response in
metastatic lymph nodes of the head and neck (HN) cancer [17,18]. Lu et al. incorporated
the Kurtosis coefficient (K) into the IVIM model [19], which accounts for the deviations
of diffusion from Gaussianity (non-Gaussian [NG] IVIM) without a contrast agent (CA),
to characterize the hindered and restricted distribution of water molecules simultaneously
in HN cancer [13,20]. The clinical application showed that the K (%) values in the first
week of chemo-RT were significantly different between the complete response and residual
patients of human papillomavirus-positive oropharyngeal cancer who were treated with
dose de-escalation, 70 to 30 Gy [21,22].

T1-weighted dynamic contrast-enhanced (DCE)-MRI acquired before, during, and af-
ter a bolus administration of CA [23] can be modeled with the three-parameter Tofts
model, which assumes a fast water exchange between tissue compartments. The previous
study results have shown that volume transfer constant (Ktrans) was related to NPC’s
clinical-stage [24]. The skewness of Ktrans was the strongest predictor of progression-free
and overall survival in stage IV HN cancers [25]. The fast exchange regime (FXR) model,
accounting for water exchange between intracellular space (ICS) and extracellular space
(EES) [26], provides estimates of the mean lifetime of intracellular water protons (τi) in
addition to Ktrans and volume fraction of the extravascular extracellular space (EES) [ve].
The FXR pre-TX Ktrans has been shown to have the ability to predict response to chemo-RT
in HN cancer [22,27]. Chawla et al. have reported that τi, an index of cell metabolic activity,
was higher in patients with the most prolonged overall survival in HN cancer [28].

The integration of quantitative DW- and DCE-MRI techniques offer insight into tumor
cellularity, vessel permeability, and metabolic activity. These functional MRI biomarkers
correlating with disease state may help predict early TX failure that may allow selecting a
personalized TX strategy in NPC. Using the pre-TX metric value, the different advanced
statistical techniques based on a competing risks model have been used to predict the
outcome, such as locoregional failure [29,30].

The aim of the present study was to identify whether quantitative metrics obtained
with pre-TX NGIVIM DW- and FXR DCE-MRI can predict patients with LRF in NPC.
Cumulative incidence (CI) analysis and Fine and Gray (FG) modeling [31], which estimates
subdistribution hazard ratios (SDRs), were performed based on a competing risks model.
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2. Materials and Methods
2.1. Patients

The institutional review board approved this retrospective study, and written informed
consent was obtained from all eligible NPC patients prior to the pre-TX MRI study. Between
November–June 2014 and September 2016, a total of 29 NPC patients treated with definitive
chemoradiation (70 Gy) who had pre-TX DWI and DCE-MRI were included. Follow-up
data and imaging were reviewed. LRF was defined as a persistent or recurrent HN disease.

2.2. MRI Data Acquisition

MRI scans were performed on a Philips 3T scanner (Ingenia; Philips Healthcare,
Netherlands) using a neurovascular phased-array coil [32]. The standard MR acquisition
comprised multi-planar T2-weighted (T2w) (repetition time [TR] = 4000 ms, echo time [TE]
= 80 ms, number of averages [NA] = 2, and number of slices [NS] = 40, matrix = 256 × 256,
slice thickness = 5 mm, field of view [FOV] = 20–24 cm) and T1w imaging (TR = 600 ms,
TE = 8 ms, NA = 2, NS = 40, slice thickness = 5.0 mm; matrix = 256 × 256, FOV = 20–24 cm).
T1w and T2w acquisitions were followed by DW- and DCE-MRI, and the total acquisition
time was approximately 30 min.

2.3. DWI Data Acquisition

The multiple b-values DW-MRI images were acquired using a single-shot echo-planar
imaging sequence (TR = 4000 ms, TE = minimum [80 ms], NA = 2, matrix = 128× 128,
FOV = 20–24 cm, NS = 8–10, slice thickness = 5 mm, and 10 b-values [b = 0, 20, 50, 80,
200, 300, 500, 800, 1500, 2000 s/mm2]). The total acquisition time was approximately 5 min.

2.4. DCE Data Acquisition

T1w dynamic images were acquired using a fast three-dimensional spoiled gradient
-recalled sequence (TR = 7 ms; TE = 2.7 ms, slice thickness = 5 mm, flip angle (FA) = 15◦,
FOV = 20–24 cm, NS = 8–10, matrix 256 × 128 that was zero-filled to 256 × 256 during
image reconstruction). A total of 50 phases were acquired before, during, and after a
bolus injection of 0.1 mmol/kg Gd-based CA, Gadobutrol (Gadavist, Bayer Health Care),
delivered through an antecubital vein catheter at 2 cc/sec, followed by a saline flush using
an MR-compatible programmable power injector (Spectris; Medrad, Indianola, PA, USA).
The temporal resolution ranged from 7.2 to 8.96 sec/image, and the total acquisition time
was ≤8.0 min.

The precontrast T1w images were acquired prior to the dynamic series with the same
MR acquisition parameters as mentioned above using three different FAs of 30◦, 15◦, and 5◦

for T10 mapping.

2.5. DWI Data Analysis

The multiple b-value DW-MRI data were fitted to the (a) monoexponential Equation (1)
and (b) bi-exponential (NGIVIM) model Equation (2) as follows [13,33]

S(b) = S0 e−b×ADC, (1)

S(b) = S0

[
f e−b×D∗

+ (1 − f) e−b×D+ 1
6 K(b×D)2]

, (2)

where S(b) and S0 are the signals with and without diffusion weighting gradient factor,
b (s/mm2), ADC (mm2/s), D (mm2/s), and D*(mm2/s) are the apparent, true, and pseudo-
diffusion coefficients (mm2/s), respectively, f is the perfusion fraction, and K is the kurtosis
coefficient (unitless).
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2.6. Fast Exchange Regime Pharmacokinetic Analysis

The tissue relaxation, R1t (R1t = 1/T1t) Equation (3), and EES relaxation, R1e, Equation (4)
for fast exchange limit, are given as follows [23,34]

R1t = R10 + r1 Ct(t), (3)

R1e = R10e + r1 Ce(t), (4)

where R10 and R10e are the pre-contrast relaxation rates of the tissue and EES, respectively,
r1 is the longitudinal relaxivity of CA (r1 = 4.0 mM−1s−1). Ct(t) and Ce(t) are the CA
concentration in tissue and EES with time, respectively. The Ct and Ce are related as:
Ct = ve × Ce, where ve is the volume fraction of EES.

The standard Tofts model Ct(t) is given by Equation (5) [23].

Ct(t) = Ktrans
∫ t

0
Cpe−kep(t−τ)dτ, (5)

where Ktrans is the volume transfer constant for CA, ve is the volume fraction of EES,
kep (kep = Ktrans/ve) represents the rate constant of CA transport from the vascular space
to EES, Cp(t) is the time course of plasma CA concentration (called arterial input func-
tion [AIF]).

The fast exchange regime model (FXR), the shutter speed model, incorporates the
equilibrium two-site water exchange (2SX) between ICS and EES (i.e., transcytolemmal)
to analyze the DCE data. The observable R1 is derived by solving Bloch McConnell’s
equation for the 2SX model [35], a variant form of the three-site two water exchange
model [36]. One of the eigenvalues of the 2SX is the observable R1t(t) for FXR and is given
by Equation (6) [37]

R1(t) =
1
2

[
(R1i ++kie + R1e + kei)−

√
(R1i ++kie − R1e − kei)

2
]

, (6)

where R1i and R10e are the precontrast relaxation rates of ICS and ESS, and kie (kie = 1/τi)
and kei are the rates of water exchange from the ICS to EES and vice versa. The FXR
provides estimates of Ktrans (min−1), ve, and τi (s).

2.7. Regions of Interest (ROIs) Analysis

ROIs were delineated by radiation oncologists on the DW image (b = 0 s/mm2) and
late phase of the T1w dynamic images of primary tumors in NPC. The primary tumor
volume was calculated from T2-weighted images as detailed elsewhere [32]. The ROI
contouring was performed using Image J [38].

The pre-contrast T1w FAs data were fitted for T10 mapping as detailed elsewhere [39].
The R1 data with time were fitted to Equation [6] using the AIF was extracted from the
carotid artery [25].

The NGIVIM DW- and FXR DCE-MRI models were fitted using a nonlinear fitting
algorithm as detailed elsewhere [20,37]. The post image processing and parametric map
generation were performed using Quantitative Analysis Multi-Parametric Evaluation
Routines (MRI-QAMPER) software, written in MATLAB™ (The MathWorks, Inc., Natick,
MA, USA) [40,41].

2.8. Statistical Analysis

The pre-TX quantitative metrics values within the ROI were reported as the mean,
standard deviation, skewness, and kurtosis. The histogram plots were generated for each
metric value for visual examination of the intra/inter-tumor heterogeneity. The Wilcoxon
rank-sum test was used for comparing the metric values between patients with and without
LRF of NPC. Cumulative incidence analysis (CIA) was performed with dichotomized value
for each metric based on Youden’s index [42] and tested for significance using Gray’s test.
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CI analysis considers death a competing risk factor that includes different events, such as
a locoregional failure, but the interest lies in the first occurring event [43], which was
performed. Competing risks regression was conducted using the Fine and Gray’s (FG)
proportional sub hazards model to estimate subdistribution hazard ratios (SHRs) [31],
and adjusted 95% confidence intervals were reported, considering death as a competing
risk. Statistical significance was set at p < 0.05. All statistical computations were performed
using the R version 4.0.3 software [44].

3. Results
3.1. Clinical

The median age was 43 (range: 21–67), and 83% of patients had stage 3 disease (Amer-
ican Joint Committee on Cancer (AJCC 8) [45]. Age, gender, stage, and EBV association for
patients with and without LRF are summarized in Table 1.

Table 1. Patient characteristics.

Characteristics Patients with LRF
(n = 6)

Patients without LRF
(n = 22)

Male/Female (%) 4/2 (14/7) 16/7 (55/24)
Age: median(range) 45 (21–64 years) 45 (21–64 years)

Stage III and IV (AJCC, %) 60/40 71/29
EBV-associated (%) 40 83

Note: AJCC: American Joint Committee on Cancer, EBV: Epstein-Barr virus, LRF: locoregional failure.

The mean tumor volumes in patients with and without LRF were not significantly
different (7.64 ± 7.24 cm3 vs. 9.15 ± 7.52 cm3, p = 0.4).

3.2. DWI Data Analysis

One of the 29 patients was excluded from DWI analysis due to image distortion and
susceptibility artifact (Table 1).

Figure 1 shows a box plot for pre-TX ADC, D, f, and K values from primary tumors in
patients with and without LRF of NPC.

Cancers 2021, 13, x  5 of 14 
 

 

Gray’s test. CI analysis considers death a competing risk factor that includes different 
events, such as a locoregional failure, but the interest lies in the first occurring event [43], 
which was performed. Competing risks regression was conducted using the Fine and 
Gray’s (FG) proportional sub hazards model to estimate subdistribution hazard ratios 
(SHRs) [31], and adjusted 95% confidence intervals were reported, considering death as a 
competing risk. Statistical significance was set at p < 0.05. All statistical computations were 
performed using the R version 4.0.3 software [44]. 

3. Results 
3.1. Clinical 

The median age was 43 (range: 21–67), and 83% of patients had stage 3 disease (Amer-
ican Joint Committee on Cancer (AJCC 8) [45]. Age, gender, stage, and EBV association 
for patients with and without LRF are summarized in Table 1. 

Table 1. Patient characteristics. 

Characteristics 
Patients with LRF 

(n = 6) 
Patients without LRF 

(n = 22) 
Male/Female (%) 4/2 (14/7) 16/7 (55/24) 

Age: median(range) 45 (21–64 years) 45 (21–64 years) 
Stage III and IV (AJCC, %) 60/40 71/29 

EBV-associated (%) 40 83 
Note: AJCC 8: American Joint Committee on Cancer, EBV: Epstein-Barr virus, LRF: locoregional failure. 

The mean tumor volumes in patients with and without LRF were not significantly 
different (7.64 ± 7.24 cm3 vs. 9.15 ± 7.52 cm3, p = 0.4). 

3.2. DWI Data Analysis 
One of the 29 patients was excluded from DWI analysis due to image distortion and 

susceptibility artifact (Table1). 
Figure 1 shows a box plot for pre-TX ADC, D, f, and K values from primary tumors 

in patients with and without LRF of NPC. 

 
Figure 1. Box plot comparing the pre-treatment mean value of (A) apparent diffusion coefficient 
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Figure 1. Box plot comparing the pre-treatment mean value of (A) apparent diffusion coefficient
(ADC), (B) true diffusion coefficient (D), (C) perfusion fraction (f), and (D) kurtosis coefficient (K)
between patients with and without locoregional failure in nasopharyngeal cancer. f showed a certain
trend towards significance (p = 0.08). Boxes represent interquartile range. Whiskers represent range
of all values. Horizontal line within box is median value.
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Mean pre-TX f values showed borderline significance between patients with and
without LRF in NPC (p = 0.08). Mean pre-TX ADC, D, D*, and K values showed a trend
towards the difference but were not significantly different between the groups (p > 0.05).
The mean SD of ADC and D values trended towards a considerable difference (p = 0.15 for
ADC and p = 0.14 for D). The mean skewness K values showed the limit of significance
between the groups (p = 0.16). Table 2 summarizes the ADC, NG-IVIM model derived D,
D*, f, and K values (mean ± SD).

Table 2. ADC and NG-IVIM derived metric values.

Model Metric With LRF Without LRF p-Value

Monoexponential ADC × 10−3 (mm2/s) 0.66 ± 0.19 0.76 ± 0.15 0.31
NG-IVIM D × 10−3 (mm2/s) 0.74 ± 0.23 0.87 ± 0.22 0.31

D* × 10−3 (mm2/s) 2.30 ± 0.25 2.40 ± 0.18 0.48
f 0.17 ± 0.02 0.19 ± 0.02 0.08
K 0.94 ± 0.25 0.82 ± 0.15 0.23

Note: LRF: locoregional failure.

Figure 2 displays the representative pre-TX DW images (b = 0 s/mm2) with ROIs
and parametric maps of ADC, D, f, and K overlaid on the DW image (b = 0 s/mm2) from
primary tumors in patients with and without LRF of NPC.
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Figure 2. Representative pre-treatment (TX) diffusion-weighted (DW) images (b = 0 s/mm2) and
parametric maps of apparent diffusion coefficient (ADC), true diffusion coefficient (D), perfusion
fraction (f), and kurtosis coefficient (K) in patients with (48-year-old male) and without locoregional
failure (LRF) (55-year-old male) of nasopharyngeal carcinoma (top and bottom). Primary tumor
parametric maps are overlaid on pre-TX DW images (b = 0 s/mm2)

Histograms exhibit the distribution of metric values in the ROI. The representative
histogram of ADC, D, f, and K shows the asymmetrical distribution of metric values in
patients with and without LRF (Figure 3). ADC, D, and f values trended higher in a patient
without LRF than with LRF. By contrast, K values trended higher with LRF than without
LRF. The mean kurtosis of ADC (3.46 vs. 9.949), D (3.88 vs. 13.91), and f (1.58 vs. 2.20)
values were lower in a patient without LRF than with LRF. By contrast, mean K values
(1.26 vs. 1.12) were slightly higher without LRF.

3.3. FXR DCE-MRI Analysis

A total of 29 primary tumors DCE data from NPC patients were analyzed (Table 1).
Figure 4 shows a bar plot for Ktrans, ve, and τi patients with and without LRF in NPC.
The mean ve value was significantly higher in patients without LRF than those with LRF



Cancers 2021, 13, 1128 7 of 14

of NPC (p = 0.03). Ktrans and τi values trended towards significance between two groups
(p = 0.14 for Ktrans and p = 0.11 for τi). Mean kurtosis of ve and skewness of τi values
showed a borderline significant difference between the groups (p = 0.11 for ve and p = 0.09
for τi). Table 3 shows the Ktrans, ve, and τi values (mean ± SD) from 29 NPC patients’
primary tumors.
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Figure 3. Representative voxel value distribution of apparent diffusion coefficient (ADC), true diffu-
sion coefficient (D), perfusion fraction (f), and kurtosis coefficient (K) in patients with and without
locoregional failure (LRF) of nasopharyngeal cancer (Figure 2). AD, D, and f values trended higher in
a patient without LRF than compared with a patient with LRF. By contrast, K values trended higher
in a patient with LRF compared with a patient without LRF. Histogram demonstrates distribution of
each metric voxel value within ROI.
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Figure 4. Bar plot comparing the mean value of (A) volume transfer constant (Ktrans), (B) extravascu-
lar extracellular space volume fraction (ve), and (C) mean lifetime of intracellular water protons (τi)
from fast exchange regime model between patients with and without locoregional failure (LRF) of
nasopharyngeal carcinoma. The metric ve exhibited a significant difference between patients with
and without LRF. Ktrans and τi showed little significance (p = 0.14 for Ktrans and p = 0.11 for τi).

Table 3. Summarizes the FXR DCE-MRI-derived metric values.

Metric With LRF Without LRF p-Value

Ktrans (min−1) 0.29 ± 0.11 0.39 ± 0.16 0.14
ve 0.23 ± 0.13 0.44 ± 0.21 0.03

τi (s) 0.91 ± 0.15 0.71 ± 0.27 0.11
Note: LRF: Locoregional failure.

Representative pre-TX T1w MR images of a late phase dynamic series with ROIs and
parametric maps of primary tumors Ktrans, ve, and τi overlaid on T1w MR images for a
patient with and without LRF of NPC are displayed in Figure 5.

The representative Ktrans, ve, and τi histograms generated from the voxel values for a
patient with and without LRF of NPC are displayed in Figure 6. Ktrans and ve value trended
higher in a patient without LRF than that with LRF. By contrast, τi values trended higher
in a patient with LRF. The kurtosis of Ktrans (9.6 vs. 3.18) values was higher in patients
without LRF than with LRF. The metric τi kurtosis value (7.46 vs. 2.71) was higher with
LRF than without LRF.
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patients with (67-year-old female) and without locoregional failure (LRF) (55-year-old male) of
nasopharyngeal cancer. Primary tumor parametric maps of volume transfer constant (Ktrans), ex-
travascular extracellular space volume fraction (ve), and mean lifetime of intracellular water protons
(τi) overlaid on pre-TX T1w images.
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Figure 6. Representative voxel value distribution of volume transfer constant (Ktrans), extravascular
extracellular space volume fraction (ve), and mean lifetime of intracellular water protons (τi) in a
patient with and without LRF of nasopharyngeal cancer (Figure 4). Ktrans and ve values trended
higher in a patient without LRF as compared with a patient with LRF. By contrast, τi values trended
higher in a patient with LRF as compared with a patient without LRF.

3.4. Survival Analysis: CIA and FG Proportional Subhazards Model

QI metrics value obtained from DW- (n = 28) and DCE-MRI (n = 29) data were used in
a follow-up study. The follow-up periods ranged from 3 to 32 months (median: 17 months).
The CIA, FG proportional subhazards model, and p values are listed in Table 4.

The CIA revealed that the two subgroups dichotomized with the cutoff value of ADC
≤ 0.68 × 10−3 (mm2/s) and D ≤ 0.74 × 10−3 (mm2/s) showed a statistically significant dif-
ference in the incidence of LRF (Gray’s test p = 0.046 for both). Additionally, the cutoff value
of f ≤ 0.18 showed a significant difference in the incidence of LRF (Gray’s test p = 0.006),
and the cutoff value of τi ≤ 0.89 (sec) had borderline significance (Gray’s test p = 0.098).
No significant association was found for a cutoff value of D* ≤ 2.25×10−3 (mm2/s),
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K ≤ 0.86 (unitless), Ktrans ≤ 0.35 (min−1), and ve ≤ 0.21 with LRF (p > 0.05 for all. Compar-
ative CIA curves are depicted in Figure 7.

Table 4. Survival Analysis.

Method Parameter

Cumulative
Incidence Analysis Competing Risks Regression

Gray’s Test
(p-Value)

Subdistribution
Hazard Ratio

(SHR)
p-Value 95% CI

DWI

ADC × 10−3

(mm2/s)
≤0.68 vs. >0.68

p = 0.046 0.03 0.17 0.00–4.37

D × 10−3

(mm2/s)
≤0.74 vs. >0.74

p = 0.046 0.08 0.20 0.00–4.05

D* × 10−3

(mm2/s)
≤2.25 vs. >2.25

p = 0.115 0.29 0.45 0.011–7.40

f ≤0.18 vs. >0.18
p = 0.006 93.06 0.14 1.42–6082.28

K ≤0.86 vs. >0.86
p = 0.226 0.00 0.034 0.0–34,096.0

DCE

Ktrans

(min−1)
≤0.35 vs. >0.35

p = 0.169 1.02 0.98 0.03–33.17

ve
≤0.21 vs. >0.21

p = 0.159 0.17 0.42 0.00–13.62

τi (s) ≤0.89 vs. >0.89
0.098 99.87 0.07 0.66–15,080.66

Figure 7. Cumulative incidence analysis based on locoregional failure (LRF) for pre-treatment (A)
apparent diffusion coefficient (ADC [mm2/s]), (B) true diffusion coefficient (D [mm2/s]), (C) perfu-
sion fraction (f), (D) volume transfer constant (Ktrans [min−1]), (E) volume fraction of extravascular
extracellular space (ve), and (F) mean lifetime of intracellular water protons (τi [s]). Gray’s test
revealed a significant difference for ADC, D, and f (p < 0.05), and borderline significance for τi (s)
(p = 0.098).

FG analysis showed that the K values were significantly associated with LRF (SHR = 93.06,
p = 0.034). The metric τi values showed borderline association in patients with LRF
(SHR = 99.87 and p = 0.072).
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4. Discussion

The present study evaluated the pre-TX DW- and DCE-MRI-derived quantitative imag-
ing metrics’ ability to predict LRF in NPC. The differences of pre-TX ADC (14%), D (17%),
K (13%), and f (7%) captured the varying tumor cellularity, vascularity, and microstructure
between the patients with and without LRF. The change of pre-TX Ktrans (32%), ve (91%),
and τi (22%) were able to characterize vessel perfusion/permeability, CA distribution
space, and metabolic cell activity between patients with and without LRF. The cumulative
incidence analysis (CIA) and Fine Gray modeling were performed to assess the incidence
of LRF, considering death as competing risks.

ADC, D, and f cutoff values were significantly associated with LRF patients. Ad-
ditionally, the FG model revealed that the metric K could be a predictor of outcomes.
The histograms showed an asymmetrical distribution of metrics values with and without
LRF, indicating inter-tumor heterogeneity. The results indicated that pre-TX quantitative
metrics could be a useful prognostic marker for the prediction of LRF that will allow
TX individualization in NPC [16,24]. The study findings were consistent with previous
results, indicating a higher mean ADC value in patients without LRF than with LRF of
NPC [15,16]. Tu et al. reported that the RG demonstrated a higher ADC, Dapp, and lower
apparent kurtosis coefficient, Kapp, values compared with the NRG [46]. The present study
is consistent with this finding. The metric K showed a higher sub-hazards ratio than ADC,
D, f, and D*. In contrast, metrics ADC, D, and f are related to a cumulative incidence of
LRF thank K.

Additionally, low Ktrans and high τi values in patients with LRF are consistent with
the previous results [27,28]. Higher pre-TX Ktrans values exhibited an improved response to
chemo-RT and prolonged survival [27,47] because the Ktrans correlates with the proliferating
cell density and micro-vessel density. Chawla et al. have reported that patients with high τi
were associated with more prolonged overall survival than other groups in HN cancer [28].
The metric τi showed a higher sub-hazards ratio than Ktrans and ve.

Histogram analysis shows the distribution of metrics values in the ROI that can
directly represent Intra/inter tumor heterogeneity. The descriptive statistics represent
the asymmetry of the distribution and the voxel-by-voxel value’s peakedness within the
histogram. The metric values ADC, D, f, Ktrans, and ve of with LRF are leaning towards
as compared to without LRF. In contrast, K and τi values are leaning toward higher
values. The shift of metric value towards lower or higher may be associated with the
extent of malignancy. Skewness and kurtosis of ADC and Ktrans distributions, respectively,
were used to predict TX response in HN cancers [16,48]. The present study showed a
trend towards significantly higher skewness and kurtosis of ADC values in patients with
LRF than those without LRF (Figure 4). By contrast, Law et al. have reported opposite
results [16]. This discrepancy was possibly due to long-term follow-up and large sample
size. The broader peaks towards higher values were seen in patients without LRF than
those with LRF for ADC, D, D*, f, Ktrans, and ve. By contrast, K and τi values trended
lower. The shape of the histogram revealed the tumor heterogeneity and microstructural
differences in patients with and without LRF of NPC.

Despite progress in the management of locally advanced NPC, TX is still associated
with significant toxicities [7,11]. Radiomic signatures derived from quantitative imaging
features have the potential to guide clinical decision-making by identifying tumors at risk
for treatment-resistance [49]. This has led to the exploration of CT, PET/CT, and MRI based
radiomic nomograms in NPC, and while there is data to suggest that these models are com-
parable to TNM based staging symptoms for recurrence risk or EBV status, there remains
discordance with regard to which imaging modalities and features are most prognostic
and reproducible be-tween datasets [50–52].

The utilization of noninvasive DW- and DCE-MRI can be a valuable tool for the
management of NPC patients because they reflect the physiological changes that occur
at the cellular and metabolic levels in tumor tissue [15,28]. In the present study, D, K,
Ktrans, and τi reflected the differences in tumor cellularity, the complexity of microstructure,
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vascularity, and metabolic activity in patients with and without LRF. Such findings are
consistent with prior studies [16,27,28] and indicate that these metrics could be regarded as
prognostic biomarkers in NPC. Additionally, a quantitative metrics map that displays tumor
heterogeneity and significant regional change in TX responsiveness/resistance would allow
for personalized TX planning and monitoring early TX response in NPC. Indeed, this could
allow for personalization of the number of cycles of induction or adjuvant chemotherapy
or identifying regions that require radiation dose escalation.

The present study has a few limitations. The patient cohort that led to a nonsignificant
difference in quantitative metrics values between the two groups was relatively small.
Evaluation in a larger cohort of NPC patients is warranted. The SE-EPI DW imaging
sequence is generally insensitive to artifacts arising from bulk motions but suffers from
severe geometric distortion and artifacts at tissue-air interfaces in the HN region due to
magnetic susceptibility artifacts, especially at higher field strengths [53,54]. The temporal
resolution, approximately 8 s, comprises the temporal resolution and spatial resolution to
extract an arterial input function. The present study did not account for the B1 inhomogene-
ity correction associated with the flip angle. Moreover, while eligible NPC patients were
prospectively enrolled pre-TX, the study did require completion of additional MRI imaging,
and this may have unintentionally selected for patients with improved performance status
who could complete the additional appointments. Thus, we are subject to the inherent
limitations as a small single-institution study, and our findings will need to be evaluated in
a larger multi-center cohort for validation.

5. Conclusions

The present study demonstrated that the pre-TX DW- and DCE-MRI derived QI
metrics can identify diffusion and perfusion characteristics at the primary site, based on
clinical follow-up in NPC. Knowing which patients fail early TX will help individualize
care. A larger cohort is needed to ascertain the present findings further.
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